The Generalized Order- k Jacobsthal Lengths of The Some Centro-Polyhedral Groups

Ö. Deveci and H. Öztürk
Department of Mathematics, Faculty of Science and Letters, Kafkas University, 36100 Kars, TURKEY
E- mail: odeveci36@hotmail.com, hasturk1404@hotmail.com

Abstract

In [7], the authors defined the generalized order $-k$ Jacobsthal orbit $J_{A}^{k}(G)$ of a finitely generated group $G=\langle A\rangle$. In this study, we obtain the generalized order- k Jacobsthal lengths of the centro-polyhedral groups $\langle 2,-n, 2\rangle,\langle-2, n, 2\rangle$ and $\langle 2, n,-2\rangle$.

2000 Mathematics Subject Classification: 11K31, 20F05, 20D60
Keywords: Jacobsthal sequence, Group, Length.

1 Introduction and Preliminaries

It is known that the Jacobsthal sequence $\left\{J_{n}\right\}$ is defined recursively by the equation

$$
\begin{equation*}
J_{n}=J_{n-1}+2 J_{n-2} \tag{1}
\end{equation*}
$$

for $n \geq 2$, where $J_{0}=0$ and $J_{1}=1$.
In [11], Koken and Bozkurt showed that the Jacobsthal numbers are also generated by a matrix

$$
F=\left[\begin{array}{ll}
1 & 2 \\
1 & 0
\end{array}\right], F^{n}=\left[\begin{array}{cc}
J_{n+1} & 2 J_{n} \\
J_{n} & 2 J_{n-1}
\end{array}\right]
$$

Kalman [9] mentioned that these sequences are special cases of a sequence which is defined recursively as a linear combination of the preceding k terms:

$$
a_{n+k}=c_{0} a_{n}+c_{1} a_{n+1}+\cdots+c_{k-1} a_{n+k-1},
$$

where $c_{0}, c_{1}, \cdots, c_{k-1}$ are real constants. In [9], Kalman derived a number of closed-form formulas for the generalized sequence by companion matrix method as follows:

$$
A_{k}=\left[\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 1 \\
c_{0} & c_{1} & c_{2} & \ldots & c_{k-2} & c_{k-1}
\end{array}\right] .
$$

Then by an inductive argument he obtained that

$$
A_{k}^{n}\left[\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{k-1}
\end{array}\right]=\left[\begin{array}{c}
a_{n} \\
a_{n+1} \\
\vdots \\
a_{n+k-1}
\end{array}\right] .
$$

In [15], Yilmaz and Bozkurt defined the k sequences of the generalized order- k Jacobsthal numbers as follows:
for $n>0$ and $1 \leq i \leq k$

$$
\begin{equation*}
J_{n}^{i}=J_{n-1}^{i}+2 J_{n-2}^{i}+\cdots+J_{n-k}^{i} \tag{2}
\end{equation*}
$$

with initial conditions

$$
J_{n}^{i}=\left\{\begin{array}{lc}
1 & \text { if } n=1-i, \\
0 & \text { otherwise }
\end{array} \quad \text { for } 1-k \leq n \leq 0\right.
$$

where J_{n}^{i} is the nth term of the i th sequence. If $k=2$ and $i=1$ the generalized order- k Jacobsthal sequence is reduced to the conventional Jacobsthal sequence.

In [15], Yilmaz and Bozkurt showed that

$$
\left[\begin{array}{c}
J_{n+1}^{i} \tag{3}\\
J_{n}^{i} \\
J_{n-1}^{i} \\
\vdots \\
J_{n-k+2}^{i}
\end{array}\right]=C \cdot\left[\begin{array}{c}
J_{n}^{i} \\
J_{n-1}^{i} \\
J_{n-2}^{i} \\
\vdots \\
J_{n-k+1}^{i}
\end{array}\right]
$$

where C is called the generalized order $-k$ Jacobsthal matrix and C is a k-square matrix as following:

$$
C=\left[\begin{array}{ccccc}
1 & 2 & \cdots & 1 & 1 \tag{4}\\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & & \vdots & \vdots \\
0 & 0 & \cdots & 1 & 0
\end{array}\right]
$$

Also, it was obtained that $B_{n}=C \cdot B_{n-1}$ where

$$
B_{n}=\left[\begin{array}{cccc}
J_{n}^{1} & J_{n}^{2} & \cdots & J_{n}^{k} \tag{5}\\
J_{n-1}^{1} & J_{n-1}^{2} & \cdots & J_{n-1}^{k} \\
\vdots & \vdots & & \vdots \\
J_{n-k+1}^{1} & J_{n-k+1}^{2} & \cdots & J_{n-k+1}^{k}
\end{array}\right]
$$

Lemma 1. (Yilmaz and Bozkurt [15]). Let C and B_{n} be as in (4) and (5), respectively. Then, for all integers $n \geq 0$

$$
B_{n}=C^{n} .
$$

Reducing the generalized order- k Jacobsthal sequence ($k \geq 2$) by a modulus m, we can get the repeating sequences, denoted by

$$
\left\{J_{n}^{k, m}\right\}=\left\{J_{1-k}^{k, m}, J_{2-k}^{k, m}, \cdots, J_{0}^{k, m}, J_{1}^{k, m}, \cdots, J_{i}^{k, m}, \cdots\right\}
$$

where $J_{i}^{k, m} \equiv J_{i}^{k}(\bmod m)$. It has the same recurrence relation as in (2) [8].
Theorem 1. (Deveci et al [7]). The sequence $\left\{J_{n}^{k, m}\right\}(k \geq 2)$ is periodic.
The notation $h J^{k, m}$ denotes the smallest period of $\left\{J_{n}^{k, m}\right\}(k \geq 2)$ [8].
Theorem 2. (Deveci et.al [7]). If p is a prime such that $p \neq 2$, then $h J^{k, p^{\alpha}}=\left|\langle C\rangle_{p^{\alpha}}\right|$.
Definition 1. (Deveci and Sağlam [8]). Let $h J_{\left(a_{1}, a_{2}, \cdots, a_{k}\right)}^{k, m}$ denote the smallest period of the integer-valued recurrence relation $u_{n}=u_{n-1}+2 u_{n-2}+\cdots+u_{n-k}, u_{1}=a_{1}, u_{2}=a_{2}, \cdots, u_{k}=a_{k}$ when each entry is reduced modulo m.

Theorem 3. (Deveci and Sağlam [8]). For $a_{1}, a_{2}, \cdots, a_{k}, x_{1}, x_{2}, \cdots, x_{k} \in \mathbb{Z}, p$ is a prime such that $p \neq 2$, $\operatorname{gcd}\left(a_{1}, a_{2}, \cdots, a_{k}, \mathrm{p}\right)=1$ and $\operatorname{gcd}\left(x_{1}, x_{2}, \cdots, x_{k}, p\right)=1$,

$$
h J_{\left(a_{1}, a_{2}, \cdots, a_{k}\right)}^{k, p}=h J_{\left(x_{1}, x_{2}, \cdots, x_{k}\right)}^{k, p} .
$$

A sequence of group elements is periodic if, after a certain point, it consists only of repetitions of a fixed subsequence. The number of elements in the repeating subsequence is called the period of the sequence. For example, the sequence $a, b, c, d, e, b, c, d, e, b, c, d, e, \cdots$ is periodic after the initial element a and has period 4 . A sequence of group elements is simply periodic with period k if the first k elements in the sequence form a repeating subsequence. For example, the sequence $a, b, c, d, e, f, a, b, c, d, e, f, a, b, c, d, e, f, \cdots$ is simply periodic with period 6 .

Definition 2. (Deveci et.al [7]). The generalized order-k Jacobsthal orbit $J_{A}^{k}(G)$ for a finitely generated group $G=\langle A\rangle$, where $A=\left\{a_{1}, a_{2}, \cdots, a_{k}\right\}$ as following: the generalized order- k Jacobsthal orbit $J_{A}^{k}(G)$ with respect to the generating set A to be the sequence $\left\{x_{i}\right\}$ of the elements of G such that

$$
x_{i}=\alpha_{i+1} \text { for } 0 \leq i \leq k-1, x_{i+k}=\left\{\begin{array}{cl}
\left(x_{i}\right)^{2}\left(x_{i+1}\right), & k=2 \\
\left(x_{i}\right) \cdots\left(x_{i+k-2}\right)^{2}\left(x_{i+k-1}\right), & k \geq 3
\end{array} \text { for } i \geq 0\right.
$$

The length of the period of the generalized order-k Jacobsthal orbit $J_{A}^{k}(G)$ is denoted by $L J_{A}^{k}(G)$ and is called the generalized order- k Jacobsthal length of G.

Many references may be given for some special linear recurrence sequences in groups and related issues; see for example, [1,3,5,10,12-14]. Campbell and Campbell calculated the Fibonacci lengths of certain centro-polyhedral groups [2]. Deveci et.al obtained the periods of k-nacci sequences in centro-polyhedral groups and related groups [6]. In this paper, we obtain the lengths $L J_{(x, y, z)}^{3}(\langle 2,-n, 2\rangle), L J_{(x, y, z)}^{3}(\langle-2, n, 2\rangle)$ and $J_{(x, y, z)}^{3}(\langle 2, n,-2\rangle)$.

2 Main Results and Proofs

Definition 3. The polyhedral group (l, m, n), for $l, m, n>1$ is defined by the presentation

$$
\left\langle x, y, z: x^{l}=y^{m}=z^{n}=x y z=1\right\rangle .
$$

The polyhedral group (l, m, n) is finite if, and only if, the number

$$
\mu=\operatorname{lm} n\left(\frac{1}{l}+\frac{1}{m}+\frac{1}{n}-1\right)=m n+n l+l m-l m n
$$

is positive. Its order is $2 l m n / \mu$.
For more information on these groups see [4, p.67-68].
Definition 4. The centro-polyhedral group $\langle l, m, n\rangle$, for $l, m, n \in \mathbb{Z}$ is defined by the presentation

$$
\left\langle x, y, z: x^{l}=y^{m}=z^{n}=x y z\right\rangle .
$$

For more information on these groups see [2,4].
Theorem 4. $L J_{(x, y, z)}^{3}(\langle 2,-n, 2\rangle)=7$.
Proof. These group have orders $4 n$. We first note that in the group defined by this presentation z^{2} is central and $|x|=$ $4,|z|=4$ and $|y|=2 n$ then $y^{-n}=y^{n}$. The orbit $J_{(x, y, z)}^{3}(\langle 2,-n, 2\rangle)$ becomes:

$$
x, y, z, z x, e, y x, x^{3}, x, y, z, \cdots,
$$

which has period 7. That is $J_{(x, y, z)}^{3}(\langle 2,-n, 2\rangle)=7$.

Theorem 5. $L J_{(x, y, z)}^{3}(\langle-2, n, 2\rangle)=L J_{(x, y, z)}^{3}(\langle 2, n,-2\rangle)=h J^{3,4(n-1)}$.
Proof. These groups have orders $4 n(n-1)$. Let us consider the group given by the presentation $\langle-2, n, 2\rangle$. We first note in the group defined this presentation both x^{-2} and z^{2} are central, $|x|=|z|=4(n-1),|y|=2 n(n-1)$ and $x^{-3}=y z$.

Let us consider the recurrence relations defined by the following:

$$
\begin{gathered}
u_{n+3}=u_{n}+2 u_{n+1}+u_{n+2} \text { for } n \geq 3 \text { where } u_{0}=1, u_{1}=0 \text { and } u_{2}=0 \\
v_{n+3}=v_{n}+2 v_{n+1}+v_{n+2} \text { for } n \geq 3 \text { where } v_{0}=0, v_{1}=1 \text { and } v_{2}=0 \\
w_{n+3}=w_{n}+2 w_{n+1}+w_{n+2} \text { for } n \geq 3 \text { where } w_{0}=0, w_{1}=0 \text { and } w_{2}=1
\end{gathered}
$$

Then a routine induction shows that the number of x 's, y 's and z 's in nth entry of the Jacobsthal sequence is given by u_{n} , v_{n} and w_{n}, respectively.

Here the start of the orbit $J_{(x, y, z)}^{3}(\langle-2, n, 2\rangle)$ is

$$
\begin{gathered}
x_{0}=x, x_{1}=y, x_{2}=z, x_{3}=x y^{2} z, x_{4}=y^{3} x z^{3}, x_{5}=x^{3} y^{7} z^{6} \\
x_{6}=x^{6} z^{13} y^{15}, x_{7}=x^{13} y^{32} z^{28}, x_{8}=x^{28} y^{69} z^{60}, \cdots
\end{gathered}
$$

We can see that the sequence will separate into some natural layers and each layer will be of such as

$$
x_{n}=\left\{\begin{array}{lc}
x^{u_{n}} Z^{w_{n}} y^{v_{n}}, & n \equiv 0 \bmod 6, \\
x^{u_{n}} y^{v_{n}} z^{w_{n}}, & n \equiv 1 \bmod 6 \\
x^{u_{n}} y^{v_{n}} z^{w_{n}}, & n \equiv 2 \bmod 6 \\
x^{u_{n}} y^{v_{n}} z^{w_{n}}, & n \equiv 3 \bmod 6 \\
y^{v_{n}} x^{u_{n}} z^{w_{n}}, & n \equiv 4 \bmod 6 \\
x^{u_{n}} y^{v_{n}} z^{w_{n}}, & n \equiv 0 \bmod 6
\end{array}\right.
$$

Now the proof is finished if we note that the sequence will repeat when $x_{h J^{3,4(n-1)}}=x, x_{h J^{3,4(n-1)+1}}=y$ and $x_{h J^{3,4(n-1)+2}}=z$. Since the sequence can be said to form layers lenth seven then the period is $7 . \mu,(\mu \in \mathbb{N})$ that is $P \equiv$ $0 \bmod 7, P+1 \equiv 1 \bmod 7$ and $P+2 \equiv 2 \bmod 7$. Where we denote $L J_{(x, y, z)}^{3}(\langle-2, n, 2\rangle)$ by P. Examining this statement in more detail gives

$$
\begin{gathered}
x_{P}=x^{u_{P}} Z^{w_{P}} y^{v_{P}}, \\
x_{P+1}=x^{u_{P+1}} y^{v_{P+1}} Z^{w_{P+1}}, \\
x_{P+2}=x^{u_{P+2}} y^{v_{P+2}} Z^{w_{P+2}}
\end{gathered}
$$

Using $P \equiv 0 \bmod 7, P+1 \equiv 1 \bmod 7$ and $P+2 \equiv 2 \bmod 7$ we obtain

$$
\begin{aligned}
& u_{P} \equiv u_{0}=1, u_{P+1} \equiv u_{1}=0,, u_{P+2} \equiv u_{2}=0 \\
& v_{P} \equiv v_{0}=0, v_{P+1} \equiv v_{1}=1, v_{P+2} \equiv v_{2}=0
\end{aligned}
$$

and

$$
w_{P} \equiv w_{0}=0, w_{P+1} \equiv w_{1}=0, w_{P+2} \equiv w_{2}=1
$$

So, from the above equalities we have

$$
x_{P}=x, x_{P+1}=y, x_{P+2}=z
$$

Then from Theorem 3 it is clear that the smallest non-trivial integer satisfying the above conditions occurs when the period is $h J^{2,2^{n-1}}$. That is $L J_{(x, y, z)}^{3}(\langle-2, n, 2\rangle)=h J^{3,4(n-1)}$.

The proof for the orbit $J_{(x, y, z)}^{3}(\langle 2, n,-2\rangle)$ is similar to the above and is omitted.

Acknowledgment

This Project was supported by the Commission for the Scientific Research Projects of Kafkas University. The Project number. 2011-FEF-26.

References

[1]. Aydın H., Smith G.C. Finite p-quotients of some cyclically presented groups. J. London Math. Soc., 49 (1994) p. 83-92.
[2]. Campbell C. M., Campbell P. P. The Fibonacci length of certain centro-polyhedral groups. J. Appl. Math. Comput., 19 (2005) p. 231-240.
[3]. Campbell C. M., Doostie H., Robertson E. F. Fibonacci length of generating pairs in groups in Applications of Fibonacci Numbers. Vol. 3 Eds. G. E. Bergum et al. Kluwer Academic Publishers, (1990) p. 27-35.
[4]. Coxeter H.S.M., Moser W.O.J. Generators and relations for discrete groups 3rd edition- Springer-Verlag, Berlin 1972.
[5]. Deveci O. The Pell-Padovan sequences and the Jacobsthal-Padovan sequences in finite groups. Util. Math., to appear.
[6]. Deveci O., Karaduman E., Campbell C.M. The periods of k-nacci sequences in centro polyhedral groups and related groups. Ars Combinatoria, 97(A) (2010) p.193-210.
[7]. Deveci O., Karaduman E., Saglam G. The Jacobsthal sequences in finite groups, is submitted.
[8]. Deveci O., Saglam G. The Jacobsthal Sequences in The Groups $Q_{2^{n}}, Q_{2^{n}} \times{ }_{\varphi} \mathbb{Z}_{2 m}$ and $Q_{2^{n}} \times \mathbb{Z}_{2 m}$. International Conference on Applied Analysis and mathematical Modelling, 2-5 June, 2013, İstanbul, Turkey.
[9]. Kalman D., Generalized Fibonacci numbers by matrix methods, The Fibonacci Quarterly. 20(1) (1982) p. 73-76.
[10]. Knox S.W. Fibonacci sequences in finite groups, The Fibonacci Quarterly, 30.2 (1992) p. 116-120.
[11]. Koken F., Bozkurt D. On the Jacobsthal numbers by matrix methods, Int. J. Contemp. Math. Sciences, 3(13) (2008) p. 605-614.
[12]. Lü K., Wang J. k-step Fibonacci sequence modulo m. Util. Math., 71 (2007) p. 169-178.
[13]. Tascı D. Pell Padovan numbers and polynomials. IV. Congress of The Türkic World Mathematical Society, Bakü, Azerbaycan, 2011.
[14]. Wall D.D. Fibonacci series modulo m. Amer. Math. Monthly, 67 (1960) p.525-532.
[15]. Yilmaz F., Bozkurt D. The generalized order-k Jacobsthal numbers. Int. J. Contemp. Math. Sciences, 4(34) (2009) p.1685-1694.

