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Abstract: Numerous studies have presented evidence that certain financial assets may exhibit stochastic volatility or jumps, which 

cannot be captured within the Black-Scholes environment. This work investigates the valuation of power options when the variance 

follows the Heston model of stochastic volatility. A closed form representation of the characteristic function of the process is derived 

from the partial differential equation (PDE) of the replicating portfolio. The characteristic function is essential for the computation of 

the European power option prices via the Fast Fourier Transform (FFT) technique. Numerical results are presented. 
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1. Introduction 

Since Black & Scholes (1973) introduced the Black-Scholes model for option pricing, many scholars have tried to 

relax the assumptions made used in accordance to the model. This is because many studies have shown that in reality, 

certain financial assets may exhibit stochastic volatility or jumps. The evidence of this in option pricing has become an 

important issue because it gives possibility to model option pricing more accurately. One of the most accepted 

stochastic volatility models is due to Heston (1993). Such a model relaxes the constant volatility assumption made in 

the Black-Scholes approach. In this work, the asset price is assumed to follow the log-normal process governed by a 

single Brownian motion, with the volatility process driven by a second Brownian motion process. Both the asset price 

process and the volatility process are correlated by a constant correlation coefficient. With the assumption that the 

market is complete, a replicating portfolio technique is used in obtaining a partial differential equation (PDE). 

Consequently, using the PDE, the characteristic function of the logarithm of the underlying asset price is derived, which 

enables the application of the Fast Fourier Transform (FFT) for the computation of the power option prices. The FFT 

method has been used increasingly since it was first introduced in option pricing by Carr & Madan (1999). It is flexible 

approach in that it can encapsulate properties such as stochastic volatility, and still maintain its computational efficiency 

(see Pillay & O'Hara, 2011). Nevertheless, comparison between the FFT approach and Monte Carlo simulation (see 

Boyle, 1977) is demonstrated numerically to highlight the efficiency of the FFT technique. 

2. The Model 

Let         be a probability space on which two Brownian motions,   
  and   

  for    , are given.        
  is the filtration generated by the Brownian motions and suppose   is a risk-neutral probability. Given the underlying 

asset price    risk-free rate   and a constant factor  , Itô's Lemma implies that   
 

 is also a geometric Brownian motion 

following 
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We introduce an artificial asset     
 

. Then Equation (2.1) becomes 

       
 
 
     

 
 
                  

                                                     
 (2.2) 

 

where           
 

 
    . From Equation (2.2), we observe the volatility is affected by a factor    Hence, within 

the Heston environment, we propose the following model that governs the asset price process: 

       
 
 
     

 
 
                 

                                                  
 (2.3) 

 

where the variance,      . Thus we can represent Equation (2.3) as follows: 
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                          (2.5) 

  

                  (2.6) 
 

where   follows a square-root mean reverting process,   is the speed of the mean reversion,   is the average level of the 

volatility, and   is the correlation coefficient between the two Brownian motions. 

3. The Heston PDE for Power Options 

Following Gatheral (2006), for a risk-neutral portfolio, we need to hedge the artificial asset and the random changes 

in the volatility. Assuming the market is complete (Esser, 2003), we consider a portfolio   of an option with value f, 

   units of Z and –  units of another option with value  , to make the net amount equal to zero, which relies on the 

volatility, 

             (3.1) 
 

Employing the two-dimensional extension of Itô's Lemma yields 

    
  

  
 

  

  
    

 

 
    

 

 
     

  

  
         

 

 

   

   
       

 

 

   

   
  

    

 
   

    
    

       
  

  
          

  

  
           

(3.2) 

 

This is the same for    that is: 

    
  

  
 

  

  
    

 

 
    

 

 
     

  

  
         

 

 

   

   
       

 

 

   

   
  

    

 
   

    
    

       
  

  
          

  

  
           

(3.3) 

 

The change in the portfolio   in time    is given by              . It follows that by replacing the actual 

parameters yields,  
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(3.4) 
 

Knowing that    , we have        . In order to cancel out the randomness terms       and      , we use 

the following: 

  

  
    

  

  
 (3.5) 
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For that reason, 

    
  

  
     

  

  
     

 

 
    

 

 
      

  

  
         

 

 

   

   
     

 
 

 

   

   
  

     
   

    
    

         
 

 
    

 

 
       

    
  

  
 

  

  
    

 

 
    

 

 
     

  

  
         

 

 

   

   
     

 
 

 

   

   
  

     
   

    
    

      

      
  

  
             

  

  
          

   
  

  
       

  

  
           

  
  

  
 

 

 

   

   
      

 

 

   

   
  

     
   

    
    

      

   
  

  
 

 

 

   

   
      

 

 

   

   
  

     
   

    
    

        

(3.7) 

 

In order to avoid arbitrage opportunities, the portfolio should earn a risk-free rate  . Mathematically, this means 

                      

Since     , then     . On that account, using the respective Equation (3.5), Equation (3.6) and Equation (3.7) 

renders 
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(3.8) 

 

Following Heston (1993), both sides of Equation (3.8) are equal to some function, say   such that        
                , where             is the volatility risk premium. Thence, 
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Suppose we have the risk-neutral measures be       , and    
  

   
. This cancels out the volatility risk premium. 

Consequently, the stochastic process followed by the variance is now 

                            (3.10) 
 

It follows that Equation (3.9) becomes 
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which has a similar form to the Heston PDE. Assume that      . Solving for its partial derivatives, and then 

substituting the results into Equation (3.9) returns 
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4. Deriving the Characteristic Function 

So as to solve for the characteristic function, we conjecture that the solution for the PDE (3.12) has the following 

form: 

    
        

 
 
                    

            
 
 
               

 (4.1) 

 

It follows that by replacing the form (4.1) into the PDE (3.12) yields 
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This can be represented as            
 

 
                          , where one possible solution is       

       . Alternatively, this implies that    and    must satisfy the PDEs 
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for      , where              
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We now investigate the characteristic function within the Heston framework for power options. We suggest that the 

characteristic function has the following form: 

                      
         (4.4) 

 

Accordingly, we substitute the characteristic function (4.4) into PDE (4.3), 

            
 

 
      

 

 
  

      
        

               
       

         

 
 

 
        

   
 

 
     

       
          

      
        

     

     
             

   

  
      

   

  
  

     
 

 
  

   
                    

 

 
   

 

 
  

     
     

      
    

   

       
    

   

  
            

 

 
                    

   

  
  

(4.5) 

 

subject to the following boundary conditions:        , and        . This reduces to solving two ordinary 

differential equations (ODE), 
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Equation (4.6) is nonlinear and is of the form of a Riccati equation. Any equation of the Riccati type can always be 

transformed to the following second order linear homogeneous ordinary differential equation (Bastami et al., 2010) 

using a substitution      
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where   
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   . Making further 

substitutions,           
  

 
  and     , the ODE (4.8) is now, 

 
   
     

  
  

      

              
 

(4.9) 

 

Besides, the characteristic equation of the ODE (4.9) is            which is a quadratic equation with roots, 
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Suppose that    and     are distinct real numbers, then the general solution is of the form,      
       

   , where 

   
  

  
      

         
   . Replacing this back into     

  

  
 yields, 
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Recall the terminal condition         . It follows that 

 
  
  

 
  

  

  

Carrying on with the calculation, 
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We now define the following, 

              
             

    
    

   
                            

  
  
  

 
     

               

     
               

  

Thus, continuing to solve (4.12), 

   
              

      

  
   

 
      

       
   (4.13) 

 

Given the solution in (4.13), we can now solve the ODE (4.7) by first integrating both sides of the ODE. 
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We have now obtained solutions for the ODE as given by (4.6) and (4.7), which are shown in (4.13) and (4.14), 

respectively. Choosing      , and replacing the solutions into Equation (4.4) results to the following, 
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where 

                   
          

  
              

              
  

Using the result in (4.15), we can now apply the Fast Fourier Transform technique to price the power option when the 

volatility is stochastic. 

 

5. Power Option Pricing using the Fast Fourier Transform 

The essence behind the FFT approach is the characteristic function of the stochastic process. Provided that this is 

obtained analytically, we can use this approach to price the options. The characteristic function is defined as follows: 
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Definition 5.1: (Characteristic Function). For a one-dimensional stochastic process         , the characteristic 

function is the Fourier transform of the probability density function         given as follows: 

         
                      

 

  

 (5.1) 
 

Let   be the strike price and   the maturity of a power option with terminal asset price    
 

, which is governed by the 

dynamics (2.1). The price of a power call option is computed as the discounted risk-neutral conditional expectation of 

the terminal payoff     
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    (5.2) 
 

where   is a constant interest rate. We define         and   
   

 
. Moreover, we express the option pricing function 

(5.2) as a function of the log strike   instead of the terminal log asset price   , 

       
                        

 

 

 (5.3) 
 

where        is the density function of the process   . Following Carr & Madan (1999), for     , we define a 

modified power call price, 

                   (5.4) 
 

where the Fourier Transform (FT) of          is given by: 

                    
 

  

  (5.5) 
 

Applying the inverse FT to (5.5), then substituting (5.4) with (5.3) into (5.5), and also by the definition of the 

characteristic function (5.1), we obtain the price of a power call option as follows: 
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where 

          
            

              
  (5.7) 

 

Thus for an efficient implementation of the FFT, a closed-form representation of the characteristic function       is 

needed, which we have shown earlier, has the form of (4.15). Given the pricing function (5.6), we can price the power 

call option as follows: 
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where                          
  

 
    

  

 
, and    is the Kronecker delta function which is unity for 

      and zero otherwise. The choice of    and   is essential because it governs this approach. A small   gives us a 

range of prices across a wide range of strike prices; while a large value of   can give inaccurate prices. Moreover, the 

FFT is an algorithm that evaluate the summations of the following form efficiently: 

         
  
 

                          

 

   

 (5.9) 

 

with                  
 

 
              . Hence, the presentation of the power call price in the form (5.8) is a 

special case of (5.9) which enables the use of the FFT.  
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6. Power Option Pricing using Monte Carlo Simulation 

Consider the problem of pricing a power call option of the form (5.2), as exhibited in Section 5. For application of the 

Monte Carlo simulation, we apply the fully truncated Euler scheme by Lord et al. (2010). 

Let         be a probability space on which is defined two standard Wiener processes   
  with respect to the 

underlying, and   
 , with respect to the volatility. Let           be the filtration generated by these Brownian 

motion. Suppose   is a risk-neutral probability under which the asset price process          is governed by 

dynamics given in (2.4) and (2.5). To facilitate the discretization, we consider the log-asset price         
 
   Applying 

Itô's Lemma to this function yields the following log-asset price Dynamics 

        
 

 
           

   (6.1) 
 

Suppose we approximate the paths of the log asset price process (6.1) and the stochastic volatility process (2.5), on a 

discrete time grid via Euler discretization. Let                  be a partition of the time interval       into 

  equal segments of length     that is    
  

 
 for each            .  The fully truncated Euler discretization of the 

log asset price process is 

              
 

 
   

             
        (6.2) 

         
             

              
        (6.3) 

 

where    
                       and               , where         . Using the Milstein scheme, the 

discretization of the volatility process (6.3) is: 

         
             

              
       

 

 
        

      (6.4) 
 

We simulate the diffusion part of the log asset price by drawing a random sample from a normal distribution with 

mean 0 and standard deviation 1 for both    and    for each          , and obtain a log asset price for the maturity 

date of the option,        . By repeating this procedure, many paths can be generated. The price of a power call 

option (5.2) can be estimated by Monte Carlo simulation using 

          
        

 
          

 

 

   

       (6.5) 

 

where   is the number of sample paths used in simulation and     denotes the simulated value of    over each sample 

path using   time steps. This Monte Carlo estimator converges to the correct price          as the number of time 

steps   and the number of samples   become large. 

7. Numerical Results 

In this section, we present a numerical comparison between the Fast Fourier Transform (FFT) approach and the 

Monte Carlo simulation technique. We apply the two approaches for the pricing of a power call option with stochastic 

volatility with a view to comparing the performance of the two techniques.
1
 

We employed the FFT scheme with               and   between [0.28, 0.32] to minimize the relative error 

between the results obtained from both techniques. Linear interpolation is applied to obtain a single option price 

corresponding to the respective strike price. For the Monte Carlo simulation, we employed the Milstein scheme because 

this produce better result than the Euler discretization. We take N = 500, 000 sample paths, and partition the time 

interval       into         equal segments. Since we are only considering the comparison of the accuracy and 

efficiency of the models, we do not calibrate the model parameters, and rather we use the following hypothetical 

parameters of                                                     . 

                                                           
1 The codes were written in MATLAB, and the computations were conducted on an Intel Core 2 Duo processor P8400 @2.26 GHz machine running 
under Windows Vista Service Pack 2 with 2 GB RAM. 
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Table 1 compares the pricing accuracy between the two techniques across a range of strike prices, as well as the 

relative error (in percentage) between the two prices. Using the Monte Carlo simulation as the benchmark, it 

demonstrates the efficiency of the FFT technique over the Monte Carlo simulation technique. 

            

Strike, K FFT Computation Time (seconds) Monte Carlo Computation Time (seconds) % Difference 

0.5 3.9480 0.003092 3.9346 26.196885 0.340568292 

1.0 3.4626 0.003568 3.4742 27.867434 0.333889816 

1.5 3.0064 0.003087 3.0130 28.040573 0.219050780 

2.0 2.5508 0.003033 2.5526 24.529332 0.070516336 

2.5 2.1001 0.003479 2.0904 30.537946 0.464026024 

3.0 1.6456 0.003223 1.6427 24.736727 0.176538625 

3.5 1.2163 0.003309 1.2196 24.399634 0.270580518 

4.0 0.8450 0.003407 0.8476 24.733935 0.306748466 
 

Table1: Comparison of prices for the power call option with stochastic volatility computed by FFT and Monte Carlo 

simulation 

8. Conclusion 

In this paper, we provide a valuation of power options under the Heston dynamics using the fast Fourier transform 

(FFT) technique. We present an analytical form of the characteristic function which is derived from the partial 

differential equation (PDE) of the replicating portfolio. The numerical results show that the FFT technique is more 

efficient than the Monte Carlo simulation. 
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