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Abstract: The similarity transform for the steady three-dimensional problem of a rotating stream over a fixed disc gives a system of
nonlinear ordinary differential equations which are analytically solved by homotopy perturbation, homotopy analysis and variational
iteration methods. The analytic solutions of the system of nonlinear ordinary differential equations are constructed in the series form
except for the variational iteration method in which the solutions are obtained at the end of each iteration. The convergence of the
obtained series solutions from homotopy analysis method (HAM) is carefully analyzed. Comparison of the results of the applied
method with the numerical solution is also provided in this paper.
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1 Introduction

Most scientific problems and phenomena are modeled by nonlinear ordinary or partial differential equations. Some of
them are solved using numerical methods and some are solved using analytic methods of perturbation [1]-[2]. In
numerical methods, stability and convergence should be our main concerns so as to avoid divergence or undesirable
results. In analytic perturbation methods, we should introduce a small parameter into the equation. Therefore, various
new methods have recently presented some techniques to remove the small parameter, such as the Adomian
decomposition method [3]-[7], the homotopy analysis method [8]-[11], the homotopy perturbation method [12]-[24] and
the variational iteration method [25]-[36].

The variational iteration method (VIM) was first introduced by He and was successfully applied to autonomous ordinary
differential equations [37], to Helmholtz equations [38], to nonlinear differential equations of fractional order [39], and
in many other fields. The use of variational iteration method (VIM), the differential transforms method and the Adomian
decomposition method (ADM) for solving differential equations was introduced in [40]. The homotopy-perturbation
method (HPM) was also first introduced by He. This method does not depend on a small parameter. Homotopy
perturbation method (HPM) was successfully applied to nonlinear oscillators with discontinuities [41], heat radiation
equations [42]-[43], etc.

In 1992, Liao [44] employed the basic ideas of homotopy the basic ideas of homotopy in topology to propose a general
analytic method for nonlinear problems, namely the homotopy analysis method (HAM), [45]-[50]. Based on homotopy
of topology, the validity of homotopy analysis method (HAM) is independent of the existence of the small parameter.
The homotopy analysis method (HAM) always provides us with a family of solution expressions containing an auxiliary
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parameter which can properly chosen to give accurate solutions.

The main goal of the present article is to find the totally analytic solution for the problem of rotating stream fixed disc
which is very similar to Von-karman rotating problem with the same variables (F, G, H and P) as function of a
non-dimensional independent variable L and with an important modification (which might be called a Â ”trickÂ”): in
order for the radial momentum equation to balance with rotating stream, there must be a positive nonzero radial pressure
gradient.

Consider the steady rotating flow with a constant angular velocity, about the axis r = 0. All three velocity components
vr,vθ and vz would be involved. However they would be independent because of the symmetry.

2 Mathematical formulation

The momentum Navier-Stokes and continuity equations are as follows:
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with the boundary condition:

at z = 0 : vr = vθ = vz = 0 p = cte = 0

at z → ∞ : vr = 0 vθ = 1 (2)

With η = z
√

w
v

:

vr = rωF(η) (3a)

vθ = rωG(η) (3b)

vz =
√

vωH(η) (3c)

P = ρωvP(η)+ρr (3d)

and with substitution to the main equations:

F ′′+G2 −F2 −F ′h−1 = 0 (4a)

H ′+2F = 0 (4b)

G′′−2FG−HG′ = 0 (4c)

P′−2FH +2F ′ = 0 (4d)
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where prime denotes differentiation with respect Ã§, the boundary conditions are:

at η = 0 : F = G = H = P = 0

at η → ∞ F = 0 G = 1 (5)

In order to use the methods we have to find the proper form of initial conditions [51]. To do so we introduce six new
functions as follows:

Y1 = H, Y2 = F ′, Y3 = F, Y4 = G′, Y5 = G (6)

So the equations are reduced by one order of derivative:

Y ′
2(η) =−Y 2

5 +Y 2
3 +Y2.Y1 +1 (7a)

Y ′
1 +2Y3 = 0 (7b)

Y ′
3 = Y2 (7c)

Y ′
4 = 2Y3.Y5 +Y1.Y4 (7d)

Y ′
5 = Y4 (7e)

By use a numerical method we can easily obtain:

G′(0) = 0.77289

F ′(0) =−0.94197 (8)

3 Basic idea of homotopy perturbation method

To illustrate the basic ideas of the new method, we consider the following nonlinear differential equation:

A(u)−F(r) = 0, r ∈ Ω (9)

Subject to the following condition:

B
(

u,
∂u
∂n

= 0
)

(10)

where A is a general differential operator, B a boundary operator, f (r) a known analytical function and γ is the boundary
of the domain Ω

Generally speaking, the operator A can be divided into two parts which are L and N, where L is linear, but N is nonlinear.
Eq.(9) can therefore be rewritten as follows:

L(u)+N(u)− f (r) = 0 (11)

By the homotopy technique, we construct a homotopy V (r, p) : Ω × [0,1]→ R which satisfies:

H(v, p) = (1− p)[L(v)−L(u0)]+ p[A(v)− f (r)] = 0, P ∈ [0,1], r ∈ Ω .

or
H(v, p) = L(v)−L(u0)+ pL(u0)+ p[N(v)− f (r)] = 0, P ∈ [0,1], r ∈ Ω . (12)
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where p ∈ [0,1] is an embedding parameter, u0 is an initial approximation of Eq. (9), which satisfies the boundary
conditions. Obviously, from Eq. (12) we will have:

H(v,0) = L(v)−L(u0) = 0 (13)

H(v,1) = A(v)− f (r) = 0 (14)

Thus the changing process of q of V (r, p) from u0(r) to u(r) In topology, this is called deformation, and L(v)− L(u0)

and A(v)− f (r) are called homotopy. Here the embedding parameter is introduced much more naturally, unaffected by
artificial factors; besides, it can be considered as a small parameter for 0 ≤ q ≤ 1 So, it is very quite right to assume that
the soloutions of Eq. (11) can be expressed as:

v = v0 + v1q+ v2q2 + . . . (15)

The approximate soloution of Eq. (9) can therefore be clearly obtained:

u = lim
q→1

(v) = v0 + v1 + v2 + . . . (16)

4 Basic idea of variational iteration method

To clarify the basic ideas of variational iteration method (VIM), we consider the following differential equation:

L(u)+N(v) = g(x) (17)

where L is a linear differential operator, N a nonlinear analytic operator, and g(x) an inhomogeneous term. According to
the VIM, we can constract a correction funvtional as follows:

un+1(x) = un(x)+
∫ x

0
γ[ℓ{un(τ)}+N{ũn(τ)}−g(τ)]dτ (18)

where γ is a general Lagrange multiplier [52], which can be identify optimally via the variational theory [53]-[54], the
subscript n denotes the nth-order approximation, ũn is considered as a restricted variation [54], i.e., δ ũn = 0.

5 Basic ideas of homotopy analysis method

Consider the following differential equation:
N[u(τ)] = 0 (19)

where N is a nonlinear operator, τ denotes an independent variable, and u(τ) is an unknown function. For simplicity, we
ignore all boundary or initial conditions, which can be treated in a similar way. By means of generalizing the traditional
homotopy method, Liao [55] constructed the so-called zero-order deformation equation as:

(1−q)L[Φ(τ;q)−u0(τ)] = qλA(τ)N[Φ(τ;q)] (20)

where q ∈ [0,1] is the embedding parameter, λ a non-zero auxiliary parameter, A(τ) ̸= 0 an auxiliary function, L an
auxiliary linear operator, u0(τ) an initial guess of u(τ) and Φ(τ;q) is an unknown function. It is important to have enough
freedom to choose auxiliary unknowns in homotopy Analysis method (HAM).
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Obviously, when q = 0 and q = 1, it holds:

Φ(τ;0) = u0(τ), Φ(τ;1) = u(τ) (21)

Thus, as q increases from 0 to 1, The solution Φ(τ;q) varies from the initial guess u0(τ) to the solution u(τ). Expanding
by Taylor series with respect to q, we have:

Φ(τ;q) = u0(τ)+
∞

∑
m=1

um(τ)qm (22)

Where
um(τ) =

1
m!

∂ mΦ(τ,q)
∂qm |q = 0 (23)

If the auxiliary linear operator, the initial guess, the auxiliary parameter λ , and the auxiliary function are so properly
chosen, the series Eq. (22) converges at q = 1, then we have:

u(τ) = u0(τ)+
∞

∑
m=1

um(τ) (24)

which must be one of solution for the original nonlinear equation, as proved by Liao [5]. As λ = −1 and A(τ) = 1, Eq.
(19) then becomes:

(1−q)L[Φ(τ;q)−u0(τ)]+qN[Φ(τ;q)] = 0 (25)

This is mostly used in HPM, whereas the solution can be obtained direstly without using Taylor series. According to Eq.
(20), the governing equation can be deduced from the zero-deformation equation. The vector is defined as:

ũn = {u0(τ),u1(τ), . . . ,un(τ)} (26)

Differentiating Eq. (20) m times with respect to the embedding parameter q, then setting q = 0 and finally dividing them
by m!, we will have the so-called mth order deformation equation as:

L[um(τ)−Xmum−1(τ)] = λA(τ)Rm(ũm−1) (27)

Where

Rm(um−1) =
1

(m−1)!
∂ m−1Φ(τ;q)

∂qm−1 |q = 0 (28)

and

Xm =

0 m ≤ 1

1 m > 1
(29)

It should be emphasized that um(τ) for m > 1 is governed by the linear Eq. (27) with the linear boundary conditions
coming from the original problem, which can be easily solved using a symbolic computation software.
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6 Application of homotopy perturbation method (HPM)

To investigate the explicit and totally analytic solutions of Eq. (4) by using HPM, we begin with defining the linear and
nonlinear operators for each equation as follows:

LF{ f}= f ′′

NF{ f}= g2 − f 2 − f ′h−1 (30)

LH{h}= h′

NH{h}= 2 f (31)

LG{g}= g′′

NG{g}=−2 f g−hg′ (32)

LP{p}= p′

NP{p}=−2 f g+2 f ′ (33)

Where

F = lim
q→1

f = f0 + f1 + f2 + . . .

G = lim
q→1

g = g0 +g1 +g2 + . . .

H = lim
q→1

h = h0 +h1 +h2 + . . .

P = lim
q→1

p = p0 + p1 + p2 + . . . (34)

Here in this article for a better convergence we add and subtract some linear terms to each equation:

F ′′+2F −2F +G2 −F2 −F ′H −1 = 0

LF{ f}= f ′′+2 f

NF{ f}= g2 − f 2 − f ′h−1−2 f (35)

H ′+2H −2H +2F = 0

LH{h}= h′+2h

NH{h}= 2 f −2h (36)

G′′+2G−2G+g2 −2FG−HG′ = 0

LG{g}= g′′+2g

NG{g}=−2 f g−hg′−2g (37)

P′+2P−2P−2FH +2F ′ = 0

LP{p}= P′+2P

NP{p}=−2 f g+2 f ′−2p (38)

We can now construct the homotopy functions as follows:

H1( f ,g,h,q) = (1− p)( f ′′+2 f )+q( f ′′+g2 − f 2 − f ′h−1) (39a)
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H2( f ,h,q) = (1− p)(h′+2h)+q(h′+2 f ′) (40a)

H3( f .g.h.q) = (1− p)(g+2g)+q(g+2 f q+hg′) (40b)

H4( f ,g,h,q) = (1− p)(p′+2 f ) = q (40c)

with defining the series form offunction in six terms:

f =
6

∑
m=0

fmqm (41a)

g =
6

∑
m=0

gmqm (41b)

h =
6

∑
m=0

hmqm (41c)

p =
6

∑
m=0

pmqm (41d)

Setting all L(u0) to zero, the solutions are:

f0 =− 94197
200000

sin(
√

2η)
√

2

g0 =
77289
200000

sin(
√

2η)
√

2

h0 = 0

p0 = 0

According to Eq. (34) the solutions for F, G, H and P can be found.

7 Application of variational iteration method (VIM)

According to Eq. (18), we can construct correction functional as follows:

Fn+1 = Fn +
∫ n

0
γ1(Fnτ,τ +Gn(τ)2 −F2

n −Fnτ Hn −1)dτ (42a)

Hn+1 = Hn +
∫ n

0
γ2(Hnτ +2Fn(τ))dτ (42b)

Gn+1 = Gn +
∫ n

0
γ3(Gnτ,τ −2Fn(τ)Gn −Gnτ Hn)dτ (42c)

Pn+1 = Pn +
∫ n

0
γ4(Pnτ −2Fn(τ)Hn(τ)+2Fnτ )dτ (42d)
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The Lagrange multipliers are obtained as follows:

γ1 = τ −η

γ2 =−1

γ3 = τ −η

γ4 =−1 (43)

We set the initial values as follows:

F0 =−0.94197η

H0 = 0

G0 =−0.77289η

P0 = 0 (44)

Solving the Eq. (42) with MAPLE for 8 iterations gives the solutions:

F1 =−0.94197η +0.5η2 +0.02416237740η4

H1 = 0.94197η2

G1 = 0.77289η −0.121339865η4

P1 = 1.88294η (45)

8 Application of homotopy analysis method (HAM)

First we construct the so-called mth order deformation equations as follows:

L f { fm(η)−Xm fm−1(η)}= λA f R f
m( fm−1) (46a)

Lg{ fm(η)−Xmgm−1(η)}= λAgRg
m(gm−1) (46b)

Lh{hm(η)−Xmhm−1(η)}= λAhRh
m(hm−1) (46c)

Lp{pm(η)−Xm pm−1(η)}= λApRp
m(pm−1) (46d)

Where

f (η) = f0(η)+
∞

∑
m=1

fm(η) (47a)

g(η) = g0(η)+
∞

∑
m=1

gm(η) (47b)

h(η) = h0(η)+
∞

∑
m=1

hm(η) (47c)

p(η) = p0(η)+
∞

∑
m=1

pm(η) (47d)
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Due to the physical of the problem that is a decaying fluctuating function by η , we assume the solution in the form below:

F(η) =
∞

∑
m=1

∞

∑
n=0

am,ne−mη sin(nη) (48a)

G(η) =
∞

∑
m=1

∞

∑
n=0

bm,ne−mη cos(nη) (48b)

H(η) =
∞

∑
m=1

∞

∑
n=0

cm,ne−mη sin(nη) (48c)

P(η) =
∞

∑
m=1

∞

∑
n=0

dm,ne−mη sin(nη) (48d)

where am,n,bm,n,cm,n and dm,n called rule of solution expression, guides us to the selection of an auxiliary function which
is denoted by A(τ). According to Eq. (4) and Eqs. (48), we choose the linear operator as the following terms:

L f { f (η ;q)}= d2 f (η ;q)
dη2 +3

d f (η ;q)
dη

+2 f (η ;q) (49a)

Lg{g(η ;q)}= d2g(η ;q)
dη2 +4

dg(η ;q)
dη

+5g(η ;q) (49b)

Lh{h(η ;q)}= dh(η ;q)
dη

+h(η ;q) (49c)

Lp{p(η ;q)}= d p(η ;q)
dη

(49d)

with the properties:

L f {C1e−2x +C2e−x}= 0 (50a)

Lg{C3e−2x sin(x)+C4e−2x cos(x)}= 0 (50b)

Lh{C5e−x}= 0 (50c)

Lp{C6}= 0 (50d)

where C1,C2,C3,C4,C5 and C6 are constants to be determined through the initial conditions. Now we verify the nonlinear
operators:

N f { f (η ;q),g(η ;q),h(η ;q)}= d2 f (η ;q)
dη2 +g(η ;q)2 − f (η ;q)2

− d f (η ;q)
dη

h(η ;q)−1 (51a)

Ng{ f (η ;q),g(η ;q),h(η ;q)}= d2g(η ;q)
dη2 −2 f (η ;q)g(η ;q)− dg(η ;q)

dη
h(η ;q) (51b)

Nh{ f (η ;q),h(η ;q)}= dh(η ;q)
dη

+2 f (η ;q) (51c)

Np{ f (η ;q),g(η ;q),h(η ;q)}= d p(η ;q)
dη

−2 f (η ;q)h(η ;q)+
2d f (η ;q)

dη
(51d)
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According to Eq. (4) and Eq. (48), the initial guess should be in the form:

f0 =−0.94σ(η)e−η

g0 = 1− e−η cos(η)−0.23sin(η)e−η

h0 = 0.5−0.5e−η cos(η)−0.5sin(η)e−η

p0 = 1.88sin(η)e−η (52)

They satisfy the initial condition and the rule of solution expression. We have also:

R f
m( fm−1,gm−1,hm−1) =

d2 fm−1(η)

dη2 −

(
m−1

∑
j=0

f j(η) fm−1− j(η)

)

+

(
m−1

∑
j=0

g j(η)gm−1− j(η)

)
−

(
m−1

∑
j=0

h j(η)

(
d
dz

fm−1− j(η)

))
−1−Xm

(m;n are coe f f icients) (53a)

Rg
m( fm−1,gm−1,hm−1) =

d2gm−1(η)

dη2 −2

(
m−1

∑
j=0

f j(η)gm−1− j(η)

)

−

(
m−1

∑
j=0

h j(η)

(
dgm−1− j(η)

dz

))
(53b)

Rh
m( fm−1,hm−1) =

dhm−1(η)

d(η)
+2 fm−1(η) (53c)

Rp
m( fm−1, pm−1,hm−1) =

d pm−1(η)

d(η)
+2

(
d fm−1(η)

d(η)

)

−2

(
m−1

∑
j=0

f j(η)hm−1− j(η)

)
(53d)

Now the solution of mth order deformation equations can be obtained by applying inverse linear operator to both sides of
the above equations.
Due to the rule of the solution expression we choose the auxiliary functions as follows:

A f (η) = 1, Ag(η) = 1,Ah(η) = 1, Ap(η) = 1, (54)

By choosing a value for m the solution for f , g, h and p can be obtained by using Eqs. (47).

9 Result and comparison between the methods

The following figures illustrate the behavior of the four parameters in the three methods of homotopy perturbation method
(HPM), variational iteration method (VIM) and homotopy analysis method (HAM), respectively. The results clearly show
that the homotopy perturbation method (HPM) is capable of solving a large class of nonlinear equations with rapid
convergent successive approximations but with some restraining assumptions (the adding and subtracting some linear
terms to the linear part of the equations for instance). Variational iteration method (VIM), on the other hand, does not
need any excess assumptions. It also reduces the amount of calculations considerably. The homotopy analysis method
(HAM) gives us accurate results and also the ability of controlling the solutions by introducing the parameter Î and the
auxiliary function A.
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Fig. 1: λ -curve for F ′′(0),G′′(0),H ′′(0) and P′′(0)

Table 1: Some summarized results for F(η)

η VIM HPM HAM Numerical SolutionErrore of VIMErrore of HPMErrore of HAM
0.1 -0.08920182 -0.08920182 -0.08920181 -0.089201825 1.34E-08 1.09E-07 1.31E-07
0.2 -0.16846881 -0.16846881 -0.16846881 -0.168468805 -4.77E-09 -1.60E-08 -1.01E-08
0.3 -0.23795814 -0.23795814 -0.23795814 -0.237958144 1.46E-09 2.12E-08 2.54E-08
0.4 -0.29791327 -0.29791332 -0.29791332 -0.29791327 9.63E-09 -1.77E-07 -1.74E-07
0.5 -0.34865000 -0.34865035 -0.34865035 -0.348650008 2.45E-08 -9.85E-07 -9.82E-07
0.6 -0.39054444 -0.39054603 -0.39054603 -0.390544448 3.55E-08 -4.05E-06 -4.04E-06
0.7 -0.42402228 -0.42402758 -0.42402758 -0.424022291 2.28E-08 -1.25E-05 -1.25E-05
0.8 -0.4495942 -0.44956304 -0.44956302 -0.449549426 5.19E-09 -3.03E-5 -3.02E-05
0.9 -0.46762349 -0.4676502 -0.4676502 -0.467623511 5.06E-08 -5.71E-05 -5.71E-05
1 -0.47876623 -0.47880139 -0.47880139 -0.478766249 5.11E-08 -7.34E-05 -7.34E-05

Table 2: Some summarized results for G(η)

η VIM HPM HAM Numerical SolutionErrore of VIMErrore of HPMErrore of HAM
0.1 0.07728319 0.077283176 0.077283174 0.077283185 -7.42E-08 1.09E-07 1.35E-07
0.2 0.154489124 0.154489124 0.154489121 0.154489118 -3.49E-08 -4.01E-08 -2.07E-08
0.3 0.231437388 0.231437378 0.231437378 0.231437381 -2.91E-08 1.33E-08 1.41E-08
0.4 0.307861036 0.307860969 0.307860968 0.307861031 -1.77E-08 1.99E-07 2.03E-07
0.5 0.383432705 0.383432111 0.383432112 0.383432705 1.05E-10 1.55E-06 1.55E-06
0.6 0.457787543 0.457784067 0.457784066 0.457787544 22.11E-09 7.60E-06 7.60E-06
0.7 0.530542759 0.530527571 0.530527571 0.530542742 -3.26E-08 2.86E-05 2.86E-05
0.8 0.601313866 0.601260082 0.601260082 0.6013313848 -2.89E-08 8.94E-05 8.94E-05
0.9 0.669727845 0.669566226 0.669566223 0.669727857 1.73E-08 2.41E-04 2.41E-04
1 0.735433525 0.735007992 0.735007992 0.73543353 5.89E-09 5.78E-04 5.78E-04

10 Conclusion

In this paper, three kinds of analytical methods, called the homotopy perturbation method (HPM), the variational
iteration method (VIM) and the homotopy analysis method (HAM) have been successfully applied to find explicit
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Table 3: Some summarized results for H(η)

η VIM HPM HAM Numerical SolutionErrore of VIMErrore of HPMErrore of HAM
0.1 0.009086561 0.009086564 0.009086554 0.009086566 6.19E-07 2.49E-07 1.35E-06
0.2 0.035018181 0.035018175 0.035018175 0.035018192 3.38E-07 5.02E-07 5.06E-07
0.3 0.075822049 0.075821989 0.075821988 0.075822066 2.27E-07 1.02E-06 1.03E-06
0.4 0.129565663 0.129565207 0.125652 0.129565684 1.62E-07 3.68E-06 3.74E-06
0.5 0.194372663 0.194370439 0.194370438 0.194372683 1.01E-07 1.15E-05 1.15E-05
0.6 0.268436067 0.268428101 0.2684281 0.268436093 9.98E-08 2.98E-05 2.98E-05
0.7 0.350029242 0.350006088 0.350006087 0.350029302 1.72E-07 6.63E-05 6.63E-05
0.8 0.437514862 0.437456824 0.437456824 0.437514952 2.07E-07 1.33E-04 1.33E-04
0.9 0.529352086 0.52922054 0.529220541 0.529352151 1.23E-07 2.49E-04 2.49E-04
1 0.624102131 0.623823802 0.623823802 0.624102232 1.62E-07 4.46E-04 4.46E-04

Table 4: Some summarized results for P(η)

η VIM HPM HAM Numerical SolutionErrore of VIMErrore of HPMErrore of HAM
0.1 0.178362365 0.17836236 0.17836226 0.178362393 1.58E-07 1.85E-07 7.54E-07
0.2 0.336324475 0.336324347 0.336324373 0.336324528 1.58E-07 4.57E-07 4.60E-07
0.3 0.473041795 0.473040436 0.473040434 0.473041859 1.35E-07 3.01E-06 3.01E-06
0.4 0.587432904 0.58742459 0.58742459 0.587432966 1.05E-07 1.43E-05 1.43E-05
0.5 0.678409633 0.67837687 0.67837686 0.678409676 6.21E-08 4.84E-05 4.84E-05
0.6 0.745059908 0.744961714 0.744961712 0.745059949 5.52E-08 1.32E-04 1.32E-04
0.7 0.786784326 0.786538668 0.786538668 0.786784366 5.1E-08 3.12E-04 3.12E-4
0.8 0.80338922 0.80284583 0.80284563 0.803389215 -7.16E-09 6.76E-04 6.77E-04
0.9 0.795140161 0.794037295 0.794037295 0.795140191 3.78E-08 1.39E-03 1.39E-03
1 0.762780716 0.760678244 0.760678242 0.76278071 -8.70E-09 2.76E-03 2.76E-.3

Fig. 2: Comparison between the numerical results and the results obtained by VIM and HAM for F(η) and G(η) with
λ =−1 and m = 9

solution of the equation system of Bodewat’s.

The results clearly show that all methods are extremely effective for solving nonlinear differential equations. The
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Fig. 3: Comparison between the numerical results and the results obtained by VIM and HAM for H(η) and P(η) with
λ =−1 and m = 9

homotopy perturbation method (HPM) and variational iteration method (VIM) are easy to use and are more rapid
convergent. However the flexibility of using them is low and the ability to control and manage-the-process of solution is
difficult. They are also hard to handle when infinity boundary conditions exist as for the problem in this article.
Fortunately there are some ways to handle this deficiency, one of which has been used in this article. Homotopy analysis
method (HAM) on the other hand is independent of boundary and initial conditions and no matter how the conditions
are, it can give a fairy good result. However the process of solution is rather more complex than the other two methods
and one should fully understand the introduced parameters and their influences on the equations to achieve a paper
answer. These methods can be applied to most of the nonlinear equations in fluid flow. As in this work, the above
mentioned methods were applied to a complicated nonlinear system of differential equations.
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