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1 Introduction 
 
The research area of nonlinear equations has been very active for the past few decades. There are various kinds of 
nonlinear equations that appear in various areas of physical and mathematics sciences. Much effort has been made on 
the construction of exact solutions of nonlinear equations, for their important role in the study of nonlinear physical 
phenomena [3], [7]. Nonlinear wave phenomena appears in various scientific and engineering fields, such as fluid 
mechanics, plasma physics, optimal fiber, biology, oceanology [10], solid state physics, chemical physics and geometry. 
In recent years, the powerful and efficient methods to find analytic solutions of nonlinear equation have drawn a lot of 
interest by a diverse group of scientists, such as Tanh-function method, extended Tanh-function method [4], [15], Sine-
cosine method [16], (G'/G)-expansion method[1], [6], [11]. In this paper we obtain the exact solutions of CBS equation 
by using the simplest equation method. The simplest equation method was developed by Kudryashov [8], [9] on the 
basis of a procedure analogous to the first step of the test for the Painleve property [5]. The paper is organized as 
follows: 

In Section 2, we explain the main steps of the simplest equation method. In Section 3, we apply this method to the (2 + 
1)-dimensional CBS equation and BS equation. concluding remarks are summarized in Section 4. 

2 Discussion 

 In this section we recall the basic idea of the simplest equation method. Let we have a partial differential equation and 
by means of an appropriate transformation this equation is reduced to a nonlinear ordinary differential equation as 
follow: 

, , , u , … 0																																																																																												      (1)                       

 Exact solution of this equation can be constructed as finite series  

	u x ∑ 	a G x 																																																																																											        (2) 

Where G(x) is a solution of some ordinary differential equation referred to as the simplest equation, and   
, , , . . . ,   are parameters to be determined. In this paper we use the equation of Riccati, as the simplest equation 

 G′ x c	G x d	G x .                                                                              (3)                       
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 This equation is well-known nonlinear ordinary differential equation which process exact solution constructed by 
elementary function. In this paper we work with the following solutions of the Riccati equation  

 

 G x =	
	

,                                                                                      (4) 

 
for case 0 , 0,  here  is a constant of integration. and  

G x =	
	

.                                                                                   (5) 

 
for case 0 , 0 , similar above  is a constant of integration.  

The simplest equation has two properties: (i)The order of simplest equation is lesser than equation (1), (ii) we know the 
general solution of the simplest equation or we know at least exact analytical particular solution(s) of the simplest 
Eq(3).  Now  can be determined explicitly by using the following three steps:  

• Step (1). By considering the homogeneous balance between the highest nonlinear terms and the highest order 
derivatives of  in Eq. (1), the positive integer  in (2) is determined.  

• Step (2). By substituting Eq. (2) with Eq. (3) into Eq. (1) and collecting all terms with the same powers of  together, 
the left hand side of Eq. (1) is converted into a polynomial. After setting each coefficient of this polynomial to zero, we 
obtain a set of algebraic equations in terms of 	 0,1,2, . . . , , , .  

• Step (3). Solving the system of algebraic equations and then substituting the results and the general solutions of (4) or 
(5) into (2) gives solutions of (1). Now, we will demonstrate the simplest equation method on CBS  and  BS equations. 

3.1 Apllication of simplest equation method to CBS equation 

The CBS equation is  

u 2u u 4u u u 0.                                                                                  (6) 

There are many efforts to solve Eq. (6). some new traveling wave solutions for the (2+1)-dimensional CBS equation 
are obtained in [12].  

Wazwaz  considered the (2+1)-dimensional CBS equation [13].  He employed the Cole-Hopf transformation and the 
Hirota’s bilinear method to derive multiple-soliton solutions and multiple singular soliton solutions for the equation. 
Also he employed the Hirota’s bilinear method to the (2+1)-dimensional CBS equation [14]. In this paper we obtain 
exact solutions of this equation using simplest equation method. By the transformation   ,   Eq. (6) 
becomes:  

u 3 u′ ′ νu′′ 0.                                                                                       (7) 

Integrating Eq. (7) once with respect to  and setting the integration constant as zero yields 

u′′′ 3 u′ νu′ 0.                                                                                                 (8) 

Setting ′ , Eq. (8) becomes  

v′′ 3v νv 0.                                                                                                   (9) 

With balancing according procedure that be described, we get 2, therefore the solution of Eq. (9) can be expressed 
as follows: 

v ξ ∑ 	A G ξ .                                                                                             (10) 
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where  satisfies the Riccati equation and , ,  are parameters to be determined. solutions of Riccati 
equation are given in (4), (5). With substituting (10) into (9) and use of (3) and then equating all coefficients of the 

functions  to zero, we obtain ,  and  :  

Case1: 

		A ,				A 2cd,				A 2d ; 				cd 0,                                                                           (11) 

Case2: 

A 0,								A 2cd,				A 2d ; 				cd 0.                                                                              (12) 

Recall ′ , , , , , , ,  therefore when 0 and 0 the solution of Eq. (6) with using Case 1 (11) is 
given by 

u x, y, z, t = 	,                                                 (13)         

where  and  is a constant of integration. Also solution of Eq. (6) with using Case 2 (12) is given by 

u x, y, z, t =	 ,                                                                      (14) 

where  and  is a constant of integration. And when 0 and 0 the solution of Eq. (6) with using  Case 1 
(11) is given by   

 u x, y, z, t =	
	
,                                                       (15) 

where  and  is a constant of integration. also solution of Eq. (6) with using Case 2 (12) is  

given by 

  u x, y, z, t =	 .                                                                               (16) 

   where  and  is a constant of integration.                               

3.2 Application of simplest equation method to BS equation 

The BS equation is [2]  

u 2u u 4u u u 0.                                                                               (17) 

 
Here we obtain the exact solutions of this equation using simplest equation method. By the transformation 

,  Eq.(17) becomes:  

 

u ‐3 u' '‐νu'' 0.                                                                                             (18) 

 
Integrating Eq.(18) once with respect to  and setting the integration constant as zero yields 

u 3 u′ νu′ 0.                                                                                         (19) 

 
Setting ′ , Eq.(19)  becomes  

v 3v νv 0.                                                                                (20) 
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With balancing according procedure that be described, we get 2, therefore the solution of Eq.(20) can be expressed 

as follows: 

v ξ ∑ 	A G ξ .                                                                                      (21) 

where  satisfies the Riccati equation and , ,  are parameters to be determined. solutions of  Riccati equation 

are given in (4), (5). With substituting (21) into (20) and use of (3) and then equating all coefficients of the functions  

to zero, we obtain ,  and  :  

Case1: 

A ,				 	A 2cd,						A 2d ; 				cd 0,                                                                                 (22) 

 Case2: 
A 0,								A 2cd,				A 2d ; 				cd 0.                                                                                  (23) 

 Recall ′ , , , , , , ,  therefore when 0 and 0 the solution of Eq.(17) with using Case 1 (22) is 

given by 

u x, y, z, t                                                                           (24) 

                                                                            
where  and  is a constant of integration. also solution of Eq.(17) with using Case 2 (23) is given by 

u x, y, z, t    
‐ ‐

,                                                                                   (25)  

 
where  and  is a constant of integration. And when 0 and 0 the solution of Eq.(17) with using Case 1 

(22) is given by 

 

 u x, y, z, t =	
ν

ν
,                                                            (26) 

 
where  and  is a constant of integration. also solution of Eq.(17) with using Case 2 (23) is  

given by 

u x, y, z, t =	
ν

,                                                                                      (27) 

 
where  and  is a constant of integration. 
 
4 Conclusions 
 
In this paper, the simplest equation method has been successfully used to obtain exact solutions of the CBS and  BS 

equations. As the simplest equations, we have used the equation of Riccati. For this simplest equation, we have obtained 

a balance equation. By means of balance equations, we obtained exact solutions of the studied class nonlinear PDEs. 

We have also verified that these solutions we have found are indeed solutions to the original equations. 
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