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1 Introduction 

During a long time statisticians have been interested on the relationship between a multivariate distribution function and 

its lower dimensional margins. M. Fr´echet and G. Dall’Aglio (see [5]) did some interesting works about this matter in 

the fifties, studying the bivariate and trivariate distribution functions with given univariate margins. The answer to this 

problem for the univariate margins case was given by A. Sklar in 1959 (see [5]) creating a new class of functions which 

he called copulas. In probability theory and mathematical statistics, a copula is a multivariate probability distribution for 

which the marginal probability distribution of each variable is uniform. Copulas are used to describe the dependence 

between random variables. At the beginning, copulas were mainly used in the development of the theory of probabilistic 

metric spaces. Later, they were of interest to define nonparametric measures of dependence between random variables 

(r.v.-s) and since then, they began to play a important role in probability theory and mathematical statistics. In this 

article we consider the problem of estimating of survival function and mean residual life function in the case of random 

censoring from the right. In order to propose our estimators we need to introduce of definition of copulas. 

Definition 1. [4,5]. A copula  (   )              is a bivariate distribution function with uniform marginals. 

A first example of copulas is the product copula  (   )      which characterizes independent random variables when 

the distribution functions are continuous. The importance of copulas in Mathematical Statistics is described in Sklar’s 

Theorem (see [5]). 

Theorem 1. (Sklar, 1959). Let H be a joint distribution function with margins F and G. Then there exists a copula C 

such that for all x, y in R, 

 (   )   ( ( )  ( ))  (1)  

If F and G are continuous, then C is unique; otherwise, C is uniquely determined on    ( )     ( ). Conversely, if 

C is a copula and F and G are distribution functions, then the function H defined by (1) is a joint distribution function 

with margins F and G. Thus copulas link joint distribution functions to their one-dimensional margins. A proof of this 

theorem can be found in [5]. 

http://www.ntmsci.com/
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Furthermore, the representation (1) suggests that if the copula C were known, then substituting continuous marginal 

estimators for F and G would yield a plug-in estimate of their associated joint distribution function H. Moreover, in 

light of Sklar's result with arrive at the following functional definition of a copula. 

Definition 2. [5]. Given a bivariate distribution function H with marginals F and G , the function defined as 

 (   )   (   ( )    ( ))  

For (   )        , where    ( ) and    ( ) are the inverse functions of F and G respectively, is the copula 

corresponding to H . In many applications, the r.v.-s of interest represent the lifetimes of individuals or objects in some 

population. The probability of an individual living or surviving beyond time x is given by the survival function (or 

survivor function, or reliability function)  ( )   (   )     ( ) where, as before, F denotes the distribution 

function of X . Let   be the copula function of the bivariate distribution of (   ). We have 

 (   )   (       )     ( )   ( )   (   )   ( )   ( )     (   ( )    ( ))

   ( ( )  ( ))   

where   (   )         (       ) -survival copula function. 

Definition 3. [5]. Let   be a continuous, strictly decreasing function from       to       such that  ( )   . The 

pseudo-inverse of   is the function       with                and     ( ) given by 

     ( )  {
   ( )         ( ) 

           ( )      
 

Note that       is continuous and no incteasing on      , and strictly decteasing on     ( ) . Furthermore, 

     ( ( )) on  , and  

 (     ( ))  {
                ( ) 

           ( )      
     (   ( ))  

If  ( )   , then          . 

Definition 4.[5].  Copulas of the form  (   )       [ ( )   ( )) are called Archimedean copulas, where the 

function   is called a generator of the copula. 

For a detailed study of these copulas, see [5]. 

2 The model and estimation of survival function 

In survival analysis our interest focuses on a nonnegative r.v.-s denoting death times of biological organisms or failure 

times of mechanical systems. A difficulty in the analysis of survival data is the possibility that the survival times can be 

subjected to random censoring by other nonnegative r.v.-s and therefore we observe incomplete data. There are various 

types of censoring mechanisms. In this article we consider only right censoring model and problem of estimation of 

survival and mean residual life functions when the survival times and censoring times are dependent and propose new 

estimates of survival functions assuming that the dependence structure is described by a known copula function. 

On the probability space (     ) we consider {(     )    } - a sequence of independent and identically distributed 

pairs of nonnegative r.v.-s with common joint distribution function (d.f.)  (   )   (        ), (   )   
  
 

      . We suppose that the marginal d.f.-s ( )   (     )   (   ) and  ( )   (    )   (    )     

 
 

, are continuous and  ( )   ( )     Assume that the sequence {      } and at   -th stage of the experiment 

the observation is available the sample  ( )  {(     )      }  where       (     )      (     ) and 

I(A) is the indicator of the event A . Should be noted that it does not require independence of sequences {  } and {  }. 

The problem is consist in estimating of the survival function   ( )   (    )     ( )    
 

from the sample 
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 ( ). Let  (   )   (         ) (   )   
  

- a joint survival function of the pairs (     ). According to 

Theorem of Sclar H and   can be submitted through the appropriate copula functions (see [4, 5]): 

 (   )   ( ( )  ( ))    (   )   
  
  

 (   )    (  ( )   ( )) (   )   
  
  (2)  

where copulas C and    are related as 

  (   )         (       ) (   )          (3)  

In the sequel in order to construct estimates for the survival function    , assume that C* is Archimedean copula, i.e. 

  (   )         ( )   ( )  (   )         where          
 

 is some generator function with the pseude 

inverse        Thus, by (2) and (3) 

 (   )         ((  ( ))   (  ( ))  (   )   
  
  

  ( )         ((  ( ))   (  ( ))     
 
  (4)  

We introduce a usual      and “crude”    hazard functions 

  ( )     
   

 

 
 (       

 

  
  )  

  ( )     
   

 

 
 (       

 

  
       )  

 ( )     
   

 

 
 (       

 

  
       )  

In order to construct a copula estimates for    consider the following easily verifiable equality: 

  ( )  ( )  (  ( ))    ( )  ( )  (  ( ))  (5)  

Integrating (5) over the interval [0, x] and denoting by  ( )  ∫  ( )  
 

 
 and   ( )  ∫   ( )  

 

 
   corresponding 

cumulative hazard functions we obtain the integral equation 

∫  ( )  (  ( ))

 

 

   ( )  ∫  ( )  (  ( ))

 

 

  ( )    
 
  (6)  

Integral on the left side of (6) is equal to   (  ( )) and then (6) takes the form 

 (  ( ))   ∫  ( )  (  ( ))

 

 

  ( )    
 
  (7)  

Hence we find the expression for the survival function    : 

                       (8)  

 

  ( )       [ ∫   ( )  (  ( ))
 

 
  ( )]       

 
                                (8) 

Note that the survival function    permit usual empirical estimation by the values    observed in the sample  ( ) : 
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 ( )  

 

 
∑ (    )    

 
 

 

   

 (9)  

Substituting (9) to the right of representation (8), we obtain a preliminary estimate of    as 

 ̃ 
 ( )       [ ∫  (  

 (  )   )   
 (  )  (  

 ( ))

 

 

   ( )]   (10)  

where 

  ( )  
 

 
∑
 (         )

  
 (  )  

 
 

 

   

  (11)  

-the corresponding estimate for  ( )  ∫
  (         )

 (    )

 

 
  Estimate (10) plays a supporting role in the construction of the 

main estimates for    in the future. Let    ( )    (         )  Define the countin processes   ( )  

∑   ( )
 
    and   ( )     

 (  )   ∑  (    )
 
   . Then the estimates (10) and (11) can be represented as 

 ̃ 
 ( )       [ 

 

 
∫  (  ( )   )  

 (
  ( )

 
)

 

 

   ( )]  (12)  

 

  ( )  ∫
 (  ( )   )

  ( )

 

 

   ( )  

Given the analog left side of (6), i.e. 

 (  ( ))   ∫  ( )  (  ( ))

 

 

   ( )  (13)  

where   ( )  ∫   
 

 
  , together with (9) also obtain other estimate for    as 

 ̃ 
 ( )       [ 

 

 
∫  (  ( )   )  

 (
  ( )

 
)

 

 

   
 
( )]  (14)  

where   
 ( )  ∫

 (  ( )  )

  ( )

 

 
   

 
( )  is estimate for   ( ) and   

 
( )   (    

 ( ))    (  )   ∑   
 ( )   

   

∑  (    )
 
    - the counting process. For    have the following obvious identity obtained from the representations (7) 

and (13): 

  ( )       [ (  ( ))
( ∫   ( )  (  ( ))

 

 
  ( ))  

( ∫   ( )  (  ( ))
 

 
   ( ))  

]  (15)  

Now substituting the empirical estimate of (9) under the first factor on the right of representation (15) and the 

corresponding estimates (12) and (14) instead of integrals we obtain the final estimate of    in the form 

  
 ( )       

[
 
 
 
 

 (  ( ))

( ∫  (  ( )   )  
 (
  ( )
 
)

 

 
   ( ))  

( ∫  (  ( )   )  
 (
  ( )
 
)

 

 
   

 
( ))  

]
 
 
 
 

  (16)  

where 
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 (  
 ( ))   ∫  (  ( )   ) 

 

 

[ (
  ( )

 
)   (

  ( )

 
 
 

 
)]    

 
( )  

is estimator of  (  ( ))  

3 Main Results 

In fact, we suppose that in (15) the generator function    is strong (that is   (0)=   ) and  hence            is usual 

inverse function. Denote  ( )     {      ( )   },  
     {      ( )   }   ( )      ( ). Introduce 

the regularity conditions with respect to    ,    and the copula generator     By    in conditions below denote both of  

  and      

(  )The  strong generator function  ( ) is strictly decreasing on  (     and  is sufficiently smooth in the sense 

that the first two derivatives of the functions   ( ) and  ( ) are bounded for         , where      is arbitrary. 

Moreover, the first derivative    is bounded away from zero on       ; 

(  )   ∫ [ (  ( ))]
   

 
     ( )                 

(  ) ∫ |  (  ( ))|    ( )    
  

 

 

(  )       
    

∫
 (  ( ))

  ( )

  

 

   ( )     

(  )   ( )   continuous on        if        . Otherwise,   ( )          
 ( ). 

At first we state the strong consistency of estimator (16) on the interval       where      if        and        , 

if       . In fact, these results are also valid throughout half     ) and      , because   
 ( )    for    ( ), 

 ( )
 
      and   ( ( ))

 
    (  )    ( )     for    . 

Theorem 2. Let conditions (  )  (  ) are hold. Then for      

( )    
     

|  
 ( )    ( )|

 
    

( )    
     

|  ( )   ( )|
 
    

( )    
     

| ( ̃ 
 ( ))   (  ( ))|

 
    

( )    
     

| (  
 ( ))   ( ̃ 

 ( ))|
    

  (
 

 
) 

( )    
     

| ( ̃ 
 ( ))   (  ( ))|

 
   

( )    
     

 |  
 ( )    ( )|   

 
   

The proof of the theorem 2. (A) For all         by using the identity    (  ( )      (  ( )   )  

  (  ( )   ) we have  
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 ( )    ( )   ∫

 (  ( )   )

  ( )

 

 

  ̅ 
 ( )  

 ∫  (  ( )   )
 

 

   ( )   ∫
 (  ( )   )

  ( )

 

 

   
 ( )  

 ∫  (  ( )   )
 

 

   ( )      ( )     ( )

  (17)  

Let      so that   ( )   . Then for         (using (C2) when m = 0 ) we have, |   ( )|   (  ( )  

 ) ∫    
 

 
( )    (  ( )   ) 

 ( ), where    ( )    and in accordance with SLLN under     have 
  ( )

 
 

  
 ( ) > 0. Consequently   ( )

    
→    and from here  (  ( )   )

    
→    Thus, when     

   
     

 |   ( )|
    
→     (18)  

Integrand in    ( )  is bounded predictable random process (since it is adapted process on       and continuous from 

the left) and, therefore,    ( ) is a locally square-integrable martingale (   ( )       
 (  

( ))) with quadratic  

characteristics         ( )  ∫
 (  ( )  )

  ( )
   ( )

 

 
. Then    

 ( )           ( ) is also o a martingale with 

respect to filtration   
( )

 and by the Lenglart's inequality    and          

 (    
     

|    ( )|   )   (    
     

   
 ( )    )  

 

  
   

 (∫
 (  ( )  )

  ( )
   

 

 
( )    )  

 

  
  (

  ( )

  ( )
)   ( )    , 

Because       arbitrary and   ( )
    
→  . Thus, when     

   
     

|   ( )|
 
    (19)  

Now consider the interval (    . If     ,  then the proof is obvious. Let     . Then we choose      a 

sufficiently small and for       have 

   
     

|  
 ( )    ( )|     

     
|   ( )|     

     
|   ( )|  

    
     

|   ( )|     
     

|   ( )|     
     

|   ( )|  

 |   (  )     (    )|  |   (    )| 

 (20)  

Now, using (25), (26) and tending     to zero from (27) we obtain the assertion (A) of the theorem. (B) repeats the 

proof of (A), we need only replace  ̅ 
  and    and respectively on  ̅  and  . Let us prove (C). It is easy to verify (see 

(14)), the following representations using to the indicator identity from proof of (A): 

 ( ̃ 
 ( ))   (  ( ))   

 

 
∫  (  ( )   ) 

 (
  ( )

 
)

 

 

    
 ( )  

 ∫  (  ( )   )
 

 

[ (
  ( )

 
)   (  ( ))]     ( )  

 ∫  (  ( )   ) ( 
 ( ))   

 

 

( )     ( )     ( )     ( ) 

 (21)  

For         at     
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|   ( )|   (  ( )   )∫  
 

 

(  ( ))   ( )   (  ( )   )∫  ( 
 ( ))

 

 

   ( )
 
    (22)  

where we use condition (C2), under       and arguments of the proof of (25). Obviously,    ( )      
 (  

( )) and 

quadratic characteristic of this martingale is 

          ( )  ∫  (  ( )   )
 

 

[  (
  ( )

 
)]

 
  ( )

  
    

 ( )  ∫
  ( )   

  ( )

 

 

[ 
  ( )

 
]

 

   ( )  

Therefore,    
 ( )          ( ) is a also martingale and by Lenglart's inequality,      0 we have 

 (    
     

|   ( )|   )  
 

  
  (∫

 (  ( )   )

  ( )

 

 

[ (
  ( )

 
)]

 

   ( )    )

 
 

  
  (

 

  ( )
∫ [ (

  ( )

 
)]

  

 

   ( )    )  

According to Glivenko-Cantelli theorem for     

   
     

|
  ( )

 
   ( )|

    
→    (23)  

Moreover, due to the boundedness of   and    on    ( )    (condition (C1)), for     we have 

   
     

|  (
  ( )

 
)    (  ( ))|

    
→    

Then by condition (C2) with     

∫ [ (
  ( )

 
)]
  

 

   ( )
    
→ ∫   

 

 

(  ( ))   ( )     

and consequently, taking into account   
 ( )

    
→   

 we have convergence to zero of probability in the right side of (30), i.e. 

   
     

|   ( )|
 
    (24)  

By mean value theorem 

   
     

|   ( )|     
     

∫  (  ( )   )
 

 

 |  (  ( ))| |
  ( )

 
   ( )|    ( )

    
     

|
  ( )

 
   ( )|  ∫ |  (  ( ))|

 

 

   ( )  

where   ( )  [   {
  ( )

 
   ( )}     {

  ( )

 
   ( )}]. 

Now, by using (31) and condition (C3) at     have 

   
     

|   ( )|
 
    (25)  

From (29), (32) and (33) at     

   
     

| ( ̃ 
 ( ))   (  ( ))|

 
    (26)  
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where the number      so that   ( )     In order to proof (C) as in the proof of (A) set       . Given the 

monotonity of    and   we have 

   
     

| ( ̃ 
 ( ))   (  ( ))|     

       
| ( ̃ 

 ( ))   (  ( ))|   

    
       

| ( ̃ 
 ( ))   (  ( ))|     

       
| ( ̃ 

 ( ))   (  ( ))|   

 | ( ̃ 
 ( ))   ( ̃ 

 (   ))|  | ( ̃ 
 (   ))   (  (   ))|   

 | (  (   ))   (  ( ))|  

Now, using (34) and letting   tend to zero, we obtain (C). Let us prove (D). According to Taylor's expansion, condition 

(C1) and (31) under     we get 

   
     

| (  
 ( ))   ( ̃ 

 ( ))|  ∫ | (
  ( )

 
)   (

  ( )

 
 
 

 
)  

 

 

 

 
 

 
  (

  ( )

 
) |  ̅ 

 ( )  
 

   
∫ |   (  ( ))|  ̅ 

 ( )  
 

 

 

 
 

  
   
     

|   (  ( ))|
    
  (

 

 
)  

i.e. (D) is true. Clearly (E) is a consequence of (C) and (D). The proof of (F) is identical with that of (C). Now turn to 

the proof of the main statement (G) of uniform consistency of   
 . Consider the representation (23), where according to 

(D), (F) and (31) at     

   
     

|   
 ( )|

 
      

     
|   
 ( )|   (

 

 
)     
     

|   
 ( )|    (

 

 
)   (27)  

Hence, by (23), 

   
     

| (  
 ( ))   (  ( ))|

 
    (28)  

Now by the mean value theorem and condition (C1) from (28) we obtain (G). The theorem 2 is proved. 

Now we demonstrate result on asymptotic normality of estimator (16). Introduce the stopped processes 

  ( )   
   (  

 (   ( ))    (   ( ))), 

where         (   ). Let  ( )   ( )[  (  ( ))]
  
  [  (  (  ))]

  
, where  ( ) is mean zero Gaussian 

process with covariance function 

 (     )  ∫   ( )[  (  ( ))]
 

      

 

  ( )   

  ∫ ∫   ( )(    ( ))  
 

 

      

 

(  ( ))  ( )  ( )   

 ∫   ( )
     
     

  (  ( ))  ( ) ∫ [(    ( ))  (  ( ))    (  ( ))]
      
 

  ( ), 

           (     )  
   (    

 )       
 ( )              (   )  Let  ( )          (   ). 
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Theorem 3. Let conditions (C1)-(C5) are hold,   

    and for every        )  ( )   . Then for    : 

  ( )
 
⇒  ( )              (29)  

The proof of the theorem 3. First, examine the process 

  ( )   
   ( (  

 (   ( )))   (  
 (   ( )))) 

and show that when     

  ( )
 
⇒ ( )               (30)  

According to the representation (21) 

  ( )  ∑     
 

   

   
 (   ( )) (31)  

Since  ( )
    
→    when    , according to (27) 

   
      

    |   
 (   ( ))|    ( 

    )       
(32)  

Therefore, to establish (30), taking into account (31) and (32), it suffices to prove 

       
 (   ( ))

 
⇒ ( )              (33)  

Using formulas (7), (10) and (11), we have 

       
 (   ( ))      ( 

 

 
∫  (  

 ( )   )  
 (  ) 

   ( )

 

 

  (  
 ( ))   ( )  ∫  (  

 ( )   )
   ( )

 

  ( )  (  ( ))  ( ))   

     ( 
 

 
∫  (  

 ( )   )
   ( )

 

   ((  
 ( )))    ( )  ∫  (  

 ( )   ) 
   ( )

 

 

  [ (  
 ( ))   (  ( ))]  ( )   (

 

 
)  

where have used (2.2.5) and the equation   
 (  )    

 ( )  
 

 
. By (1.2.4) subject to the conditions (C1), 

  (  
 ( ))     (  ( ))    (( 

     )   ), 

 (  
 ( ))   (  ( ))     (  ( ))(  

 ( )    ( ))    ( 
     )  (34)  

we obtain  from (33), (34) we have  

       
 (   ( ))     ( )     ( )    ( )  (35)  

where 

   ( )    
   ∫   (  ( ))

   ( )

 
   ( ), 
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   ( )  ∫   
   ( )

 
(  ( ))  ( )  ( ). 

  ( )   
   (  ( )    ( )). 

According to (35), the convergence (33) follows from the convergence 

  ( )
 
⇒ ( )              (36)  

where   ( )     ( )     ( ). In the paper [6] (see equation (16)) states that for any   , such that   (  )  

    ( ) converges weakly to a  ( ) in        . Therefore, to prove (36) according to the criterion of weak 

convergence the density is   ( ), for       and for any    : 

   
    

        
   

 (    
  (    )

|   ( )     ( )|   )     (37)  

For     

   ( )     ( )    
 
 
 ∫   (  ( ))   ( )

   ( )

   ( )
  (38)  

Note that (38) is a martingale integral form with the stopping time, and then by the inequality Lenglart for        we 

have 

 (    
        

|   ( )     ( )|   )  
 

  
 

  (
 

 
∫ (  (  ( )))

 

  ( )  ( )   
  

   ( )
)  

 

  
 

  (∫ (  (  ( ))
 
  
 ( ))

  

 

  ( )   )  

 (39)  

According to theorem Glivenko-Cantelli for     

∫ (  (  ( )))
 

  
 ( )  ( )

 
 

  
 

∫ (
 (  ( ))

  ( )
)

 

  ( )
  
 

. 

Consequently, for      in view of the condition (C4) and the arbitrariness     converge to zero, i.e. (37) for     

rightly. Since the empirical process   ( ) converges weakly in         to a Brownian bridge  (    ( )) by the 

theorem of Doob-Donsker and in view of condition (C3) and presentation 

   ( )     ( )  ∫   
   ( )

   ( )
(  ( ))  ( )  ( ) 

verify the validity of (37) and in the case for    . Now the density   ( ) follows from (37) by the triangle inequality. 

Thus, (30) holds. To prove (29) it suffices to note that under condition (C1) 

  ( )    ( ) [ 
 (  (   ( )))]

  

   ( )  

   ( ) {[ 
 (  ( ))]

  
     ( ))  [  (  ( ( )))]

  

 { ( )}}    ( ) 
  (40)  

Now (29) follows from (40) for    . The theorem 3 is proved. 
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Remark. Consider independent censoring model( i.e. {  } and  {  } are mutually independent). In this case in (2) 

 (   )       (   ),           and  hence  ( )                and       ( )     ( )       (  ), so 

that  

  ( )    ( )  ( )    ̅  (41)  

It is easy to verify that from (12) and (16) respectively we obtain the exponential-hazard estimator 

 ̃ 
 ( )     { ∫

 (  ( )   )

  ( )
  ̅ ( )

 

 

} (42)  

and relative-risk power estimator of Abdushukurov (1998) (see[1]): 

  
     

 ( )   ( )   ( )  
  ( )

  
 ( )

 (43)  

Note that the estimator (12) is investigated in [3]. Moreover the Zeng-Klein's (1994) copula-graphic estimator is (see 

[3,6]): 

 ̂ 
 ( )       [∫  (  ( )   ) ( (

  ( )   

 
)   (

  ( )

 
))

 

 

]   ̅ ( ) (44)  

which in independence model (41) is reduced to well - known Kaplan- Meier  product - limit estimator (see [9]) 

 ̂ 
 ( )  ∏{  

  ̅ ( )

  ( )
}

   

 (45)  

Let  ̃ 
 ,   

  and  ̂ 
  are respectively estimators of     of exponential-hazard, relative-risk power and product-limit 

structures obtained from formulas (42), (43) and (45) by using events      instead of     . Then we have: 

(a)  ̃ 
 ( ) ̃ 

 ( )     {   
 ( )}    

 ( ) and for    ( )     {        }    { ̃ 
 ( )  ̃ 

 ( )}     

(b)   
 ( )  

 ( )    
 ( ) for all     ̅  and   

 ( )    
 ( )   , for    ( ); 

(c)  ̂ 
 ( ) ̂ 

 ( )    
 ( ) and for    ( ) the estimators   ̂ 

  and  ̂ 
  are undefined. Moreover the estimators  ̂ 

  

and  ̂ 
   require also the condition   (     )             which in many practical situations is not hold. Thus 

only the relative-risk power estimators have identifiability properties with independence censoring model satisfying 

empirical analogue of equality (41). Analogously a new estimator (16) is more suitable estimator for  ̂ 
  than the 

estimators (12) and (43). 

4 Conclusions 

In figures 1 and 2 below we demonstrate plots of estimators (12), (16) and (44) of   ̂ 
  using well-known Channing 

House data of size      (see [1], [7], [8]). Here, thin-solid line stands for  ̃ 
 , medium-one for  ̂ 

  and thick-solid line 

stands for a new estimator  ̂ 
 . Note that estimate  ̂ 

  is defined in whole line. 
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Figure 1. Plots of estimates  ̃ 
  (thin-solid),  ̂ 

  (medium one) and   
  (thick-solid) for copula generator  ( )  

              

 

Figure 2. Plots of estimates  ̃ 
  (thin-solid),  ̂ 

  (medium one) and   
  (thick-solid) for copula generator  ( )  

(    )           

5 Estimation of mean residual life function 

Let  ( )   (    )   (    )   (         )  ( 
 ( ))   ∫   ( )          

  

 
), is mean residual life 

function of r.v.   . Consider estimate of E(x): 

  ( )  {
 (    

 )      [   ( )) 

               ( ) 
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Now we state our result on consistency of    with weight function  ( )        ̅  We assume following conditions 

for    

(C6) Function               is measurable and, for every                 { ( )}     

(C7) Function  ( ) (   ) is no decreasing in a neighborhood of 1: 

(C8) ∫ {(  ( ))
  
∫  ( ( ))  
  
 

}
  
 

  ( )     

Note that the conditions (C1) - (C8) satisfies, for example, for copula generators of Clayton and Frank (see [5]). 

Theorem 4. Let        , conditions (C1)-(C3) and (C6)-(C8) are hold. Then for    , 

  ( )   
   

Proof of theorem 4. We have 

  ( )     
  [   ( ))

 ( ( ))|  ( )   ( )|  

    
  [   ( ))

 ( ( ))|  ( )   ( )|     ( )     ( ) 
  (46)  

To prove (34), it is necessary to prove that for        ( )         
  since   ( )    for all     , then by (4) 

for     

   ( )     
  [ ( )   )

 ( ( )) ( )   
       

(47)  

By the other way, for a given number c>1 and almost all of the elementary events  , we can find a number    

  (   ) such that for all   [   ( )) and     : 

  
 ( )

  ( )
    (48)  

According to (10) and for all   [   ( )): 

|  ( )   ( )|      ( )      ( )  (49)  

where 

   ( )  
 ( )

  ( )
|  
 ( )    ( )|    ( )  

 

  ( )
 ∫ |  

 ( )    ( )|   

  

 

 

Since when, we Show that 

Since for        ( )   (   ( )     ( )), then we Show that 

   ( )     
  [   ( ))

 ( ( ))   ( )
 
    (50)  

   ( )     
  [   ( ))

 ( ( ))   ( )
 
    (51)  

For given number     and sufficiently large number   
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   ( )     

        (   ))
 ( ( ))   ( )  

    
      (   )   ( ))

 ( ( ))   ( )     ( )     ( ) 
  (52)  

where for    , according to (50) and conditions (C6), (C7) we have 

   ( )
 
          (53)  

From (52) and (53) we obtain (50). Similarly, for sufficiently large   

   ( )     
        (   ))

 ( ( ))   ( )  

    
      (   )   ( ))

 ( ( ))   ( )     ( )     ( ) 
  (54)  

In view of condition    , for     exist a number       such that 

   ( )     ∫ |  
 ( )    ( )|  

  

 

 
      (55)  

Let   ( ( ))   ( ( ))   ( ). Than according to the conditions (C6), (C7) and (C8) for      

   ( )  ∫   ( ( ))|  
 ( )    ( )|  

  

   (   )

 
    (56)  

From (54)-(56) follow (51). The theorem 4 is proved. 
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