Some Hermite-Hadamard inequalities for beta-convex and its fractional applications

Mevlut Tunc ${ }^{1}$, Ummugulsum Sanal ${ }^{2}$ and Esra Gov ${ }^{2}$
${ }^{1}$ Mustafa Kemal University, Faculty of Science and Arts, Department of Mathematics, 31000, Hatay, Turkey.
${ }^{2}$ Mustafa Kemal University, Graduate School of Natural and Applied Sciences, Department of Mathematics, 31000, Hatay, Turkey.

Received: 24 April 2015, Revised: 23 May 2015, Accepted: 20 July 2015
Published online: 29 October 2015

Abstract

In this paper, the authors defined a new concept so called beta-convex function and compared with the other definitions of convexity. They also established some inequalities of Hadamard type via ordinary and Riemann-Liouville integral.

Keywords: Hermite-Hadamard inequalities, convex function, beta-convex function, fractional integral inequalities, beta function.

1 Introduction

The Hermite-Hadamard inequality asserts that the mean value of a continuous convex function $f:[v, v] \subseteq \mathbb{R} \rightarrow \mathbb{R}$ lies between the value of f at the midpoint of the interval $[v, v]$ and the arithmetic mean of the values of f at the endpoints of this interval, that is,

$$
\begin{equation*}
f\left(\frac{v+v}{2}\right) \leq \frac{1}{v-v} \int_{v}^{v} f(x) d x \leq \frac{f(v)+f(v)}{2} \tag{1}
\end{equation*}
$$

Moreover, each side of this double inequality characterizes convexity in the sense that a real-valued continuous function f defined on an interval I is convex if its restriction to each compact subinterval $[v, v] \subset I$ verifies the left hand side of (1) (equivalently, the right hand side of (1)). If f is a positive concave function, then the inequality is reversed. See [1] and [21] for details.

Definition 1. [17] A function $f: I \subset \mathbb{R} \rightarrow \mathbb{R}$ is said to be convex on I if the inequality

$$
\begin{equation*}
f(t v+(1-t) v) \leq t f(v)+(1-t) f(v) \tag{2}
\end{equation*}
$$

holds for all $v, v \in I$ and $t \in[0,1]$. We say that f is concave if $-f$ is convex.

Definition 2. [8] We say that a map $f: I \subset \mathbb{R} \rightarrow \mathbb{R}$ belongs to the class $P(I)$ if it is nonnegative and, for all $v, v \in I$ with $v<v$ and $t \in[0,1]$, satisfies the following inequality

$$
\begin{equation*}
f(t v+(1-t) v) \leq f(v)+f(v) \tag{3}
\end{equation*}
$$

[^0]Definition 3. [14] A function $f: I \subset \mathbb{R} \rightarrow \mathbb{R}$ is said to be Godunova-Levin function, if

$$
\begin{equation*}
f(t v+(1-t) v) \leq \frac{f(v)}{t}+\frac{f(v)}{1-t} \tag{4}
\end{equation*}
$$

holds for all $v, v \in I$ with $v<v$ and $t \in[0,1]$.
For some useful details and extensions of Godunova-Levin functions, see [10], [11], [12], [14], [16], [22], [23], [26].
Definition 4. [22] A function $f: I \subset \mathbb{R} \rightarrow \mathbb{R}$ is said to be s-Godunova-Levin function of first kind, if

$$
\begin{equation*}
f(t v+(1-t) v) \leq \frac{f(v)}{t^{s}}+\frac{f(v)}{1-t^{s}} \tag{5}
\end{equation*}
$$

for all $v, v \in I$ with $v<v$ and $t \in[0,1], s \in(0,1]$.
It is obvious that for $s=1$ the definition of s-Godunova-Levin functions of first kind collapses to the definition of Godunova-Levin functions.

Our next definition is established by Dragomir [10],[11].
Definition 5. [10],[11] A function $f: I \subset \mathbb{R} \rightarrow \mathbb{R}$ is said to be s-Godunova-Levin functions of second kind, if

$$
\begin{equation*}
f(t v+(1-t) v) \leq \frac{f(v)}{t^{s}}+\frac{f(v)}{(1-t)^{s}} \tag{6}
\end{equation*}
$$

holds for all $v, v \in I, s \in(0,1]$ and $t \in(0,1)$.
It is obvious that for $s=0, s$-Godunova-Levin functions of second kind reduces to the definition of $P(I)$. If $s=1$, it then reduces to Godunova-Levin functions.

Definition 6. [24] A function $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$, where $\mathbb{R}_{+}=[0, \infty)$, is said to be s-convex in the first sense if

$$
\begin{equation*}
f(\alpha v+\beta v) \leq \alpha^{s} f(v)+\beta^{s} f(v) \tag{7}
\end{equation*}
$$

for all $v, v \in[0, \infty), \alpha, \beta \geq 0$ with $\alpha^{s}+\beta^{s}=1$ and for some fixed $s \in(0,1]$. This class of functions is denoted by K_{s}^{1}.
Definition 7. [3] A function $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$, where $\mathbb{R}_{+}=[0, \infty)$, is said to be s-convex in the second sense if

$$
\begin{equation*}
f(\alpha v+\beta v) \leq \alpha^{s} f(v)+\beta^{s} f(v) \tag{8}
\end{equation*}
$$

for all $v, v \in[0, \infty), \alpha, \beta \geq 0$ with $\alpha+\beta=1$ and for some fixed $s \in(0,1]$. This class of functions is denoted by K_{s}^{2}.
This definition of s-convexity considered by Breckner, where the problem when the rational s-convex functions are s convex was considered. Also, we note that, it can be easily seen that for $s=1, s$-convexity (in both senses) reduces to the ordinary convexity of functions defined on $[0,+\infty)$.

Definition 8. [31] A function $f: I \rightarrow \mathbb{R}$ is said to be tgs-convex on I if inequality

$$
\begin{equation*}
f(t v+(1-t) v) \leq t(1-t)[f(v)+f(v)] \tag{9}
\end{equation*}
$$

holds for all $v, v \in I$ and $t \in(0,1)$. We say that f is tgs-concave if $-f$ is tgs-convex.

Definition 9. [32] Let $h: J \rightarrow R$ be a non-negative function, $h \neq 0$. We say that $f: I \rightarrow \mathbb{R}$ is an h-convex function, or that f belongs to the class $S v(h, I)$, if f is non-negative and for all $v, v \in I, \alpha \in(0,1)$ we have

$$
\begin{equation*}
f(\alpha v+(1-\alpha) v) \leq h(\alpha) f(v)+h(1-\alpha) f(v) \tag{10}
\end{equation*}
$$

If inequality (10) is reversed, then f is said to be h-concave, i.e. $f \in S V(h, I)$.

Obviously, if $h(\alpha)=\alpha$, then all non-negative convex functions belong to $S X(h, I)$ and all nonnegative concave functions belong to $S V(h, I)$; if $h(\alpha)=\frac{1}{\alpha}$, then $S X(h, I)=Q(I)$; if $h(\alpha)=1$, then $S X(h, I) \supseteq P(I)$; and if $h(\alpha)=\alpha^{s}$, where $s \in(0,1)$, then $S X(h, I) \supseteq K_{s}^{2}$.

Remark 1. Let h be a non-negative function such that

$$
h(\alpha) \geq \alpha
$$

for all $\alpha \in(0,1)$. For example, the function $h_{k}(v)=v^{k}$ where $k \leq 1$ and $v>0$ has that property. If f is a non-negative convex function on I, then for $v, v \in I, \alpha \in(0,1)$ we have

$$
f(\alpha v+(1-\alpha) v) \leq \alpha f(v)+(1-\alpha) f(v) \leq h(\alpha) f(v)+h(1-\alpha) f(v)
$$

So, $f \in S X(h, I)$. Similarly, if the function h has the property: $h(\alpha) \leq \alpha$ for all $\alpha \in(0,1)$, then any non-negative concave function f belongs to the class $S V(h, I)$.

Definition 10. (Beta function) In mathematics, the beta function, also called the Euler integral of the first kind, is a special function defined by

$$
\begin{equation*}
\beta(x, y)=\int_{0}^{1} t^{x-1}(1-t)^{y-1} d t, x, y>0 . \tag{11}
\end{equation*}
$$

The beta function is symmetric, meaning that

$$
\beta(x, y)=\beta(y, x) .
$$

When x and y are positive integers, it follows from the definition of the gamma function Γ that:

$$
\beta(x, y)=\frac{(x-1)!(y-1)!}{(x+y-1)!}
$$

It has many other forms, including:

$$
\begin{align*}
& \beta(x, y)=\frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)} \tag{12}\\
& \beta(x, y)=2 \int_{0}^{\pi / 2}(\sin \theta)^{2 x-1}(\cos \theta)^{2 y-1} d \theta, \operatorname{Re}(x)>0, \operatorname{Re}(y)>0
\end{align*}
$$

$$
\begin{aligned}
& \beta(x, y)=\int_{0}^{\infty} \frac{t^{x-1}}{(1+t)^{x+y}} d t, \operatorname{Re}(x)>0, \operatorname{Re}(y)>0 \\
& \beta(x, y)=\sum_{n=0}^{\infty} \frac{\binom{n-y}{n}}{x+n} \\
& \beta(x, y)=\frac{x+y}{x y} \prod_{n=1}^{\infty}\left(1+\frac{x y}{n(x+y+n)}\right)^{-1} .
\end{aligned}
$$

In this paper, we defined a new concept so called beta-convex function and compared with the other definitions of convexity. We also established some inequalities of Hadamard type via ordinary and Riemann-Liouville integral.

Definition 11. A function $f: I \subset \mathbb{R} \rightarrow \mathbb{R}$ is said to be beta-convex on I, if inequality

$$
\begin{equation*}
f(t u+(1-t) v) \leq t^{p}(1-t)^{q} f(u)+t^{q}(1-t)^{p} f(v) \tag{13}
\end{equation*}
$$

holds for all $u, v \in I$, and $t \in[0,1]$, where $p, q>-1$. We say that f is beta-concave if $(-f)$ is beta-convex.
Remark 2. In above definition $(p, q)=\{(0,0),(1,0),(-1,0),(-s, 0),(s, 0),(1,1)\}$, we obtain $P(I)$, ordinary convex, Godunova-Levin function, s-Godunova-Levin function in the second sense, s-convex function in the second sense, $\operatorname{tg} s$-convex function, respectively.

Remark 3. If we take $h(t)=t^{p}(1-t)^{q}$ in Definition 9, Definition 9 reduces to Definition 11. Namely, Definition of beta-convex function may be regarded as a special case of h-convex function (see [32]).

2 Main results

Throughout this section we assume that α has the values that do not undefined the gamma function and the result. Now, we begin with the theorem via Hadamard type inequality of beta-convex function.

Theorem 1. Let $f: I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a beta-convex function, $p, q>-1$ and $a, b \in I$ with $a<b$. The following double inequality holds:

$$
\begin{equation*}
2^{p+q-1} f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{\Gamma(p+1) \Gamma(q+1)}{\Gamma(p+q+2)}[f(a)+f(b)] \tag{14}
\end{equation*}
$$

If f is a positive beta-concave function, then the inequality is reversed.
Proof. Using beta-convexity of f on I we have

$$
\begin{equation*}
f(t a+(1-t) b) \leq t^{p}(1-t)^{q} f(a)+t^{q}(1-t)^{p} f(b) \tag{15}
\end{equation*}
$$

Integrating both sides of (15), we get

$$
\begin{aligned}
\int_{0}^{1} f(t a+(1-t) b) d t & \leq \int_{0}^{1}\left[t^{p}(1-t)^{q} f(a)+t^{q}(1-t)^{p} f(b)\right] d t \\
& =f(a) \int_{0}^{1} t^{p}(1-t)^{q} d t+f(b) \int_{0}^{1} t^{q}(1-t)^{p} d t \\
& =f(a) \beta(p+1, q+1)+f(b) \beta(p+1, q+1)
\end{aligned}
$$

$$
\begin{aligned}
& =\beta(p+1, q+1)[f(a)+f(b)] \\
& =\frac{\Gamma(p+1) \Gamma(q+1)}{\Gamma(p+q+2)}[f(a)+f(b)]
\end{aligned}
$$

Using (15) and substituting $a=t a+(1-t) b, b=(1-t) a+t$, we obtain

$$
\begin{aligned}
f\left(\frac{x+y}{2}\right) & =f\left(\frac{t a+(1-t) b}{2}+\frac{(1-t) a+t b}{2}\right) \\
& \leq \frac{1}{2^{p+q}}[f(t a+(1-t) b)+f((1-t) a+t b)]
\end{aligned}
$$

Integrating both sides we have

$$
\begin{aligned}
f\left(\frac{a+b}{2}\right) & \leq \frac{1}{2^{p+q}}\left[\int_{0}^{1} f(t a+(1-t) b) d t+\int_{0}^{1} f((1-t) a+t b) d t\right] \\
& =\frac{1}{2^{p+q}}\left[\frac{1}{b-a} \int_{a}^{b} f(x) d x+\frac{1}{b-a} \int_{a}^{b} f(x) d x\right] \\
& =\frac{1}{2^{p+q-1}(b-a)} \int_{a}^{b} f(x) d x
\end{aligned}
$$

which completes the proof.

Remark 4. 1) If we choose $p=0, q=0$ in (14), then

$$
\frac{1}{(b-a)} \int_{a}^{b} f(x) d x \leq[f(a)+f(b)]
$$

2) If we choose $p=0, q=1$ or $p=1, q=0$ in (14), then (14) reduces to (1).
3) If we choose $p=1, q=1$ in (14), then (14) reduces

$$
2 f\left(\frac{a+b}{2}\right) \leq \frac{1}{(b-a)} \int_{a}^{b} f(x) d x \leq\left[\frac{f(a)+f(b)}{6}\right]
$$

See [31].
4) If we choose $p=s, q=0$ and $s \in(0,1]$ in (14), then (14) reduces

$$
2^{s-1} f\left(\frac{a+b}{2}\right) \leq \frac{1}{(b-a)} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{s+1}
$$

See [13].
5) If we choose $p=2, q=2$ in (14), then

$$
\frac{1}{(b-a)} \int_{a}^{b} f(x) d x \leq\left[\frac{f(a)+f(b)}{30}\right]
$$

6) If we choose $p=10, q=10$ in (14), then

$$
\frac{1}{(b-a)} \int_{a}^{b} f(x) d x \leq\left[\frac{f(a)+f(b)}{3879876}\right]
$$

Theorem 2. Let f and g be real valued, nonnegative and beta-convex functions on $[a, b]$ and $p, q>-1$. Then, we have

$$
\begin{equation*}
\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x \leq \frac{\Gamma(2 p+1) \Gamma(2 q+1)}{\Gamma(2 p+2 q+2)} M(a, b)+\frac{\Gamma(p+q+1) \Gamma(p+q+1)}{\Gamma(2 p+2 q+2)} N(a, b) \tag{16}
\end{equation*}
$$

where $M(a, b)=f(a) g(a)+f(b) g(b), N(a, b)=f(a) g(b)+f(b) g(a)$.

Proof. Using beta-convexity of f and g on $[a, b]$, we have

$$
\begin{align*}
& f(t a+(1-t) b) \leq t^{p}(1-t)^{q} f(a)+t^{q}(1-t)^{p} f(b) \tag{17}\\
& g(t a+(1-t) b) \leq t^{p}(1-t)^{q} g(a)+t^{q}(1-t)^{p} g(b) . \tag{18}
\end{align*}
$$

From (17) and (18) we obtain

$$
\begin{equation*}
f(t a+(1-t) b) g(t a+(1-t) b) \leq\left[t^{p}(1-t)^{q} f(a)+t^{q}(1-t)^{p} f(b)\right] \times\left[t^{p}(1-t)^{q} g(a)+t^{q}(1-t)^{p} g(b)\right] \tag{19}
\end{equation*}
$$

Integrating both sides of (19), we have

$$
\begin{aligned}
\int_{0}^{1} f(t a+(1-t) b) g(t a+(1-t) b) d t & \leq \int_{0}^{1}\left[t^{p}(1-t)^{q} f(a)+t^{q}(1-t)^{p} f(b)\right] \times\left[t^{p}(1-t)^{q} g(a)+t^{q}(1-t)^{p} g(b)\right] d t \\
& \leq \int_{0}^{1} t^{2 p}(1-t)^{2 q} f(a) g(a) d t+\int_{0}^{1} t^{2 q}(1-t)^{2 p} f(b) g(b) d t \\
& +\int_{0}^{1} t^{p+q}(1-t)^{p+q} f(b) g(a) d t+\int_{0}^{1} t^{p+q}(1-t)^{p+q} f(a) g(b) d t
\end{aligned}
$$

so

$$
\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x \leq \beta(2 p+1,2 q+1)[f(a) g(a)+f(b) g(b)]+\beta(p+q+1, p+q+1)[f(b) g(a)+f(a) g(b)] .
$$

Using (12) we get the desired result.

Remark 5. 1) If we choose $p=0, q=0$ in (16), then

$$
\frac{1}{(b-a)} \int_{a}^{b} f(x) g(x) d x \leq[M(a, b)+N(a, b)] .
$$

2) If we choose $p=0, q=1$ or $p=1, q=0$ in (16), then it reduces [25, Theorem 1.].
3) If we choose $p=s, q=0$ in (16), then

$$
\frac{1}{(b-a)} \int_{a}^{b} f(x) g(x) d x \leq \frac{1}{2 s+1} M(a, b)+\frac{(s!)^{2}}{(2 s+1)!} N(a, b) .
$$

4) If we choose $p=1, q=1$ in (16), then it reduces [31, Theorem 3].
5) If we choose $p=2, q=2$ in (16), then

$$
\frac{1}{(b-a)} \int_{a}^{b} f(x) g(x) d x \leq\left[\frac{M(a, b)+N(a, b)}{630}\right]
$$

6) If we choose $p=10, q=10$ in (16), then

$$
\frac{1}{(b-a)} \int_{a}^{b} f(x) g(x) d x \leq\left[\frac{M(a, b)+N(a, b)}{5651707681620}\right]
$$

Theorem 3. Let f and g be real valued, nonnegative and beta-convex functions on $[a, b]$ and $p, q>-1$. Then, we have

$$
\begin{align*}
2^{2(p+q)-1} f\left(\frac{a+b}{2}\right) g\left(\frac{a+b}{2}\right) & \leq \frac{1}{(b-a)} \int_{a}^{b} f(x) g(x) d x \tag{20}\\
& +\frac{\Gamma(p+q+1) \Gamma(p+q+1)}{\Gamma(2 p+2 q+2)} M(a, b) \\
& +\frac{\Gamma(2 p+1) \Gamma(2 q+1)}{\Gamma(2 p+2 q+2)} N(a, b)
\end{align*}
$$

Proof. By substituting $a=t a+(1-t) b, b=(1-t) a+t b$ we have

$$
\begin{aligned}
& f\left(\frac{a+b}{2}\right)=f\left(\frac{t a+(1-t) b}{2}+\frac{(1-t) a+t b}{2}\right) \\
& g\left(\frac{a+b}{2}\right)=g\left(\frac{t a+(1-t) b}{2}+\frac{(1-t) a+t b}{2}\right)
\end{aligned}
$$

Since f and g are beta-convex on $[a, b]$, then we obtain

$$
\begin{align*}
f\left(\frac{a+b}{2}\right) g\left(\frac{a+b}{2}\right) & =f\left(\frac{t a+(1-t) b}{2}+\frac{(1-t) a+t b}{2}\right) \times g\left(\frac{t a+(1-t) b}{2}+\frac{(1-t) a+t b}{2}\right) \tag{21}\\
& \leq \frac{1}{2^{p+q}}[f(t a+(1-t) b)+f((1-t) a+t b)] \times \frac{1}{2^{p+q}}[g(t a+(1-t) b)+g((1-t) a+t b)] \\
& =\frac{1}{2^{2 p+2 q}}[f(t a+(1-t) b) g(t a+(1-t) b)+f((1-t) a+t b) g((1-t) a+t b)] \\
& +\frac{1}{2^{2 p+2 q}}\left\{\left[t^{p}(1-t)^{q} f(a)+t^{q}(1-t)^{p} f(b)\right]\left[(1-t)^{p} t^{q} g(a)+(1-t)^{q} t^{p} g(b)\right]\right. \\
& \left.+\left[(1-t)^{p} t^{q} f(a)+(1-t)^{q} t^{p} f(b)\right]\left[t^{p}(1-t)^{q} g(a)+t^{q}(1-t)^{p} g(b)\right]\right\} \\
& =\frac{1}{2^{2 p+2 q}}[f(t a+(1-t) b) g(t a+(1-t) b)+f((1-t) a+t b) g((1-t) a+t b)] \\
& +\frac{1}{2^{2 p+2 q-1}}\left[(1-t)^{p+q} t^{p+q}(f(a) g(a)+f(b) g(b))\right. \\
& \left.+t^{2 p}(1-t)^{2 q}(f(a) g(b)+f(b) g(a))\right]
\end{align*}
$$

Again as explained in the proof of inequality (16) given above we integrate both sides of (21) over $[0,1]$ and obtain

$$
\begin{aligned}
f\left(\frac{a+b}{2}\right) g\left(\frac{a+b}{2}\right) & \leq \frac{1}{2^{2 p+2 q}}\left[\int_{0}^{1} f(t a+(1-t) b) g(t a+(1-t) b) d t\right. \\
& \left.+\int_{0}^{1} f((1-t) a+t b) g((1-t) a+t b) d t\right] \\
& +\frac{1}{2^{2 p+2 q-1}}\left[[f(a) g(a)+f(b) g(b)] \int_{0}^{1}(1-t)^{p+q} t^{p+q} d t\right. \\
& \left.+[f(a) g(b)+f(b) g(a)] \int_{0}^{1} t^{2 p}(1-t)^{2 q} d t\right] \\
& \leq \frac{1}{2^{2 p+2 q-1}} \int_{0}^{1} f(t a+(1-t) b) g(t a+(1-t) b) d t \\
& +\frac{1}{2^{2 p+2 q-1}}[\beta(p+q+1, p+q+1) M(a, b)+\beta(2 p+1,2 q+1) N(a, b)] \\
& \leq \frac{1}{2^{2 p+2 q-1}}\left[\frac{1}{(b-a)} \int_{a}^{b} f(x) g(x) d t\right. \\
& +\frac{\Gamma(p+q+1) \Gamma(p+q+1)}{\Gamma(2 p+2 q+2)} M(a, b) \\
& \left.+\frac{\Gamma(2 p+1) \Gamma(2 q+1)}{\Gamma(2 p+2 q+2)} N(a, b)\right] .
\end{aligned}
$$

Now multiplying both sides by $2^{2 p+2 q-1}$ we get (20).

Remark 6.

1) If we choose $p=0, q=1$ or $p=1, q=0$ in (20), then it reduces [25, Theorem 1].
2) If we choose $p=1, q=1$ in (20), then it reduces [31, Theorem 4].

Theorem 4. Let f and g be real valued, nonnegative and beta-convex functions on $[a, b]$. The following inequality holds:

$$
\begin{align*}
& \frac{\Gamma(2 p+2 q+2)}{2 \Gamma(2 p+1) \Gamma(2 q+1)(b-a)^{2}} \times \int_{a}^{b} \int_{a}^{b} \int_{0}^{1} f(t x+(1-t) y) g(t x+(1-t) y) d t d y d x \tag{22}\\
& \leq \frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x+\frac{\Gamma(p+q+1) \Gamma(p+q+1)}{\Gamma(2 p+1) \Gamma(2 q+1)(b-a)^{2}}\left[\frac{\Gamma(p+1) \Gamma(q+1)}{\Gamma(p+q+2)}\right]^{2}[M(a, b)+N(a, b)]
\end{align*}
$$

where $M(a, b)$ and $N(a, b)$ are as defined in Theorem 2.

Proof. Using beta-convexity of f and g on $[a, b]$ we have

$$
\begin{align*}
& f(t x+(1-t) y) \leq t^{p}(1-t)^{q} f(x)+t^{q}(1-t)^{p} f(y) \tag{23}\\
& g(t x+(1-t) b) \leq t^{p}(1-t)^{q} g(x)+t^{q}(1-t)^{p} g(y) \tag{24}
\end{align*}
$$

for $x, y \in[a, b]$ and $t \in[0,1]$. Multiplying both sides of (23) and (24) and integrating over $[0,1]$, we have

$$
\begin{align*}
& \int_{0}^{1} f(t x+(1-t) y) g(t x+(1-t) y) d t \leq \int_{0}^{1} t^{2 p}(1-t)^{2 q} f(x) g(x) d t+\int_{0}^{1} t^{2 q}(1-t)^{2 p} f(y) g(y) d t \tag{25}\\
& +\int_{0}^{1} t^{p+q}(1-t)^{p+q}[f(x) g(y)+f(y) g(x)] d t \\
& =\beta(2 p+1,2 q+1)[f(x) g(x)+f(y) g(y)]+\beta(p+q+1, p+q+1)[f(x) g(y)+f(y) g(x)]
\end{align*}
$$

Integrating both sides of (25) on $[a, b] \times[a, b]$, we obtain

$$
\begin{align*}
& \int_{a}^{b} \int_{a}^{b} \int_{0}^{1} f(t x+(1-t) y) g(t x+(1-t) y) d t d y d x \leq \beta(2 p+1,2 q+1)\left[\int_{a}^{b} \int_{a}^{b} f(x) g(x) d x d y+\int_{a}^{b} \int_{a}^{b} f(y) g(y) d y d x\right] \\
& +\beta(p+q+1, p+q+1) \times\left[\left(\int_{a}^{b} f(x) d x\right)\left(\int_{a}^{b} g(y) d y\right)+\left(\int_{a}^{b} f(y) d y\right)\left(\int_{a}^{b} g(x) d x\right)\right] \tag{26}
\end{align*}
$$

By using the right half of the Hadamard's inequality given in (14) on the right side of (26), we have

$$
\begin{aligned}
& \int_{a}^{b} \int_{a}^{b} \int_{0}^{1} f(t x+(1-t) y) g(t x+(1-t) y) d t d y d x \leq 2 \beta(2 p+1,2 q+1)(b-a) \int_{a}^{b} f(x) g(x) d x \\
& +2(b-a)^{2} \beta(p+q+1, p+q+1) \times \beta^{2}(p+1, q+1)[f(a)+f(b)][g(a)+b(b)] \\
& =2 \frac{\Gamma(2 p+1) \Gamma(2 q+1)}{\Gamma(2 p+2 q+2)}(b-a) \int_{a}^{b} f(x) g(x) d x+2 \frac{\Gamma(p+q+1) \Gamma(p+q+1)}{\Gamma(2 p+2 q+2)} \\
& \times\left[\frac{\Gamma(p+1) \Gamma(q+1)}{\Gamma(p+q+2)}\right]^{2}[M(a, b)+N(a, b)]
\end{aligned}
$$

Now multiplying both sides by $\frac{\Gamma(2 p+2 q+2)}{2 \Gamma(2 p+1) \Gamma(2 q+1)(b-a)^{2}}$, we get required inequality.

Remark 7.

1) If we choose $p=0, q=1$ or $p=1, q=0$ in (22), then it reduces [25, Theorem 2].
2) If we choose $p=1, q=1$ in (22), then it reduces [31, Theorem 5].

Theorem 5. Let f and g be real valued, nonnegative and beta-convex functions on $[a, b]$. The following inequality holds:

$$
\begin{align*}
& \frac{\Gamma(2 p+2 q+2)}{\Gamma(2 p+1) \Gamma(2 q+1)(b-a)} \tag{27}\\
& \times \int_{a}^{b} \int_{0}^{1} f\left(t x+(1-t)\left(\frac{a+b}{2}\right)\right) g\left(t x+(1-t)\left(\frac{a+b}{2}\right)\right) d t d x \\
& \leq \frac{1}{(b-a)} \int_{a}^{b} f(x) g(x) d x+\frac{1}{2^{2 p+2 q}}[M(a, b)+N(a, b)] \\
& +\frac{\Gamma(p+q+1) \Gamma(p+q+1)}{\Gamma(2 p+1) \Gamma(2 q+1) 2^{p+q-1}} \frac{\Gamma(p+1) \Gamma(q+1)}{\Gamma(p+q+2)}[M(a, b)+N(a, b)]
\end{align*}
$$

where $M(a, b)$ and $N(a, b)$ are as defined in Theorem 2.

Proof. Using beta-convexity of f and g on $[a, b]$ we have

$$
\begin{align*}
& f\left(t x+(1-t)\left(\frac{a+b}{2}\right)\right) \leq t^{p}(1-t)^{q} f(x)+t^{q}(1-t)^{p} f\left(\frac{a+b}{2}\right) \tag{28}\\
& g\left(t x+(1-t)\left(\frac{a+b}{2}\right)\right) \leq t^{p}(1-t)^{q} g(x)+t^{q}(1-t)^{p} g\left(\frac{a+b}{2}\right) \tag{29}
\end{align*}
$$

for $x \in[a, b]$ and $t \in[0,1]$. From (28) and (29), we obtain

$$
\begin{align*}
& f\left(t x+(1-t)\left(\frac{a+b}{2}\right)\right) g\left(t x+(1-t)\left(\frac{a+b}{2}\right)\right) \tag{30}\\
& \leq t^{2 p}(1-t)^{2 q} f(x) g(x)+t^{2 q}(1-t)^{2 p} f\left(\frac{a+b}{2}\right) g\left(\frac{a+b}{2}\right) \\
& +t^{p+q}(1-t)^{p+q}\left[f(x) g\left(\frac{a+b}{2}\right)+f\left(\frac{a+b}{2}\right) g(x)\right] .
\end{align*}
$$

As explained in the proof of inequality (16) given above, if we integrate both sides of (30) over $[0,1]$, then

$$
\begin{aligned}
& \int_{0}^{1} f\left(t x+(1-t)\left(\frac{a+b}{2}\right)\right) g\left(t x+(1-t)\left(\frac{a+b}{2}\right)\right) d t \\
& \leq \int_{0}^{1} t^{2 p}(1-t)^{2 q} f(x) g(x) d t+\int_{0}^{1} t^{2 q}(1-t)^{2 p} f\left(\frac{a+b}{2}\right) g\left(\frac{a+b}{2}\right) d t \\
& +\int_{0}^{1} t^{p+q}(1-t)^{p+q}\left[f(x) g\left(\frac{a+b}{2}\right)+f\left(\frac{a+b}{2}\right) g(x)\right] d t \\
& =\beta(2 p+1,2 q+1)\left[f(x) g(x)+f\left(\frac{a+b}{2}\right) g\left(\frac{a+b}{2}\right)\right] \\
& +\beta(p+q+1, p+q+1)\left[f(x) g\left(\frac{a+b}{2}\right)+f\left(\frac{a+b}{2}\right) g(x)\right]
\end{aligned}
$$

Integrating both sides on $[a, b]$, we have

$$
\begin{aligned}
& \int_{a}^{b} \int_{0}^{1} f\left(t x+(1-t)\left(\frac{a+b}{2}\right)\right) g\left(t x+(1-t)\left(\frac{a+b}{2}\right)\right) d t d x \\
& \leq \beta(2 p+1,2 q+1) \int_{a}^{b} f(x) g(x) d x \\
& +\beta(2 p+1,2 q+1)(b-a) f\left(\frac{a+b}{2}\right) g\left(\frac{a+b}{2}\right) \\
& +\beta(p+q+1, p+q+1)\left[g\left(\frac{a+b}{2}\right) \int_{a}^{b} f(x) d x+f\left(\frac{a+b}{2}\right) \int_{a}^{b} g(x) d x\right]
\end{aligned}
$$

From Definition 11 and Theorem 2, we have

$$
\begin{aligned}
& \int_{a}^{b} \int_{0}^{1} f\left(t x+(1-t)\left(\frac{a+b}{2}\right)\right) g\left(t x+(1-t)\left(\frac{a+b}{2}\right)\right) d t d x \\
& \leq \beta(2 p+1,2 q+1) \int_{a}^{b} f(x) g(x) d x \\
& +\beta(2 p+1,2 q+1)(b-a) f\left(\frac{a+b}{2}\right) g\left(\frac{a+b}{2}\right) \\
& +\beta(p+q+1, p+q+1) \\
& \times\left[g\left(\frac{a+b}{2}\right) \int_{a}^{b} f(x) d x+f\left(\frac{a+b}{2}\right) \int_{a}^{b} g(x) d x\right] \\
& \leq \frac{\Gamma(2 p+1) \Gamma(2 q+1)}{\Gamma(2 p+2 q+2)} \int_{a}^{b} f(x) g(x) d x \\
& +\frac{\Gamma(2 p+1) \Gamma(2 q+1)(b-a)}{\Gamma(2 p+2 q+2) 2^{2 p+2 q}}[f(a)+f(b)][g(a)+g(b)] \\
& +\frac{\Gamma(p+q+1) \Gamma(p+q+1)}{\Gamma(2 p+2 q+2)} \frac{(b-a)}{2^{p+q-1}} \frac{\Gamma(p+1) \Gamma(q+1)}{\Gamma(p+q+2)}[f(a)+f(b)][g(a)+g(b)]
\end{aligned}
$$

Now dividing both sides by $\frac{\Gamma(2 p+1) \Gamma(2 q+1)(b-a)}{\Gamma(2 p+2 q+2)}$, we get required inequality.
Remark 8. 1) If we choose $p=0, q=1$ or $p=1, q=0$ in (27), then it reduces [25, Theorem 2].
2) If we choose $p=1, q=1$ in (27), then it reduces [31, Theorem 6].

Theorem 6. Let $f: I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a beta-convex function on $[a, b]$ with $a<b$. Then

$$
\begin{align*}
\frac{1}{b-a} \int_{a}^{b} f(x) f(a+b-x) d x & \leq \frac{\Gamma(2 p+1) \Gamma(2 q+1)}{\Gamma(2 p+2 q+2)}\left[[f(a)]^{2}+[f(b)]^{2}\right] \tag{31}\\
& +\frac{2 \Gamma(p+q+1) \Gamma(p+q+1)}{\Gamma(2 p+2 q+2)} f(a) f(b)
\end{align*}
$$

Proof. Since f is beta-convex function on I, we have

$$
f(t a+(1-t) b) \leq t^{p}(1-t)^{q} f(a)+t^{q}(1-t)^{p} f(b)
$$

and

$$
f((1-t) a+t b) \leq t^{q}(1-t)^{p} f(a)+t^{p}(1-t)^{q} f(b)
$$

for all $a, b \in I$ and $t \in[0,1]$. One can see

$$
\frac{1}{b-a} \int_{a}^{b} f(x) f(a+b-x) d x=\int_{0}^{1} f(t a+(1-t) b) f((1-t) a+t b) d t
$$

Using the elementary inequality $G(p, q) \leq K(p, q)(p, q \geq 0$ real) and making the change of variable, we get

$$
\begin{aligned}
& \frac{1}{b-a} \int_{a}^{b} f(x) f(a+b-x) d x \\
& \leq \frac{1}{2} \int_{0}^{1}\left\{[f(t a+(1-t) b)]^{2}+[f((1-t) a+t b)]^{2}\right\} d t \\
& \leq \frac{1}{2} \int_{0}^{1}\left\{\left[t^{p}(1-t)^{q} f(a)+t^{q}(1-t)^{p} f(b)\right]^{2}\right. \\
& \left.+\left[t^{q}(1-t)^{p} f(a)+t^{p}(1-t)^{q} f(b)\right]^{2}\right\} d t \\
& =\int_{0}^{1}\left[t^{p}(1-t)^{q} f(a)+t^{q}(1-t)^{p} f(b)\right]^{2} d t \\
& =[f(a)]^{2} \int_{0}^{1} t^{2 p}(1-t)^{2 q} d t \\
& +2 f(a) f(b) \int_{0}^{1} t^{p+q}(1-t)^{p+q} d t+[f(b)]^{2} \int_{0}^{1} t^{2 q}(1-t)^{2 p} d t \\
& =[f(a)]^{2} \beta(2 p+1,2 q+1) \\
& +2 f(a) f(b) \beta(p+q+1, p+q+1)+[f(b)]^{2} \beta(2 q+1,2 p+1) \\
& =\frac{\Gamma(2 p+1) \Gamma(2 q+1)}{\Gamma(2 p+2 q+2)}\left[[f(a)]^{2}+[f(b)]^{2}\right] \\
& +\frac{2 \Gamma(p+q+1) \Gamma(p+q+1)}{\Gamma(2 p+2 q+2)} f(a) f(b) .
\end{aligned}
$$

So, we get required inequality.

3 Fractional integral inequalities of β-convex functions

In this section, we prove some inequalities of Hermite-Hadamard type via fractional integral for beta-convex functions.
Definition 12. Let $f \in L_{1}[a, b]$. The Riemann-Liouville integrals $J_{a+}^{\alpha} f$ and $J_{b-}^{\alpha} f$ of order $\alpha>0$ with $a \geq 0$ are defined by

$$
\begin{equation*}
J_{a+}^{\alpha} f(x)=\frac{1}{\Gamma(\alpha)} \int_{a}^{x}(x-t)^{\alpha-1} f(t) d t, x>a \tag{32}
\end{equation*}
$$

and

$$
\begin{equation*}
J_{b-}^{\alpha} f(x)=\frac{1}{\Gamma(\alpha)} \int_{a}^{x}(t-x)^{\alpha-1} f(t) d t, \quad b>x \tag{33}
\end{equation*}
$$

respectively where $\Gamma(\alpha)=\int_{0}^{\infty} e^{-u} u^{\alpha-1} d u$. Here is $J_{a+}^{0} f(x)=J_{b-}^{0} f(x)=f(x)$.
In the case of $\alpha=1$, the fractional integral reduces to the classical integral. For some recent results connected with fractional integral inequalities see [2],[4]-[7], [9], [28]-[30].

Theorem 7. Let $f: I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a positive function with $a<b$ and $L_{1}[a, b]$. If f is a beta-convex function on $[a, b]$, then the following inequalities for fractional integrals holds:

$$
\begin{align*}
2^{p+q-1} f\left(\frac{a+b}{2}\right) & \leq \frac{\Gamma(\alpha+1)}{2(b-a)^{\alpha}}\left[J_{a+}^{\alpha} f(b)+J_{b-}^{\alpha} f(a)\right] \tag{34}\\
& \leq \frac{\alpha}{2}\left[\frac{\Gamma(p+\alpha) \Gamma(q+1)}{\Gamma(p+q+\alpha+1)}+\frac{\Gamma(q+\alpha) \Gamma(p+1)}{\Gamma(p+q+\alpha+1)}\right][f(a)+f(b)]
\end{align*}
$$

with $\alpha>0$.

Proof. Since f is beta-convex on $[a, b]$, we have

$$
\begin{equation*}
f\left(\frac{x+y}{2}\right) \leq \frac{f(x)+f(y)}{2^{p+q}} \tag{35}
\end{equation*}
$$

for $x, y \in[a, b]$. Now, let $x=t a+(1-t) b$ and $y=(1-t) a+t b$ with $t \in[0,1]$. Then we obtain by (35) that;

$$
\begin{equation*}
2^{p+q} f\left(\frac{a+b}{2}\right) \leq f(t a+(1-t) b)+f((1-t) a+t b) \tag{36}
\end{equation*}
$$

for all $t \in[0,1]$. Multiplying both sides of (36) by $t^{\alpha-1}$, then integrating the resulting inequality with respect to t over $[0,1]$, we get

$$
\begin{align*}
\frac{2^{p+q}}{\alpha} f\left(\frac{a+b}{2}\right) & \leq \int_{0}^{1} t^{\alpha-1} f(t a+(1-t) b) d t+\int_{0}^{1} t^{\alpha-1} f((1-t) a+t b) d t \tag{37}\\
& =\frac{1}{(b-a)^{\alpha}} \int_{a}^{b}(b-u)^{\alpha-1} f(\mu) d \mu+\frac{1}{(b-a)^{\alpha}} \int_{a}^{b}(a-v)^{\alpha-1} f(\kappa) d \kappa \\
& =\frac{\Gamma(\alpha)}{(b-a)^{\alpha}}\left[J_{a+}^{\alpha} f(b)+J_{b-}^{\alpha} f(a)\right]
\end{align*}
$$

Multiplying both sides of (37) by $\frac{\alpha}{2}$, then

$$
\begin{equation*}
2^{p+q-1} f\left(\frac{a+b}{2}\right) \leq \frac{\Gamma(\alpha+1)}{2(b-a)^{\alpha}}\left[J_{a+}^{\alpha} f(b)+J_{b-}^{\alpha} f(a)\right] \tag{38}
\end{equation*}
$$

For the proof of the second inequality in (34), we first note that if f is a beta-convex function, then, for $t \in[0,1]$, it yields

$$
f(t a+(1-t) b) \leq t^{p}(1-t)^{q} f(a)+t^{q}(1-t)^{p} f(b)
$$

and

$$
f((1-t) a+t b) \leq(1-t)^{p} t^{q} f(a)+(1-t)^{q} t^{p} f(b)
$$

By adding these inequalities we have

$$
\begin{equation*}
f(t a+(1-t) b)+f((1-t) a+t b) \leq\left[t^{p}(1-t)^{q}+t^{q}(1-t)^{p}\right][f(a)+f(b)] \tag{39}
\end{equation*}
$$

Then multiplying both sides of (39) by $t^{\alpha-1}$, and integrating the resulting inequality with respect to t over $[0,1]$, we obtain

$$
\begin{aligned}
\int_{0}^{1} t^{\alpha-1} f(t a+(1-t) b) d t+\int_{0}^{1} t^{\alpha-1} f((1-t) a+t b) d t & \leq \int_{0}^{1}\left[t^{p+\alpha-1}(1-t)^{q}+t^{q+\alpha-1}(1-t)^{p}\right][f(a)+f(b)] d t \\
& =[\beta(p+\alpha, q+1)+\beta(q+\alpha, p+1)][f(a)+f(b)]
\end{aligned}
$$

i.e.

$$
\begin{equation*}
\frac{\Gamma(\alpha+1)}{2(b-a)^{\alpha}}\left[J_{a+}^{\alpha} f(b)+J_{b-}^{\alpha} f(a)\right] \leq \frac{\alpha}{2}\left[\frac{\Gamma(p+\alpha) \Gamma(q+1)}{\Gamma(p+q+\alpha+1)}+\frac{\Gamma(q+\alpha) \Gamma(p+1)}{\Gamma(p+q+\alpha+1)}\right][f(a)+f(b)] \tag{40}
\end{equation*}
$$

From (38) and (40), we complete the proof.

Remark 9. If in Theorem 7, we let $\alpha=1$, then (34) reduces to (14).

Remark 10. If we choose $p=0, q=1$ or $p=1, q=0$ in (34), then it reduces [28, Theorem 2].

Theorem 8. Let f and g be real-valued, nonnegative and beta-convex functions on $[a, b]$. Then for all $a, b>0, \alpha>0$, we have

$$
\begin{align*}
\frac{1}{(b-a)^{\alpha}} J_{a+}^{\alpha}[f(b) g(b)] & \leq \frac{f(a) g(a)}{\Gamma(\alpha)} \frac{\Gamma(2 p+\alpha) \Gamma(2 q+1)}{\Gamma(2 p+2 q+\alpha+1)}+\frac{f(b) g(b)}{\Gamma(\alpha)} \frac{\Gamma(2 q+\alpha) \Gamma(2 p+1)}{\Gamma(2 p+2 q+\alpha+1)} \tag{41}\\
& +\frac{N(a, b)}{\Gamma(\alpha)} \frac{\Gamma(p+q+\alpha) \Gamma(p+q+1)}{\Gamma(2 p+2 q+\alpha+1)}
\end{align*}
$$

and

$$
\begin{equation*}
2^{2 p+2 q} f\left(\frac{a+b}{2}\right) g\left(\frac{a+b}{2}\right) \leq \frac{1}{(b-a)^{\alpha}} J_{a+}^{\alpha}[f(b) g(b)+f(b) g(a)]+\frac{1}{(b-a)^{\alpha}} J_{b-}^{\alpha}[f(a) g(a)+f(a) g(b)] . \tag{42}
\end{equation*}
$$

where $M(a, b)$ and $N(a, b)$ are as defined in Theorem 2.
Proof. Since f and g are beta-convex functions on $[a, b]$, we have

$$
\begin{equation*}
f(t a+(1-t) b) \leq t^{p}(1-t)^{q} f(a)+t^{q}(1-t)^{p} f(b) \tag{43}
\end{equation*}
$$

and

$$
\begin{equation*}
g(t a+(1-t) b) \leq t^{p}(1-t)^{q} g(a)+t^{q}(1-t)^{p} g(b) . \tag{44}
\end{equation*}
$$

for all $t \in[0,1]$. From (43)-(44), we obtain

$$
\begin{align*}
f(t a+(1-t) b) g(t a+(1-t) b) & \leq t^{2 p}(1-t)^{2 q} f(a) g(a)+t^{2 q}(1-t)^{2 p} f(b) g(b) \tag{45}\\
& +t^{p+q}(1-t)^{p+q} f(b) g(a)+t^{p+q}(1-t)^{p+q} f(a) g(b) .
\end{align*}
$$

Now multiplying both sides of (45) by $\frac{t^{\alpha-1}}{\Gamma(\alpha)}$, then integrating the resulting inequality with respect to t over $[0,1]$, we get

$$
\begin{align*}
& \frac{1}{\Gamma(\alpha)} \int_{0}^{1} t^{\alpha-1} f(t a+(1-t) b) g(t a+(1-t) b) d t \tag{46}\\
& \leq \frac{f(a) g(a)}{\Gamma(\alpha)} \int_{0}^{1} t^{2 p+\alpha-1}(1-t)^{2 q} d t+\frac{f(b) g(b)}{\Gamma(\alpha)} \int_{0}^{1} t^{2 q+\alpha-1}(1-t)^{2 p} d t \\
& +\frac{f(b) g(a)+f(a) g(b)}{\Gamma(\alpha)} \int_{0}^{1} t^{p+q+\alpha-1}(1-t)^{p+q} d t \\
& =\frac{f(a) g(a)}{\Gamma(\alpha)} \frac{\Gamma(2 p+\alpha) \Gamma(2 q+1)}{\Gamma(2 p+2 q+\alpha+1)}+\frac{f(b) g(b)}{\Gamma(\alpha)} \frac{\Gamma(2 q+\alpha) \Gamma(2 p+1)}{\Gamma(2 p+2 q+\alpha+1)} \\
& =\frac{N(a, b)}{\Gamma(\alpha)} \frac{\Gamma(p+q+\alpha) \Gamma(p+q+1)}{\Gamma(2 p+2 q+\alpha+1)} .
\end{align*}
$$

Then we have

$$
\begin{align*}
\frac{1}{(b-a)^{\alpha}} J_{a+}^{\alpha}[f(b) g(b)] & \leq \frac{f(a) g(a)}{\Gamma(\alpha)} \frac{\Gamma(2 p+\alpha) \Gamma(2 q+1)}{\Gamma(2 p+2 q+\alpha+1)}+\frac{f(b) g(b)}{\Gamma(\alpha)} \frac{\Gamma(2 q+\alpha) \Gamma(2 p+1)}{\Gamma(2 p+2 q+\alpha+1)} \tag{47}\\
& +\frac{N(a, b)}{\Gamma(\alpha)} \frac{\Gamma(p+q+\alpha) \Gamma(p+q+1)}{\Gamma(2 p+2 q+\alpha+1)}
\end{align*}
$$

Since f and g are beta-convex functions on $[a, b]$, then for all $t \in[0,1]$, we obtain

$$
\begin{align*}
f\left(\frac{a+b}{2}\right) g\left(\frac{a+b}{2}\right) & =f\left(\frac{t a+(1-t) b}{2}+\frac{(1-t) a+t b}{2}\right) g\left(\frac{t a+(1-t) b}{2}+\frac{(1-t) a+t b}{2}\right) \tag{48}\\
& \leq \frac{1}{2^{p+q}}[f(t a+(1-t) b)+f((1-t) a+t b)] \\
& \times \frac{1}{2^{p+q}}[g(t a+(1-t) b)+g((1-t) a+t b)] \\
& =\frac{1}{2^{2 p+2 q}}\{f(t a+(1-t) b) g(t a+(1-t) b)+f((1-t) a+t b) g((1-t) a+t b) \\
& +f((1-t) a+t b) g(t a+(1-t) b)+f(t a+(1-t) b) g((1-t) a+t b)\}
\end{align*}
$$

If we integrate both sides of (48) over $[0,1]$ and use (47), we obtain

$$
\begin{aligned}
f\left(\frac{a+b}{2}\right) g\left(\frac{a+b}{2}\right) & \leq \frac{1}{2^{2 p+2 q}} \frac{1}{\Gamma(\alpha)} \int_{0}^{1} t^{\alpha-1} f(t a+(1-t) b) g(t a+(1-t) b) d t \\
& +\frac{1}{2^{2 p+2 q}} \frac{1}{\Gamma(\alpha)} \int_{0}^{1} t^{\alpha-1} f((1-t) a+t b) g((1-t) a+t b) d t \\
& +\frac{1}{2^{2 p+2 q}} \frac{1}{\Gamma(\alpha)} \int_{0}^{1} t^{\alpha-1} f((1-t) a+t b) g(t a+(1-t) b) d t \\
& +\frac{1}{2^{2 p+2 q}} \frac{1}{\Gamma(\alpha)} \int_{0}^{1} t^{\alpha-1} f(t a+(1-t) b) g((1-t) a+t b) d t \\
& =\frac{1}{2^{2 p+2 q}} \frac{1}{(b-a)^{\alpha}} J_{a+}^{\alpha}[f(b) g(b)+f(b) g(a)]+J_{b-}^{\alpha}[f(a) g(a)+f(a) g(b)]
\end{aligned}
$$

From which we obtain (42).

Remark 11. If we let $\alpha=1$ in (41), then it reduces to (16).

References

[1] M. Bessenyei and Z. Páles, Characterization of convexity via Hadamard's inequality, Math. Ineq. Appl., 9 (2006), 53-62.
[2] S. Belarbi and Z. Dahmani, On some new fractional integral inequalities, J. Ineq. Pure and Appl. Math., 10(3) (2009), Art. 86.
[3] W.W. Breckner, Stetigkeitsaussagenf ureine Klass ever all gemeinerter konvexer funktionen in topologisc henlinearen Raumen, Pupl. Inst. Math., 23 (1978), 13-20.
[4] Z. Dahmani, New inequalities in fractional integrals, International Journal of Nonlinear Science, 9(4) (2010), 493-497.
[5] Z. Dahmani, On Minkowski and Hermite-Hadamard integral inequalities via fractional integration, Ann. Funct. Anal. 1(1) (2010), 51-58.
[6] Z. Dahmani, L. Tabharit, S. Taf, Some fractional integral inequalities, Nonl. Sci. Lett. A., 1(2) (2010), 155-160.
[7] Z. Dahmani, L. Tabharit, S. Taf, New generalizations of Gr"uss inequality using Riemann-Liouville fractional integrals, Bull. Math. Anal. Appl., 2(3) (2010), 93-99.
[8] S. S. Dragomir, J. Pečarić and L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math, 21 (1995), 335-341.
[9] S. S. Dragomir and R.P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. lett., 11(5) (1998), 91-95.
[10] S. S. Dragomir, Inequalities of Hermite-Hadamard type for h-convex functions on linear spaces, preprint.
[11] S. S. Dragomir, n-points inequalities of Hermite-Hadamard type for h-convex functions on linear spaces, preprint.
[12] S. S. Dragomir, C. E. M. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, Victoria University, Australia 2000.
[13] S.S. Dragomir, S. Fitzpatrick, The Hadamard's inequality for s-convex functions in the second sense, Demonstration Math., 32 (4) (1999), 687-696.
[14] E. K. Godunova and V. I. Levin, Inequalities for functions of a broad class that contains convex, monotone and some other forms of functions. (Russian) Numerical mathematics and mathematical physics (Russian), 138-142, 166, Moskov. Gos. Ped. Inst., Moscow, 1985.
[15] W. Matuszewska and W. Orlicz, A note on the theory of s-normed spaces of φ-integrable functions. Studia Mathematica 21(1961),107-115.
[16] D. S. Mitrinović, J. Pečarić, Note on a class of functions of Godunova and Levin, C. R. Math. Rep. Acad. Sci. Can. 12, 33-36, (1990).
[17] D. S. Mitrinović, J. Pečarić, and A.M. Fink, Classical and new inequalities in analysis, KluwerAcademic, Dordrecht, 1993.
[18] D. S. Mitrinović and I. B. Lacković, Hermite and convexity, Aequationes Mathematicae, 28 (1985), 229-232.
[19] W. Mohammad and N. Alomari, Several inefualities of Hermite-Hadamard, osrowski and simpson type for s-convex, quasi-convex and r-convex mappings and applications, Tesis Yang Dikemukakan Untuk Memperoleh Ijazah Doktor Falsafah, Fakulti Sains Dan Teknologi Universiti Kebangsaan Malaysia Bangi,
[20] J. Musielak, Orlicz spaces and modular spaces, Springer-Verlag: Lecture Notes in Math. Vol. 1034, Berlin 1983.
[21] C. P. Niculescu and L.-E. Persson, Convex Functions and their Applications. A Contemporary Approach, CMS Books in Mathematics vol. 23, Springer-Verlag, New York, 2006.
[22] M. A. Noor, K. I. Noor, M. U. Awan, S. Khan, Fractional Hermite-Hadamard Inequalities for some new classes of Godunova-Levin functions, Appl. Math. Infor. Sci. (2014/15), inpress.
[23] M. A. Noor, K. I. Noor, M. U. Awan, J. Li, On Hermite-Hadamard Inequalities for h-preinvex functions, Filomat, (2014), inpress.
[24] W., Orlicz, A note on modular spaces I. Bull. Acad. Polon Sci. Ser. Math. Astronom. Phsy., 9 (1961), 157-162.
[25] B. G. Pachpatte, On some inequalities for convex functions, RGMIA Res. Rep. Coll., 6 (E) 2003.
[26] M. Radulescu. S. Radulescu, P. Alexandrescu, On the Godunova-Levin-Schur class of functions, Math. Inequal. Appl. 12(4), 853862, (2009).
[27] S. Rolewicz, Metric linear spaces. PWN: Warszawa 1984.
[28] M.Z. Sarikaya, E. Set, H. Yaldız and N. Başak, Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013) 2403-2407.
[29] M.Z. Sarikaya and H. Ogunmez, On new inequalities via Riemann-Liouville fractional integration, arXiv:1005.1167v1, submitted.
[30] E. Set, M.Z. Sarıkaya, M.E. Özdemir and H. Yıldırım, The Hadamard's inequality for s-convex functions in the second sense via fractional integrals and related results, submitted.
[31] M. Tunç, E. Göv, Ü. Şanal, On tgs-convex function and their inequalities, Facta Univ. Ser. Math. Inform. Accepted
[32] S. Varošanec, On h-convexity, J. Math. Anal. Appl., 326, 303-311 (2007).

[^0]: * Corresponding author e-mail: mtunc@mku.edu.tr

