Upper bound of the second Hankel determinant for a subclass of analytic functions

Gagandeep Singh¹, Gurcharanjit Singh²

¹ Department of Mathematics, M.S.K. Girls College, Bhowal(Tarn-Taran), Punjab, India
² Department of Mathematics, Guru Nanak Dev University College, Chungh(Tarn-Taran), Punjab, India
E-mail: kamboj.gagandeep@yahoo.in, dhillongs82@yahoo.com

Abstract: In the present investigation an upper bound of second Hankel determinant \(a_2 a_4 - a_3^2 \) for the functions belonging to the class \(S_{\alpha}^* (\alpha; A, B) \) is studied.

Keywords: Analytic functions, Subordination, Schwarz function, Second Hankel determinant.

1 Introduction

Let \(A \) be the class of analytic functions of the form

\[
f(z) = z + \sum_{i=2}^{\infty} a_i z^i
\]

in the unit disc \(E = \{z : |z| < 1\} \).

By \(S \), we denote the class of functions \(f(z) \in A \) and univalent in \(E \).

\(U \) denotes the class of Schwarzian functions

\[
w(z) = \sum_{i=1}^{\infty} p_i z^i
\]

which are analytic in the unit disc \(E = \{z : |z| < 1\} \) and satisfying the conditions \(w(0) = 0 \) and \(|w(z)| < 1 \).

For two functions \(f \) and \(g \) which are analytic in \(E, f \) is said to be subordinate to \(g \) (symbolically \(f \prec g \)) if there exists a Schwarz function \(w(z) \in U \), such that \(f(z) = g(w(z)) \).

\(S_{\alpha}^* (\alpha; A, B) \) denote the subclass of functions \(f(z) \in A \) and satisfying the condition

\[
(1-\alpha) \frac{2 zf'(z)}{f(z) - f(-z)} + \alpha \frac{2(zf'(z))'}{(f(z) - f(-z))} \leq \frac{1 + Az}{1 + Bz}, -1 \leq B < A \leq 1, 0 \leq \alpha \leq 1, z \in E.
\]

The following observations are obvious:

(i) \(S_{\alpha}^* (\alpha; 1, -1) = S_{\alpha}^* (\alpha) \), the class of \(\alpha \)-starlike functions with respect to symmetric points.
(ii) \(S^*_1(0;1,-1) = S^*_1 \), the class of starlike functions with respect to symmetric points introduced by Sakaguchi [11].

(iii) \(S^*_1(1;1,-1) = K_1 \), the class of convex functions with respect to symmetric points introduced by Das and Singh [1].

(iv) \(S^*_1(0;A,B) = S^*_1(A,B) \), the subclass of starlike functions with respect to symmetric points introduced and studied by Goel and Mehrok [2].

(v) \(S^*_1(1;A,B) = K_1(A,B) \), the subclass of convex functions with respect to symmetric points.

In 1976, Noonan and Thomas [9] stated the \(q \)th Hankel determinant of \(f(z) \) for \(q \geq 1 \) and \(n \geq 1 \) as

\[
H_q(n) = \begin{vmatrix}
 a_n & a_{n+1} & \cdots & a_{n+q} \\
 a_{n+1} & \ddots & \vdots & \vdots \\
 \vdots & \ddots & \ddots & \vdots \\
 a_{n+q} & \cdots & a_{n+2q-2} \\
\end{vmatrix}.
\]

For our discussion in this paper, we consider the Hankel determinant in the case of \(q = 2 \) and \(n = 2 \), known as second Hankel determinant:

\[
H_2(2) = \begin{vmatrix}
 a_2 & a_3 \\
 a_3 & a_4 \\
\end{vmatrix} = [a_2a_4 - a_3^2],
\]

and obtain an upper bound to the functional \(H_2(2) \) for \(f(z) \in S^*_1(\alpha;A,B) \). Earlier Janteng et al.([3],[4],[5]), Mehrok and Singh [8], Singh ([12],[13]) and many others have obtained sharp upper bounds of \(H_2(2) \) for different classes of analytic functions.

2 Preliminary Results

Let \(P \) be the family of all functions \(p \) analytic in \(E \) for which \(\Re(p(z)) > 0 \) and

\[
p(z) = 1 + p_1z + p_2z^2 + ...
\]

for \(z \in E \).

Lemma 2.1. [10] If \(p \in P \), then \(|p_k| \leq 2(k = 1, 2, 3, ...) \).

Lemma 2.2. [6,7] If \(p \in P \), then

\[
2p_2 = p_1^2 + (4 - p_1^2)x,
\]

\[
4p_3 = p_1^3 + 2p_1(4 - p_1^2)x - p_1(4 - p_1^2)x^2 + 2(4 - p_1^2)(1 - |x|^2)z,
\]

for some \(x \) and \(z \) satisfying \(|x| \leq 1, |z| \leq 1 \) and \(p_1 \in [0, 2] \).

3 Main Result

Theorem 3.1. If \(f \in S^*_1(\alpha;A,B) \), then
\[|a_3a_4 - a_1^2| \leq \frac{(A-B)^2}{4(1+2\alpha)^2}. \]

(3.1)

Proof. If \(f(z) \in S^*(\alpha; A, B) \), then there exists a Schwarz function \(\omega(z) \in U \) such that

\[
(1-\alpha) \frac{2zf'(z)}{f(z)-f(-z)} + \alpha \frac{2(zf'(z))'}{(f(z)-f(-z))} = \phi(\omega(z)),
\]

(3.2)

where

\[
\phi(z) = \frac{1+Az}{1+Be} = 1 + (A-B)z + B(A-B)z^2 + B^2(A-B)z^3 + ...
\]

(3.3)

Define the function \(p_1(z) \) by

\[
p_1(z) = \frac{1+w(z)}{1-w(z)} = 1 + c_1z + c_2z^2 + c_3z^3 + ...
\]

(3.4)

Since \(w(z) \) is a Schwarz function, we see that \(\text{Re}(p_1(z)) > 0 \) and \(p_1(0) = 1 \). Define the function \(h(z) \) by

\[
h(z) = (1-\alpha) \frac{2zf'(z)}{f(z)-f(-z)} + \alpha \frac{2(zf'(z))'}{(f(z)-f(-z))} = 1 + b_1z + b_2z^2 + b_3z^3 + ...
\]

(3.5)

In view of the equations (3.2), (3.4) and (3.5), we have

\[
h(z) = \phi \left(\frac{p_1(z) - 1}{p_1(z) + 1} \right) = \phi \left(\frac{c_1z + c_2z^2 + c_3z^3 + ...}{2 + c_1z + c_2z^2 + c_3z^3 + ...} \right)
\]

\[
= \phi \left(\frac{1}{2} c_1z + \frac{1}{2} \left(c_2 - \frac{c_1^2}{2} \right) z^2 + \frac{1}{2} \left(c_3 - c_1c_2 + \frac{c_1^3}{4} \right) z^3 + ... \right)
\]

\[
= 1 + \frac{B_c c_1}{2} z + \left[\frac{B_3}{2} \left(c_2 - \frac{c_1^2}{2} \right) + \frac{B_c c_1^2}{4} \right] z^2 + \left[\frac{B_3}{2} \left(c_3 - c_1c_2 + \frac{c_1^3}{4} \right) + \frac{B_c c_1}{2} \left(c_2 - \frac{c_1^2}{2} \right) + \frac{B_c c_1^3}{8} \right] z^3 + ...
\]

Thus,

\[
b_1 = \frac{B_c c_1}{2}; b_2 = \frac{B_3}{2} \left(c_2 - \frac{c_1^2}{2} \right) + \frac{B_c c_1^2}{4} \text{ and } b_3 = \frac{B_3}{2} \left(c_3 - c_1c_2 + \frac{c_1^3}{4} \right) + \frac{B_c c_1}{2} \left(c_2 - \frac{c_1^2}{2} \right) + \frac{B_c c_1^3}{8}.
\]

(3.6)

Using (3.3) and (3.5) in (3.6), we obtain
\[a_2 = \frac{(A - B)c_i}{4(1 + \alpha)}, \]
\[a_3 = \frac{(A - B)}{8(1 + 2\alpha)} \left[2c_i^2 - (B + 1)c_i^3 \right], \]
\[a_4 = \frac{(A - B)}{64(1 + \alpha)(1 + 2\alpha)(1 + 3\alpha)} \left[\begin{array}{c} 8(1 + \alpha)(1 + 2\alpha)c_i \\ + [8(1 + \alpha)^3 (1 + 3\alpha) - (1 + 2\alpha)(1 + 5\alpha) - 4(1 + \alpha)(1 + 2\alpha)^2]B \\ + (B + 1)[(2(1 + \alpha)(1 + 2\alpha) + (1 + 5\alpha)]B - (1 + 5\alpha)A + 2(1 + \alpha)(1 + 2\alpha)]c_i^3 \end{array} \right] \] - (3.7)

(3.7) yields,
\[a_3 a_4 - a_i^3 = \frac{(A-B)^2}{C(\alpha)} \left[2Lc_i^4 (4c_i) + Mc_i^4 (2c_i) - Nc_i^4 - 4R(4c_i^3) \right] \] - (3.8)

where \(C(\alpha) = 256(1 + \alpha)^2 (1 + 2\alpha)^2 (1 + 3\alpha), \)

\[L = (1 + \alpha)(1 + 2\alpha)^2, \]
\[M = (1 + 2\alpha)(1 + 5\alpha)A + \left[8(1 + \alpha)^3 (1 + 3\alpha) - (1 + 2\alpha)(1 + 5\alpha) - 4(1 + \alpha)(1 + 2\alpha)^2 \right]B \]
\[+ \left[8(1 + \alpha)^2 (1 + 3\alpha) - 4(1 + \alpha)(1 + 2\alpha)^2 \right], \]
\[N = (B + 1) \left[(1 + 2\alpha)(1 + 5\alpha)A + 4(1 + \alpha)^2 (1 + 3\alpha) - 2(1 + \alpha)(1 + 2\alpha)^2 - (1 + 2\alpha)(1 + 5\alpha) \right]B \]
\[+ \left[4(1 + \alpha)^2 (1 + 3\alpha) - 2(1 + \alpha)(1 + 2\alpha)^2 \right] \]

and

\[R = (1 + 3\alpha)(1 + \alpha)^2. \]

Using Lemma 2.1 and Lemma 2.2 in (3.8), we obtain
\[a_3 a_4 - a_i^3 = \frac{(A-B)^2}{C(\alpha)} \left[- \left((1 + 2\alpha)(1 + 5\alpha)AB + \left[4(1 + \alpha)^2 (1 + 3\alpha) - 2(1 + \alpha)(1 + 2\alpha)^2 - (1 + 2\alpha)(1 + 5\alpha) \right]B \right] \right] c_i^4 \]
\[+ \left((1 + 2\alpha)(1 + 5\alpha)A + \left[8(1 + \alpha)^3 (1 + 3\alpha) - (1 + 2\alpha)(1 + 5\alpha) - 4(1 + \alpha)(1 + 2\alpha)^2 \right]B \right] c_i^4 \left(4 - c_i^2 \right)^2 \]
\[- 2 \left(4(1 + \alpha)^2 (1 + 3\alpha) - \left[2(1 + \alpha)^2 (1 + 3\alpha) - (1 + \alpha)(1 + 2\alpha)^2 \right] c_i^4 \right) (4 - c_i^2) \]
\[+ 4(1 + \alpha)(1 + 2\alpha)^2 c_i (4 - c_i^2) \left(1 - |x|^2 \right) z \]

Assume that \(c_i = c \) and \(c \in [0, 2] \), using triangular inequality and \(|z| \leq 1\), we have
\[\left| a_j - a_i \right| = \frac{(A-B)^2}{C(\alpha)} f(\delta), \text{ where } \delta = |\alpha| \leq 1 \]

\[F(\delta) = 2(4-c^2) \left(8(1+\alpha)^2(1+3\alpha) - 2(1+\alpha)^2(1+3\alpha)^2 - 4(1+\alpha)(1+2\alpha)^2 c(4-c^2) \right) \delta^2
+ \left[(1+2\alpha)(1+5\alpha) A + \left(8(1+\alpha)^2(1+3\alpha) - 4(1+\alpha)(1+2\alpha)^2 \right) B \right] c(4-c^2) \delta
+ \left[(1+2\alpha)(1+5\alpha) AB + \left(8(1+\alpha)^2(1+3\alpha) - 2(1+\alpha)(1+2\alpha)^2 - (1+2\alpha)(1+5\alpha) \right) B \right] c^4
+ 4(1+\alpha)(1+2\alpha)^2 c(4-c^2) \]

is an increasing function. Therefore \(\text{Max} F(\delta) = F(1) \).

Consequently

\[\left| a_j - a_i \right| \leq \frac{(A-B)^2}{C(\alpha)} G(c), \quad (3.9) \]

where

\[G(c) = F(1). \]

So \(G(c) = S(\alpha)c^3 + T(\alpha)c^2 + 64(1+\alpha)(1+3\alpha) \)

where

\[S(\alpha) = \left[(1+2\alpha)(1+5\alpha) AB + \left(8(1+\alpha)^2(1+3\alpha) - 2(1+\alpha)(1+2\alpha)^2 \right) \right.
+ \left. 2 \left(1+2\alpha \right)^2(1+3\alpha)(1+2\alpha) \right] \]

and

\[T(\alpha) = \left[4 \left(1+2\alpha \right) \left(1+5\alpha \right) A + \left(8(1+\alpha)^2(1+3\alpha) - 4(1+\alpha)(1+2\alpha)^2 \right) \right.
- \left. 8 \left(1+2\alpha \right)^2(1+3\alpha)(1+2\alpha) \right] \]

Now \(G'(c) = 4S(\alpha)c^3 + 2T(\alpha)c \) and \(G^*(c) = 12S(\alpha)c^2 + 2T(\alpha) \).

\(G'(c) = 0 \) gives

\[c \left[2S(\alpha)c^2 + T(\alpha) \right] = 0. \]

\(G^*(c) \) is negative at \(c = 0 \).

So \(\text{Max} G(c) = G(1) \).
Hence from (3.9), we obtain (3.1).

The result is sharp for \(c_1 = 0, \ c_2 = 2 \quad \text{and} \quad c_3 = 0.\)

For \(A = 1 \quad \text{and} \quad B = -1\) in Theorem 3.1, we obtain the following result:

Corollary 3.1.1. If \(f(z) \in S^*_n(\alpha)\), then

\[
|a_2a_4 - a^2| \leq \frac{1}{(1+2\alpha)^2}.
\]

For \(\alpha = 0, \ A = 1 \quad \text{and} \quad B = -1\), Theorem 3.1 gives the following result due to Janteng et al.[5].

Corollary 3.1.2. If \(f(z) \in S^*_n\), then

\[
|a_2a_4 - a^2| \leq 1.
\]

For \(\alpha = 1, \ A = 1 \quad \text{and} \quad B = -1\), Theorem 3.1 gives the following result due to Janteng et al.[5].

Corollary 3.1.3. If \(f(z) \in K_n\), then

\[
|a_2a_4 - a^2| \leq \frac{1}{9}.
\]

Putting \(\alpha = 0\) in Theorem 3.1, we obtain the following result:

Corollary 3.1.4. If \(f(z) \in S^*_n(A, B)\), then

\[
|a_2a_4 - a^2| \leq \frac{(A-B)^2}{4}.
\]

Putting \(\alpha = 1\) in Theorem 3.1, we obtain the following result:

Corollary 3.1.5. If \(f(z) \in K_n(A, B)\), then

\[
|a_2a_4 - a^2| \leq \frac{(A-B)^2}{36}.
\]

References

