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Abstract: A huge literature about the Pitmans asymptotic efficiencies (AE) of the goodness-of-fit tests based on higher-order non-
overlapping spacings is available. The performance of the linear random variable based on higher-order non-overlapping spacings is
measured asymptotically. Since the linear test satisfy the Cramrs condition so the probability of Large Deviation results are applicable
for this statistics. It is observed that just like Pitmans sense, Linear test in intermediate (all three cases) is most efficient as well because
it satisfies the above mentioned condition.
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1 Introduction

Let W1,W2, ...,Wn−1be an ordered (ascending form) sample from a population having continuous cumulative distribution

function (cdf) F and probability density function (pdf) f (W ). The goodness-of-fit problem is to test if this distribution is

equal to a specified one. A common approach to these problems is to transform the data via the probability integral

transformation U = F(W ) so that the support of F is reduced to [0,1] and the specified cdf reduces to that of a uniform

random variable on [0,1].Therefore, without loss of generality, one may deal with the problem of testing the null

hypothesis .

H0 : f (w) = 1, 0 ≤ w ≤ 1 (1.1)

against alternative that f is a pdf of some other random variable (different from uniform) having support on [0,1]. From

now on, we deal with this reduced problem. There are two basic approaches for the goodness-of-fit problem: tests based

on observed frequencies and those, based on spacings. It is known that while the tests based on frequencies perform better

in detecting differences between the distribution functions, the tests based on spacings are useful to detect differences

between the corresponding densities. It is worth noticing too that Jammalamadaka and Tiwari (1987) have shown that

comparable test based on α-spacings is better than chi-squared test in terms of local power. With notations W0 = 0 and

Wn = 1 ,the non-overlapping α-spacings are defined as D(α)
j =Wjα −W( j−1)α , j = 1,2, ...,N

′
, D(α)

N′
+1

= 1−WN′α , where

integer α ε [1,n] , N′ = [n/α ] is the greatest integer less than or equal to n/α. Consider N = N
′

if n/α is an integer and

N = N
′
+1 otherwise. Note that all D(α)

j and Wj depend on n also but the extra suffix is omitted for notational simplicity.

We are testing hypothesis (1.1) against the sequence of alternatives

H1,n : f (w) = 1+d l(w)δ (n), 0 ≤ w ≤ 1 (1.2)
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where δ (n)→ ∞ as n → ∞, d > 0 is a distance between H1 and H0 and l(w) is a direction of H1 such that

∫ 1

0
l(w)dw = 0,

∫ 1

0
l2(w)dw = 1. (1.3)

Assume that α may tends to infinity as n → ∞ , we consider test based on the statistic

ΛN =
N

∑
j=1

ζ jnD(α)
jN , ζ jn ε R, j = 1,2, ...N. (1.4)

The large value of ΛN rejects the hypothesis. Tests based on simple spacing, i.e.1-spacings, have been proposed by many

authors (see, for example, Pyke (1965) and the references contained therein). Distribution theory of such statistics and

their asymptotic efficiencies have been studied, for instance by Rao and Sethuraman (1975), Holst and Rao (1981). For

the first time the asymptotic normality of the statistics based on disjoint α -spacings was discussed by Del Pino (1979)

and has shown that it is more efficient in Pitman sense than simple spacings statistics, see also, Mirakhmedov and Naeem

(2008 a,b). We also refer to a series of papers by Jammalamadaka Rao and co-authors (see, for example, Morgan Kuo

and Jammalamadaka (1981) and Jammalamadaka et al (1989). Here statistics (1.4) is called Linear statistics based on

α -spacings and it was studied by Holst and Rao (1981) with α = 1. The linear statistics belongs to the class of non

symmetric statistics based on spacings and it is well known that tests based on such type of statistics can detect alternative

(1.2) with δ (n) = n−1/2 . The present paper discusses the test of goodness of fit based on (1.4) with α ≥ 1 which may

increase jointly with n. It is shown that the Kallenberg intermediate efficiency coincides with Pitman efficiency of statistic

(1.4).

2 Asymptotic normality of ΛN

In the following discussion, 0 =U0 ≤U1 ≤ ...≤Un−1 ≤Un = 1 be an ordered sample from uniform [0,1] distribution and

T (α)
j their non-overlapping α-spacings. Let h j(w,u), where u = j/N and j = 1,2, ...,N, be measurable functions. Consider

the statistics

RN =
N

∑
j=1

h j(NT (α)
j ,u) (2.1)

Let X and XJ,α , α = 1,2, ...,N be independent and identically distributed random variables with common density function

γα(t) = tα−1e−t(Γ (α))−1 , t > 0 , where Γ (α) is well known gamma function. We supose that the following moments

exists

SN,α = X1,α + ...+XN,α ,

QN =
N

∑
j=1

h j(XN,α , j/N),

ρN = corr(QN ,SN,α),

f j(t,u) = h j(t,u)−E(h j(X ,u))− (t −α)ρN

√
VarQN

Nα
, (2.2)
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AN =
N

∑
j=1

E(h j(X j,α ,u)).

σ2
N =Var( f j(X j,α ,u)).

The following Assertion is the Corollary 2 of Mirakhmedov (2005).

Assertion: If 1
σ3

n
∑n

j=1 E
∣∣ f j(X j,α ,u)

∣∣3 → 0, as N → ∞ and u = j/N then the random variable RN has asymptotically

normal distribution with expectation AN and variance σ2
N . The statistic ΛN is a special case of (2.1) with

h j(w,y) = ζ (y)w.

Therefore, from Assertion , by putting, Ψm,N = 1
N ∑N

j=1 ζ m
j,n and ϒm,N = 1

N ∑N
j=1(ζ j,n −Ψ1,N)

m we have the following

theorem,

Theorem 2.1. If (ϒ4,N/Nϒ 2
2,N)→ ∞ as N → ∞ then the random variable ΛN has asymptotically normal distribution with

expectation nΨ1,N and variance nϒ2,N .

Proof. The r. v. ΛN is included in the family of statistic mentioned in (2.1) with kernel function h j(u) = ζ j,Nu. It is well

known that

E(X)s = α(α +1)...(α + s−1) , s ≥ 1 ; E(X) =Var(X) = α

E(X −α)4 = 3α(α +2). (2.3)

By using these in the notation (2.2) we have

E(h j(X , j/N)) = ζ j,Nα,

Var(QN) = αNΨ2,N ,

ρN =Ψ1,N/
√

Ψ2,N ,

f j,N(X j,α) = (ζ j,N −Ψ1,N)(X j,α −α),

σ2
N =

(
1−

Ψ 2
1,N

Ψ2,N

)
αNΨ2,N = αN(ψ2,N −Ψ 2

1,N) = αNϒ2,N = nϒ2,N . (2.4)
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Now by using (2.3)

N

∑
j=1

E f 4
j (X j,α) = Nϒ4,NE(X j,α −α)4 = 3α(α +1)Nϒ4,N . (2.5)

By applying relations (2.4), (2.5) in the above mentioned Assertion, and well known inequality β3,N ≤ β 1/2
4,N one can get

∣∣∣P{ΛN < x
√

nϒ2,N +nΨ1,N}−Φ(w)
∣∣∣≤C

[
3
N

(
1+

1
α

)
ϒ4,N

ϒ 2
2,N

]1/2

. (2.6)

It proves Theorem 2.1.

Remark 2.1. Actually in (2.6) we have a more general result as compared to Theorem 2.1, namely estimation of the

remainder term in central limit theorem for ΛN .

Remark 2.2. The r. v. ΛN coincides with linear combination of order statistics, in our case, with sample from uniform (0,

1) distribution. As usually, consider a r. v. of type ΛN , it is assumed that

N

∑
j=1

ζ j,n = 0,
N

∑
j=1

ζ 2
j,n = 1. (2.7)

This condition does not lose generality because otherwise, instead of ζ j,n, one can take ξ j,n = (ζ j,n −Ψ1,N)/
√

ϒ2,N .

Under condition (2.7) if, additionally, ϒ4,N → ∞ as N → ∞ then r. v. ΛN has asymptotically normal distribution with zero

expectation and variance α .

3 Probability of large deviation.

The Cramer’s condition: there exists Π > 0 such that E exp{Π |g(W,u)|}<∞ where u= j/N , j = 1,2, ...,N , is obviously

satisfied by the statistic ΛN . Therefore, by the Theorem, Mirakhmedov et. al. (2011), it follows

Theorem 3.1. For all w ≥ 0 , w = o(
√

n)

P0{ΛN ≥ x
√

nϒ2,N +nΨ1,N}= Φ(−w)exp
{
− w3
√

N
KN

(
− w√

N

)}{
1+O

(
w+1√

N

)}
,

where KN(u) = κ0,N + κ1,Nu+ ... is a special Cramer’s type power series for N large enough and κ j,N ≤ Π < ∞, j =

0,1,2, ....

4 Asymptotic relative efficiency

From Theorem 2.1 and well known theorem on convergence of moments (see, for example Theorem 6.14 by Moran

(1948b) it follows that

E1ΛN = NΨ1,N +o(N) and Var1ΛN = Nϒ 2
2,N(1+o(1)), (4.1)
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Let Pj, E j and Var j are probability, expectation and variance accounted under H j, j=0,1. We assume that E1ΛN −E0ΛN > 0.

For non-symmetric statistics,

wN(g)≡
√

N(E1ΛN −E0ΛN)/
√

Var1Λ =−
√

nδ (n)d ρ(g)(1+o(1)),

with

ρ(g) =
∫ 1

0
l(u)corr(g(W,u),W )du (4.2)

because Var(W ) = α . Due to Holder’s inequality ρ(g)≤ 1 since (1.3) and equality can be achieved if and only if g(y, t) =

l(t)y . Therefore, non-symmetric tests discriminate alternatives H1 (1.2) with δ (n) = n−1/2 . Asymptotically optimal test

in Pitman’s sense is a linear test, which rejects H0 if

ΛN =
N

∑
j=1

ζ j,ND(α)
j,N > Π .

This result was also obtained by Rao and Sethuraman (1975) and Holst and Rao (1981) for α = 1. Asymptotically most

powerful test among non symmetric tests is a linear test based on linear statistic ΛN = ∑N
j=1 l( j/N)D(α)

j,N critical region of

which is given by {w : w ≥ tω
√

n} and asymptotic power is Φ(d−tω) and it can be applied to detect alternatives with given

direction l(w) , because all statistical characteristics of this test depend on l(w) . The Linear test, being non symmetric, can

detect alternatives at a distance
√

n and sequence of alternatives, (1.2) with δ (n) = n−1/2 , are called Pitman’s alternatives.

The Pitman’s alternatives, when the sequence of alternatives H1,n converges with a rate δ (n) = n−1/2 , is one of extreme

cases. Another extreme case arises in Bahadur’s concept which proposes that alternative is fixed i.e.H1,n does not approach

to null hypothesis. One can say, there seems no need to use statistical methods in the case of alternatives far from the null

hypothesis. Between these extreme cases there is intermediate approach. For our case intermediate alternatives determine

in (1.2) δ (n) such that

δ (n)→ 0 ,
√

nδ (n)→ ∞. (4.3)

These situations give rise to the concepts of intermediate asymptotic efficiency (IAE) due to Kallenberg (1983), see also,

Inglot (1999), Ivchenko and Mirakhmedov (1995). According to the classification of Kallenberg (1983) this efficiency will

be weak ω − IAE if
√

nδ (n) = O
(√

lnn
)

, middle ω − IAE if
√

nδ (n) = o
(
n1/6

)
and considered to be strong ω − IAE

when
√

nδ (n) = o
(
n1/6

)
. Asymptotic relative efficiency of one test is defined as the ratio of its asymptotic slopes. For

Pitman’s alternatives it is equal to Pitman’s asymptotic relative efficiency, see for example Fraser (1957). We have,

Theorem 4.1. Let alternative H1 be specified by (1.2) and (4.3). If
∫ 1

0 E exp{Π |g(W, t)|}dt < ∞ for some Π > 0 , then
eω

n (g)
nδ 2(n) =

d2

2 ρ2(g)(1+o(1)).

Proof. Following Mirakhmedov (2006), under the conditions of the theorem, we have

eω
n (g) = − logΦ(−wN(g)) + o

(
w2

N(g)
)
. Since − logΦ(−w) = 1

2 w2(1 + o(1)) as w → ∞, from (4.2) we have

eω
n (g) =

d2

2 nδ 2(n)ρ2(g)(1+o(1)) . The Theorem 4.1 is proved.

It follows from Theorem 4.1 that ρ2(g) should be taken as a measure of IAE of the g-test. Thus, for intermediate

alternatives (1.2) and (4.3) with direction l(w) within the class of non-symmetric tests, the linear test (based on statistics

ΛN ) is most efficient in the IAE sense, since it satisfies condition of Theorem 4.1. Due to Kallenberg’s classification one

can say that the linear test is optimal in the strong IAE sense.
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5 Conclusions

1.We shall measure the performance of Linear test by the asymptotic value of slope

eω
N (ΛN) =− logP0 {ΛN ≥ NΨ1,N +o(N)}.

2.Since the Cramer’s condition, for ΛN , is satisfied so the probability of Large Deviation results are applicable for this

statistics.

3.Just like Pitman’s sense, Linear test is most efficient in intermediate (all three cases) because it satisfies the conditions

of Theorem 4.1.
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