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Abstract: In this paper we introduce the modulus function of 𝜒𝜋. We establish some inclusion relations, topological results and we 

characterize the duals of the 𝜒𝑓
𝜋 sequence spaces. 

1.  Introduction  

A complex sequence, whose 𝑘th term is 𝑥𝑘 is denoted by {𝑥𝑘} or simply 𝑥. Let 𝑤 be the set of all sequences 𝑥 = (𝑥𝑘) 

and 𝜑 be the set of all finite sequences. Let 𝑙∞, 𝑐, 𝑐0 be the sequence spaces of bounded, convergent and null sequences 

𝑥 = (𝑥𝑘) respectively. In respect of 𝑙∞, 𝑐, 𝑐0 we have ‖𝑥‖ = sup
𝑘

|𝑥𝑘|, where 𝑥 = (𝑥𝑘) ∈ 𝑐0 ⊂ 𝑐 ⊂ 𝑙∞. A sequence 𝑥 =

{𝑥𝑘} is said to be analytic if sup
𝑘

|𝑥𝑘|
1

𝑘 < ∞. The vector space of all analytic sequences will be denoted by Λ. A sequence 

𝑥 is called entire sequence if lim
𝑘→∞

|𝑥𝑘|
1

𝑘. The vector space of all entire sequences will be denoted by Γ. 𝜒 was discussed 

in Kamthan [5]. Matrix transformation involving 𝜒 were characterized by Sridhar [14] and Sirajiudeen [13]. Let χ
f
π be 

the set of all those sequences 𝑥 = (𝑥𝑘) such that (𝑘! |
𝑥𝑘

𝜋𝑘
|)

1

𝑘
→ 0 as 𝑘 → ∞. Then χ

f
π is a metric space with the metric 

𝑑(𝑥, 𝑦) = 𝑠𝑢𝑝
𝑘

{(𝑘! |
𝑥𝑘 − 𝑦𝑘

𝜋𝑘

|)

1
𝑘

; 𝑘 = 1,2,3, … } 

Orlicz [11] used the idea of Orlicz function to construct the space (𝐿𝑀). Lindenstrauss and Tzafriri [7] investigated 

Orlicz sequence spaces in more detail, and they proved that every Orlicz sequence space 𝑙𝑀 contains a subspace 

isomorphic to 𝑙𝑝(1 ≤ 𝑝 < ∞). Subsequently the different classes of sequence spaces were defined by Parashar and 

Choudhary [4], Mursaleen et al. [9], Bektas and Altin [1], Tripathy et al. [15], Rao and Subramanian [3] and many 

others. 

The Orlicz sequence spaces is the special case of Orlicz space, studied in Ref [6]. 

Recall [6, 11] an Orlicz function is a function 𝑀: [0,∞] → [0,∞] which is continuous, non-decreasing and convex with 

𝑀(0) = 0, 𝑀(𝑥) > 0, for 𝑥 > 0 and 𝑀(𝑥) → ∞ as 𝑥 → ∞. If the convexity of Orlicz function 𝑀 is replaced by 

𝑀(𝑥 + 𝑦) ≤ 𝑀(𝑥) + 𝑀(𝑦) then this function is called modulus function, introduced by Nakano [10] and further 

discussed by Ruckle [12] and Maddox [8] and many others. 

An Orlicz function 𝑀 is said to satisfy ∆2-condition for all values of 𝑢, if there exists a constant 𝑘 > 0, such that 

𝑀(2𝑢) ≤ 𝐾𝑀(𝑢) (𝑢 ≥ 0). The ∆2-condition is equivalent to 𝑀(𝑙𝑢) ≤ 𝑘𝑙𝑀(𝑢), for all values of 𝑢 and for 𝑙 > 1 

Lindenstrauss and Tzafriri [7] used the idea of Orlicz function to construct Orlicz sequence space 
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𝑙𝑀 = {𝑥 ∈ 𝑤: ∑ 𝑀 (|
𝑥𝑘

𝜋𝑘

|)

∞

𝑘=1

< ∞ for some 𝜋𝑘 > 0} 
(1) 

The space 𝑙𝑀 with the norm 

‖𝑥‖ = inf {𝜋𝑘 > 0: ∑ 𝑀 (|
𝑥𝑘

𝜋𝑘

|)

∞

𝑘=1

≤ 1}  
(2) 

becomes a Banach space which is called an Orlicz sequence space. For𝑀(𝑡) = 𝑡𝑝, 1 ≤ 𝑝 < ∞, the space 𝑙𝑀 coincide 

with the classical sequence space 𝑙𝑝. Given a sequence 𝑥 = {𝑥𝑘} its 𝑛th section is the sequence 𝑥(𝑛) =

{𝑥1, 𝑥1, … , 𝑥𝑛, 0,0, … }, 𝛿𝑛 = (0,0, … ,
𝜋𝑘

𝑘!
, 0,0, … ) , 𝜋𝑘 in the 𝑛th place and zero's elsewhere and 𝑆𝑛 =

(0,0, … ,
𝜋𝑘

𝑘!
,

−𝜋𝑘

𝑘!
, 0,0, … ) ,

𝜋𝑘

𝑘!
 in the 𝑛th place, 

−𝜋𝑘

𝑘!
 in the (𝑛 + 1)st place and zero's elsewhere. An FK-space (Frechet 

Coordinate Space) is a Frechet Space which is made up of numerical sequences and has the property that the coordinate 

functionals 𝑃𝑘(𝑥) = 𝑥𝑘(𝑘 = 1,2,3, … ) are continuous. We recall the following definitions (see [16]). 

An FK-space is a locally convex Frechet space which is made up of sequences and has the property that coordinate 

projections are continuous. An metric space (𝑥, 𝑑) is said to have AK (or sectional convergence) if and only if 

𝑑(𝑥(𝑛), 𝑥) → 0 as n → ∞ (see [16]). The space is said to have AD (or) be an AD space if 𝜑 is dense in 𝑋. We note that 

AK implies AD by [2]. 

If X is a sequence space, we define 

1. 𝑋′ = the continuous dual of 𝑋; 

2. 𝑋𝛼 = {𝑎 = (𝑎𝑘): ∑ |𝑎𝑘𝑥𝑘|∞
𝑘=1 < ∞, for each 𝑥 ∈ 𝑋}; 

3. 𝑋𝛽 = {𝑎 = (𝑎𝑘): ∑ 𝑎𝑘𝑥𝑘
∞
𝑘=1 is convergent for each 𝑥 ∈ 𝑋}; 

4. 𝑋𝛾 = {𝑎 = (𝑎𝑘): 𝑠𝑢𝑝
𝑛

|∑ 𝑎𝑘𝑥𝑘
𝑛
𝑘=1 | < ∞, for each 𝑥 ∈ 𝑋} ; 

5. Let be an FK-space ⊃ 𝜑. Then 𝑋𝑓 = {𝑓(𝛿(𝑛)): 𝑓 ∈ 𝑋′}. 

𝑋𝛼 , 𝑋𝛽 , 𝑋𝛾 are called the 𝛼-(or Köthe Töeplitz) dual of 𝑋, 𝛽 -( or generalized Köthe Tö eplitz) dual of 𝑋, 𝛾-dual of 𝑋. 

Note that 𝑋𝛼 ⊂ 𝑋𝛽 ⊂ 𝑋𝛾. If 𝑋 ⊂ 𝑌 then 𝑌𝜇 ⊂ 𝑋𝜇, for 𝜇 = 𝛼, 𝛽 or 𝛾. 

Lemma 1.1. (See[16, Theorem 7.27]). Let 𝑋 be an FK space ⊃ 𝜑. Then (𝑖) 𝑋𝛾 ⊂ 𝑋𝑓 . (𝑖𝑖) If X has AK, 𝑋𝛽 = 𝑋𝐹. (iii) 

If 𝑋 has A.D., 𝑋𝛽 = 𝑋𝛾.  

2. Definition and Preliminaries 

Let 𝑤 denote the set of all complex sequences 𝑥 =  (𝑥𝑘)𝑘=1
∞  and 𝑓: [0,∞) → [0,∞) be a modulus function. 

Let 

𝜒𝑓
𝜋 = {𝑥 ∈ 𝑤: 𝑙𝑖𝑚

𝑘→∞
(𝑓 (𝑘! |

𝑥𝑘

𝜋𝑘

|)

1
𝑘

) = 0 for some 𝜋𝑘 > 0} 

Γ𝑓
𝜋 = {𝑥 ∈ 𝑤: 𝑙𝑖𝑚

𝑘→∞
(𝑓 (𝑘! |

𝑥𝑘

𝜋𝑘

|)

1
𝑘

) = 0 for some 𝜋𝑘 > 0} 

and 

Λ𝑓
𝜋 = {𝑥 ∈ 𝑤: 𝑠𝑢𝑝

𝑘
(𝑓 (𝑘! |

𝑥𝑘

𝜋𝑘

|)

1
𝑘

) < ∞ for some 𝜋𝑘 > 0} 

The space 𝜒𝑓
𝜋 is a metric space with the metric 

𝑑(𝑥, 𝑦) = inf {𝜋𝑘 > 0: 𝑠𝑢𝑝
𝑘

(𝑓 (𝑘! |
𝑥𝑘 − 𝑦𝑘

𝜋𝑘

|)

1
𝑘

) ≤ 1}  (3) 

The space Γ𝑓 and Λ𝑓 is a metric space with the metric 
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𝑑(𝑥, 𝑦) = inf {𝜋𝑘 > 0: 𝑠𝑢𝑝
𝑘

(𝑓 (|
𝑥𝑘 − 𝑦𝑘

𝜋𝑘

|)

1
𝑘

) ≤ 1}  (4) 

3. Main Result 

Proposition 3.1. 

𝜒𝑓
𝜋 ⊂ Γ𝑓

𝜋 with the hypothesis that  𝑓 (|
𝑥𝑘

𝜋𝑘
|

1

𝑘
) ≤ 𝑓 (𝑘! |

𝑥𝑘

𝜋𝑘
|)

1

𝑘
. 

Proof. Let 𝑥 ∈ 𝜒𝑓
𝜋. Then we have the following implications 

𝑓 ((𝑘! |
𝑥𝑘

𝜋𝑘

|)

1
𝑘

) → 0 as 𝑘 → ∞. (5) 

But 𝑓 (|
𝑥𝑘

𝜋𝑘
|

1

𝑘
) ≤  𝑓 ((𝑘! |

𝑥𝑘

𝜋𝑘
|)

1

𝑘
); by our assumption, implies that 

⟹  𝑓 (|
𝑥𝑘

𝜋𝑘

|

1
𝑘

) → 0 as 𝑘 → ∞ by (5) 

⟹ 𝑥 ∈ Γ𝑓
𝜋                                                 

⟹ 𝜒𝑓
𝜋 ⊂ Γ𝑓

𝜋 .                                             

This completes the proof. 

Proposition 3.2. 

𝜒𝑓
𝜋 has AK where 𝑓 is a modulus function. 

Proof. Let 𝑥 = {𝑥𝑘} ∈ 𝜒𝑓
𝜋, then {𝑓 (𝑘! |

𝑥𝑘

𝜋𝑘
|)

1

𝑘
} ∈ 𝜒𝑓

𝜋 and hence 

𝑠𝑢𝑝
𝑘≥𝑛+1

𝑓 ((𝑘! |
𝑥𝑘

𝜋𝑘

|)

1
𝑘

) → 0 as 𝑛 → ∞  (6) 

𝑑(𝑥, 𝑥[𝑛]) = 𝑠𝑢𝑝
𝑘≥𝑛+1

𝑓 ((𝑘! |
𝑥𝑘

𝜋𝑘

|)

1
𝑘

) → 0 as 𝑛 → ∞ by using (6). 

⟹ 𝑥[𝑛] → 𝑥 as 𝑛 → ∞, 

implying that  𝜒𝑓
𝜋 has AK. This completes the proof. 

Proposition 3.3. 

𝜒𝑓
𝜋 is solid. 

Proof. Let |𝑥𝑘| ≤ |𝑦𝑘| and let 𝑦 = (𝑦𝑘) ∈ 𝜒𝑓
𝜋. 𝑓 ((𝑘! |

𝑥𝑘

𝜋𝑘
|)

1

𝑘
) ≤ 𝑓 ((𝑘! |

𝑥𝑘

𝜋𝑘
|)

1

𝑘
), because 𝑓 is non-decreasing. But 

𝑓 ((𝑘! |
𝑥𝑘

𝜋𝑘
|)

1

𝑘
) ∈ 𝜒, because 𝑦 ∈ 𝜒𝑓

𝜋. That is, 𝑓 ((𝑘! |
𝑥𝑘

𝜋𝑘
|)

1

𝑘
) → 0 as 𝑘 → ∞ and 𝑓 ((𝑘! |

𝑥𝑘

𝜋𝑘
|)

1

𝑘
) → 0 as 𝑘 → ∞. 

Therefore, 𝑥 = {𝑥𝑘} ∈ 𝜒𝑓
𝜋. This completes the proof. 

Proposition 3.4. 

Let 𝑓 be a modulus function which satisfies ∆2-condition. Then 𝜒 ⊂ 𝜒𝑓
𝜋. 

Proof. Let 

𝑥 ∈ 𝜒 
(7) 

Then ((𝑘! |
𝑥𝑘

𝜋𝑘
|)

1

𝑘
) ≤ 𝜖 sufficiently large 𝑘 and every 𝜖 > 0. By taking 𝜋𝑘 ≥

1

2
. 𝑓 ((𝑘! |

𝑥𝑘

𝜋𝑘
|)

1

𝑘
) ≤ 𝑓 (

𝜖

𝜋𝑘
) ≤ 𝑓(2𝜖) 

(because 𝑓 is non-decreasing) 
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𝑓 ((𝑘! |
𝑥𝑘

𝜋𝑘

|)

1
𝑘

) ≤ 𝑘𝑓(𝜖)  (8) 

by ∆2-condition, for some 𝑘 ≥ 0 ≤ 𝜖. 𝑓 ((𝑘! |
𝑥𝑘

𝜋𝑘
|)

1

𝑘
) → 0 as 𝑘 → ∞ (by defining 𝑓(𝜖) <

𝜖

𝑘
). Hence 𝑥 ∈ 𝜒𝑓

𝜋. From (7) 

and since 

𝑥 ∈ 𝜒𝑓
𝜋,  

(9) 

we get 𝜒 ⊂ 𝜒𝑓
𝜋. This completes the proof. 

Proposition 3.5. 

If 𝑓 is a modulus function, then 𝜒𝑓
𝜋 is linear space over the set of complex number 𝐶. 

Proof. Let 𝑥, 𝑦 ∈ 𝜒𝑓
𝜋 and 𝛼, 𝛽 ∈ 𝐶. In order to prove the result we need to find some 𝜋𝑘 such that 

𝑓 ((𝑘! |
𝛼𝑥𝑘 + 𝛽𝑦𝑘

𝜋𝑘

|))

1
𝑘

→ 0 as 𝑘 → ∞  (10) 

Since, 𝑥, 𝑦 ∈ 𝜒𝑓
𝜋 such that 

𝑓 ((𝑘! |
𝑥𝑘

𝜋𝑘

|)

1
𝑘

) → 0 as 𝑘 → ∞  (11) 

Since 𝑓 is a non-decreasing modulus function, we have 

𝑓 ((𝑘! |
𝛼𝑥𝑘 + 𝛽𝑦𝑘

𝜋𝑘

|)

1
𝑘

) ≤ 𝑓 ((𝑘! |
𝛼𝑥𝑘

𝜋𝑘

|)

1
𝑘

+ (𝑘! |
𝛽𝑦𝑘

𝜋𝑘

|)

1
𝑘

) ≤ 𝑓 (|𝛼| (𝑘! |
𝑥𝑘

𝜋𝑘

|)

1
𝑘

+ |𝛽| (𝑘! |
𝑦𝑘

𝜋𝑘

|)

1
𝑘

) 

Take 𝜋𝑘 such that 
1

𝜋𝑘
= min {

1

|𝛼|

1

𝜋1
,

1

|𝛽|

1

𝜋2
}. Then 

𝑓 ((𝑘! |
𝛼𝑥𝑘 + 𝛽𝑦𝑘

𝜋𝑘

|)

1
𝑘

) ≤ 𝑓 ((𝑘! |
𝑥𝑘

𝜋1

|)

1
𝑘

+ (𝑘! |
𝑦𝑘

𝜋2

|)

1
𝑘

) → 0 by (11). 

Hence 𝑓 (𝑘! |
𝛼𝑥𝑘+𝛽𝑦𝑘

𝜋𝑘
|)

1

𝑘
→ 0 as 𝑘 → ∞. So (𝛼𝑥 + 𝛽𝑦) ∈ 𝜒𝑓

𝜋. Therefore, 𝜒𝑓
𝜋 is linear. This completes the proof. 

Definition 3.6. 

Let 𝑃 = (𝑃𝑘) be any sequence of positive real numbers. Then we define 𝜒𝑓
𝜋(𝑃) = {𝑥 = (𝑥𝑘): 𝑓 (𝑘! |

𝑥𝑘

𝜋𝑘
|)

1

𝑘
→ 0 as 𝑘 →

∞ }. Suppose that 𝑃𝑘 is a constant for all 𝑘, the 𝜒𝑓
𝜋(𝑃) = 𝜒𝑓

𝜋. 

Proposition 3.7. 

Let 0 ≤ 𝑝𝑘 ≤ 𝑞𝑘 and let {
𝑞𝑘

𝑝𝑘
} be bounded. Then 𝜒𝑓

𝜋(𝑞) = 𝜒𝑓
𝜋𝑡(𝑝). 

Proof. Let 

𝑥 ∈ 𝜒𝑓
𝜋(𝑞), 

(12) 

(𝑓 (𝑘! |
𝑥𝑘

𝜋𝑘

|)

1
𝑘

)

𝑞𝑘

→ 0 as 𝑘 → ∞ (13) 

Let 𝑡𝑘 = (𝑓 (𝑘! |
𝑥𝑘

𝜋𝑘
|)

1

𝑘
)

𝑞𝑘

 and 𝜆𝑘 =
𝑝𝑘

𝑞𝑘
. 

Since 𝑝𝑘 ≤ 𝑞𝑘, we have 0 ≤ 𝜆𝑘 ≤ 1. 

Take 0 < 𝜆 < 𝜆𝑘. Define 
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𝑢𝑘 = {
𝑡𝑘, (𝑡𝑘 ≥ 1)

0, (𝑡𝑘 < 1)
 and 𝑣𝑘 = {

0, (𝑡𝑘 ≥ 1)

𝑡𝑘, (𝑡𝑘 < 1)
  

(14) 

𝑡𝑘 = 𝑢𝑘 + 𝑣𝑘; 𝑡𝑘
𝜆𝑘 = 𝑢𝑘

𝜆𝑘 + 𝑣𝑘
𝜆𝑘. Now it follows that 𝑢𝑘

𝜆𝑘 ≤ 𝑢𝑘 ≤ 𝑡𝑘 and 𝑣𝑘
𝜆𝑘 ≤ 𝑣𝑘

𝜆. Since 𝑡𝑘
𝜆𝑘 = 𝑢𝑘

𝜆𝑘 + 𝑣𝑘
𝜆𝑘, 

then 𝑡𝑘
𝜆𝑘 ≤ 𝑡𝑘 + 𝑣𝑘

𝜆. 

(𝑓 ((𝑘! |
𝑥𝑘

𝜋𝑘

|)

1
𝑘

)

𝑞𝑘

)

𝜆𝑘

≤ (𝑓 (𝑘! |
𝑥𝑘

𝜋𝑘

|)

1
𝑘

)

𝑞𝑘

 

⟹ (𝑓 ((𝑘! |
𝑥𝑘

𝜋𝑘

|)

1
𝑘

)

𝑞𝑘

)

𝑝𝑘 𝑞𝑘⁄

≤ (𝑓 (𝑘! |
𝑥𝑘

𝜋𝑘

|)

1
𝑘

)

𝑞𝑘

 

⟹ (𝑓 (𝑘! |
𝑥𝑘

𝜋𝑘

|)

1
𝑘

)

𝑝𝑘

≤ (𝑓 (𝑘! |
𝑥𝑘

𝜋𝑘

|)

1
𝑘

)

𝑞𝑘

 

But (𝑓 (𝑘! |
𝑥𝑘

𝜋𝑘
|)

1

𝑘
)

𝑞𝑘

→ 0 as 𝑘 → ∞ by (13)  

Therefore (𝑓 (𝑘! |
𝑥𝑘

𝜋𝑘
|)

1

𝑘
)

𝑝𝑘

→ 0 as 𝑘 → ∞. Hence  

𝑥 ∈ 𝜒𝑓
𝜋(𝑝) 

(15) 

From (12) and (15) we get 𝜒𝑓
𝜋(𝑞) ⊂ 𝜒𝑓

𝜋(𝑝). 

Thus completes the proof. 

Proposition 3.8. 

(a) Let 0 ≤ 𝑖𝑛𝑓
𝑝𝑘

≤ 𝑝𝑘 ≤ 1. Then 𝜒𝑓
𝜋(𝑝) ⊂ 𝜒𝑓

𝜋. 

(b) Let 1 ≤ 𝑝𝑘 ≤ 𝑠𝑢𝑝
𝑝𝑘

< ∞. Then 𝜒𝑓
𝜋 ⊂ 𝜒𝑓

𝜋(𝑝). 

Proof. 

(a) Let 𝑥 ∈ 𝜒𝑓
𝜋(𝑝) 

(𝑓 (𝑘! |
𝑥𝑘

𝜋𝑘

|)

1
𝑘

)

𝑝𝑘

→ 0 as 𝑘 → ∞  (16) 

Since 0 ≤ 𝑖𝑛𝑓
𝑝𝑘

≤ 𝑝𝑘 ≤ 1. 

(𝑓 (𝑘! |
𝑥𝑘

𝜋𝑘

|)

1
𝑘

) ≤ (𝑓 (𝑘! |
𝑥𝑘

𝜋𝑘

|)

1
𝑘

)

𝑝𝑘

 (17) 

From (16) and (17) it follows that 𝑥 ∈ 𝜒𝑓
𝜋. Thus 𝜒𝑓

𝜋(𝑝) ⊂ 𝜒𝑓
𝜋. We have thus proven (a). 

(b) Let 𝑝𝑘 ≥ 1 for each 𝑘 and 𝑠𝑢𝑝
𝑝𝑘

< ∞. 

Let 𝑥 ∈ 𝜒𝑓
𝜋 

(𝑓 (𝑘! |
𝑥𝑘

𝜋𝑘

|)

1
𝑘

) → 0 as 𝑘 → ∞ (18) 

Since 1 ≤ 𝑝𝑘 ≤ 𝑠𝑢𝑝
𝑝𝑘

< ∞ we have 

(𝑓 (𝑘! |
𝑥𝑘

𝜋𝑘

|)

1
𝑘

)

𝑝𝑘

≤ (𝑓 (𝑘! |
𝑥𝑘

𝜋𝑘

|)

1
𝑘

) (19) 
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(𝑓 (𝑘! |
𝑥𝑘

𝜋𝑘
|)

1

𝑘
)

𝑝𝑘

→ 0 as 𝑘 → ∞  by using (18). Therefore 𝑥 ∈ 𝜒𝑓
𝜋(𝑝). This completes the proof. 

Proposition 3.9. 

Let 0 ≤ 𝑝𝑘 ≤ 𝑞𝑘 < ∞ for each 𝑘. Then 𝜒𝑓
𝜋(𝑝) ⊆ 𝜒𝑓

𝜋(𝑞). 

Proof. Let 𝑥 ∈ 𝜒𝑓
𝜋(𝑝). 

(𝑓 (𝑘! |
𝑥𝑘

𝜋𝑘

|)

1
𝑘

)

𝑝𝑘

→ 0 as 𝑘 → ∞  (20) 

This implies that (𝑓 (𝑘! |
𝑥𝑘

𝜋𝑘
|)

1

𝑘
)

𝑝𝑘

≤ 1 for sufficiently large 𝑘. 

Since 𝑓 is non-decreasing, we get 

(𝑓 (𝑘! |
𝑥𝑘

𝜋𝑘

|)

1
𝑘

)

𝑞𝑘

≤ (𝑓 (𝑘! |
𝑥𝑘

𝜋𝑘

|)

1
𝑘

)

𝑝𝑘

 (21) 

⟹ (𝑓 (𝑘! |
𝑥𝑘

𝜋𝑘

|)

1
𝑘

)

𝑞𝑘

→ 0 as 𝑘 → ∞ (by using (20)) 

𝑥 ∈ 𝜒𝑓
𝜋(𝑞) 

Hence, 𝜒𝑓
𝜋(𝑝) ⊆ 𝜒𝑓

𝜋𝑡(𝑞). 

This completes the proof. 

Proposition 3.10. 

𝜒𝑓
𝜋(𝑝) is a 𝑟-convex for all 𝑟 where 0 ≤ 𝑟 ≤ 𝑖𝑛𝑓

𝑝𝑘

. Moreover if 𝑝𝑘 = 𝑝 ≤ 1 ∀𝑘, then they are 𝑝-convex. 

Proof. We shall prove the proposition for 𝜒𝑓
𝜋(𝑝). Let 𝑥 ∈ 𝜒𝑓

𝜋(𝑝) and 𝑟 ∈ (0, lim
𝑛→∞

𝑝𝑛). Then, there exists 𝑘0 such that 

𝑟 ≤ 𝑝𝑘, ∀𝑘 > 𝑘0. Now, define 

𝑔∗(𝑥) = inf {𝜋𝑘: 𝑓 ((𝑘! |
𝑥𝑘 − 𝑦𝑘

𝜋𝑘

|)

1
𝑘

)

𝑟

+ 𝑓 ((𝑘! |
𝑥𝑘 − 𝑦𝑘

𝜋𝑘

|)

1
𝑘

)

𝑟

},  
(22) 

since, 𝑟 ≤ 𝑝𝑘 ≤ 1, ∀𝑘 > 𝑘0. 𝑔∗ is subadditive. Further, for 0 ≤ |𝜆| ≤ 1; |𝜆|𝑝𝑘 ≤ |𝜆|𝑟 , ∀𝑘 > 𝑘0. 

𝑔∗(𝜆𝑥) ≤ |𝜆|𝑟𝑔∗(𝑥) 
(23) 

Now, for 0 < 𝛿 < 1, 

𝑈 = {𝑥: 𝑔∗(𝑥) ≤ 𝛿}, which is an absolutely 𝑟 − convex set 
(24) 

for 

|𝜆|𝑟 + |𝜇|𝑟 ≤ 1; 𝑥, 𝑦 ∈ 𝑈 
(25) 

Now, 

𝑔∗(𝜆𝑥 + 𝜇𝑦) ≤ 𝑔∗(𝜆𝑥) + 𝑔∗(𝜇𝑦) ≤ |𝜆|𝑟𝑔∗(𝑥) + |𝜇|𝑟𝑔∗(𝑦) ≤ |𝜆|𝑟𝛿 + |𝜇|𝑟𝛿 using (23) and (24)

≤ (|𝜆|𝑟 + |𝜇|𝑟)𝛿 ≤ 1. 𝛿, by using (25) ≤ 𝛿 

If 𝑝𝑘 = 𝑝 ≤ 1 ∀𝑘 then for 0 < 𝑟 < 1, 𝑈 = {𝑥: 𝑔∗(𝑥) ≤ 𝛿} is an absolutely 𝑝-convex set. This can be obtained by a 

similar analysis and therefore we omit the details. This completes the proof. 

Proposition 3.11. 

(𝜒𝑓
𝜋)

𝛽
= Λ𝑓

𝜋 

Proof.  

Step 1: 𝜒𝑓
𝜋 ⊂ Γ𝑓

𝜋 by Proposition 3.1; 

⟹ (Γ𝑓
𝜋)

𝛽
⊂ (𝜒𝑓

𝜋)
𝛽

. But (Γ𝑓
𝜋)

𝛽
= Λ𝑓

𝜋 see (3). 
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Λ𝑓
𝜋 ⊂ (𝜒𝑓

𝜋)
𝛽

 (26) 

Step 2: Let 𝑦 ∈ (𝜒𝑓)
𝛽

 we have 𝑓(𝑥) = ∑ 𝑥𝑘𝑦𝑘
∞
𝑘=1  with 𝑥 ∈ 𝜒𝑓

𝜋. We recall that 𝑆(𝑘) has 
1

𝑘!
 in the 𝑘th place and zero's 

elsewhere, with 𝑥 = 𝑆(𝑘), (𝑓 (𝑘! |
𝑥𝑘

𝜋𝑘
|)

1

𝑘
) = {0,0, … , 𝑓 (

(1)
1
𝑘

𝜋𝑘
) , 0, … } which converges to zero. Hence, 𝑆(𝑘) ∈ 𝜒𝑓

𝜋. Hence, 

𝑑(𝑆(𝑘), 0) = 1. But |𝑦𝑘| ≤ ‖𝑓‖𝑑(𝑆(𝑘), 0) < ∞ ∀𝑘. Thus (𝑦𝑘) is a bounded rate sequence and hence a rate analytic 

sequence. 

In other words 𝑦 ∈ Λ𝑓
𝜋. 

(𝜒𝑓
𝜋)

𝛽
⊂ Λ𝑓

𝜋 (27) 

Step 3: From (25) and (26) we obtain (𝜒𝑓
𝜋)

𝛽
= Λ𝑓

𝜋 . This completes the proof. 

Proposition 3.12. 

(𝜒𝑓
𝜋)

𝜇
= Λ for 𝜇 = 𝛼, 𝛽, 𝛾, 𝑓. 

Proof.  

Step 1: 𝜒𝑓 has AK by Proposition 3.2. Hence, by Lemma 1.1 (ii). 

We get (𝜒𝑓
𝜋)

𝛽
= (𝜒𝑓

𝜋)
𝑓
. But (𝜒𝑓

𝜋)
𝛽

= Λ𝑓
𝜋. 

Hence 

(𝜒𝑓
𝜋)

𝑓
= Λ𝑓

𝜋   (28) 

Step 2: Since AK⟹AD. Hence by Lemma 1.1.(iii). 

We get (𝜒𝑓
𝜋)

𝛽
= (𝜒𝑓

𝜋)
𝛾
. Therefore 

(𝜒𝑓
𝜋)

𝛾
= Λ𝑓

𝜋  (29) 

Step 3: 𝜒𝑓
𝜋 is normal by Proposition 3.3. Hence by Proposition ?? and (12), we get  

(𝜒𝑓
𝜋)

𝛼
= (𝜒𝑓

𝜋)
𝛾

= Λ𝑓
𝜋  (30) (30) 

From (28) and (30) we have (𝜒𝑓
𝜋)

𝛼
= (𝜒𝑓

𝜋)
𝛽

= (𝜒𝑓
𝜋)

𝛾
= (𝜒𝑓

𝜋)
𝑓

= Λ𝑓
𝜋. 

Proposition 3.13. 

The dual space of 𝜒𝑓
𝜋 is Λ. In other words 𝜒𝑓

∗ = Λ. 

Proof.  

We recall that 𝑆(𝑘) has 
𝜋𝑘

𝑘!
 in the 𝑘th place and zero’s elsewhere with 

𝑥 = 𝑆(𝑘), 𝑓 (𝑘! |
𝑥𝑘

𝜋𝑘

|)

1
𝑘

= {0,0, … , 𝑓 (
(1)

1
𝑘

𝜋𝑘

) , 0, … } 

Hence, 𝑆(𝑘) ∈ 𝜒𝑓
𝜋. We have 𝑓(𝑥) = ∑ 𝑥𝑘𝑦𝑘

∞
𝑘=1  with 𝑥 ∈ 𝜒𝑓

𝜋 and 𝑓 ∈ (𝜒𝑓
𝜋)

𝛼
where 𝜒𝑓

𝜋 is the dual space of 𝜒𝑓
𝜋. Take 𝑥 =

𝑆(𝑘) ∈ 𝜒𝑓
𝜋. Then  

|𝑦𝑘| ≤ ‖𝑓‖𝑑(𝑆(𝑘), 0) < ∞ for all 𝑘.  
(31) 

Thus (𝑦𝑘) is a bounded rate sequence and hence a rate of analytic sequence. In other words, 𝑦 ∈ Λ. Therefore 𝜒𝑓
∗ = Λ. 

This completes the proof. 

Lemma 3.14 ([16, Theorem 8.6.1]). 

𝑌 ⊃ 𝑋 ⟺ 𝑌𝑓 ⊂ 𝑋𝑓 where 𝑋 is an AD-space and 𝑌 on FK-space. 

Proposition 3.15. 

Let 𝑌 be any FK-space ⊃ 𝜑. Then 𝑌 ⊃ 𝜒𝑓
𝜋 if and only if the sequence 𝑆(𝑘) is weakly analytic. 

Proof. The following implications establish the result 
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𝑌 ⊃ 𝜒𝑓

𝜋 ⟺ 𝑌𝑓 ⊂ 𝜒𝑓
𝜋 since 𝜒𝑓 has AD by Lemma 3.14 

⟺ for each 𝑓 ∈ 𝑌′, the topological dual of 𝑌. 

⟺ 𝑓(𝑆(𝑘)) is rate of analytic. 

⟺ 𝑆(𝑘) is weakly rate of analytic. 

This completes the proof. 

Proposition 3.16. 

𝜒𝑓
𝜋 is a complete metric space under the metric 

𝑑(𝑥, 𝑦) = 𝑠𝑢𝑝
𝑘

{𝑓 (𝑘! |
𝑥𝑘 − 𝑦𝑘

𝜋𝑘

|)

1
𝑘

: 𝑘 = 1,2,3, … } 

Where 𝑥 = (𝑥𝑘) ∈ 𝜒𝑓
𝜋 and 𝑦 = (𝑦𝑘)𝜒𝑓

𝜋. 

Proof. Let {𝑥(𝑛)} be Cauchy sequence in 𝜒𝑓
𝜋. Then given any 𝜖 > 0 there exists a positive integer 𝑁 depending on 𝜖 

such that 𝑑(𝑥(𝑛), 𝑥(𝑚)) < 𝜖 for all 𝑛 ≥ 𝑁 and for 𝑚 ≥ 𝑁. Hence, 𝑠𝑢𝑝
𝑘

{𝑓 (𝑘! |
𝑥𝑘

(𝑛)
−𝑥𝑘

(𝑚)

𝜋𝑘
|)

1

𝑘

} < 𝜖 for all 𝑛 ≥ 𝑁 and for 

𝑚 ≥ 𝑁. 

Consequently 𝑓 (𝑘! |
𝑥𝑘

(𝑛)

𝜋𝑘
|)

1

𝑘

 is a Cauchy sequence in the metric space 𝐶 of a complex numbers. 

But 𝐶 is complete. So, 

𝑓 (𝑘! |
𝑥𝑘

(𝑛)

𝜋𝑘

|)

1
𝑘

→ 𝑓 (𝑘! |
𝑥𝑘

𝜋𝑘

|)

1
𝑘

 as 𝑛 → ∞. 

Hence there exists a positive integer no such that 

𝑠𝑢𝑝
𝑘

{𝑓 (𝑘! |
𝑥𝑘

(𝑛)
− 𝑥𝑘

𝜋𝑘

|)

1
𝑘

} < 𝜖 for all 𝑛 ≤ 𝑛0. 

In particular, we have  

𝑓 (𝑘! |
𝑥𝑘

(𝑛)
− 𝑥𝑘

𝜋𝑘

|)

1
𝑘

< 𝜖. 

Now 

𝑓 (𝑘! |
𝑥𝑘

𝜋𝑘

|)

1
𝑘

≤ 𝑓 (𝑘! |
𝑥𝑘 − 𝑥𝑘

(𝑛0)

𝜋𝑘

|) + 𝑓 (𝑘! |
𝑥𝑘

(𝑛0)

𝜋𝑘

|)

1
𝑘

< 𝜖 → 0 as 𝑘 → ∞.  

Thus 

𝑓 (𝑘! |
𝑥𝑘

𝜋𝑘

|)

1
𝑘

< 𝜖 → 0 as 𝑘 → ∞. 

That is 𝑥 ∈ 𝜒𝑓
𝜋. 

Therefore 𝜒𝑓
𝜋 is a complete metric space. This completes the proof. 
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