Infinitely many large energy solutions of nonlinear SchrödingerMaxwell system

*MOHSEN ALIMOHAMMADY ${ }^{1}$, MORTEZA KOOZEHGAR KALLEJI ${ }^{1}$

${ }^{l}$ Department of Mathematics, Faculty of Mathematical Sciences University of Mazandaran, BABOLSAR 47416-1468, IRAN
Abstract: This paper deals with the existence of infinitely many large energy solutions for nonlinear Schrödinger-Maxwell system

$$
\begin{cases}-\Delta u+V(x) u+\lambda \phi u=|u|^{p-1} u & \text { in } \mathbb{R}^{3} \\ -\Delta \phi=u^{2} & \text { in } \mathbb{R}^{3},\end{cases}
$$

We use the Fountain theorem under Cerami conditions 2.2 to find infinitely many large solutions for $p \in(2,6)$ and $\lambda \in \mathbb{R}^{+}-\left(\frac{4}{7}, \frac{4}{3}\right)$.

Keywords: Schrödinger-Maxwell equations, variational method, Strongly indefinite functionals, Cerami conditions

1. Introduction

In this paper we are concerned with the existence of infinitely many large energy solutions for the nonlinear Schrödinger-Maxwell system

$$
\begin{cases}-\Delta u+V(x) u+\lambda \phi u=|u|^{p-1} u & \text { in } \mathbb{R}^{3} \tag{1.1}\\ -\Delta \phi=u^{2} & \text { in } \mathbb{R}^{3},\end{cases}
$$

where $\lambda \in \mathbb{R}^{+}-\left(\frac{4}{7}, \frac{4}{3}\right)$ is a parameter, $V \in C\left(\mathbb{R}^{3}, \mathbb{R}\right)$ which is satisfied in some suitable conditions and $p \in(2,6)$. In the classical model, the interaction of a charge particle with an electromagnetic field can be described by the nonlinear Schrödinger-Maxwell's equations (see for examples $[6,9]$ and the references therein for more details on the physical aspects).

More precisely, we use the Fountain theorem under Cerami conditions 2.2 to find infinitely many large solitions for $p \in$ $(2,6)$ and $\lambda \in \mathbb{R}^{+}-\left(\frac{4}{7}, \frac{4}{3}\right)$ which is different from obtained results in $[1,6]$. If we consider $V(x)=1$, then the system 1.1 reduced to the following system

$$
\begin{cases}-\Delta u+u+\lambda \phi u=|u|^{p-1} u & \text { in } \mathbb{R}^{3} \tag{1.2}\\ -\Delta \phi=u^{2} & \text { in } \mathbb{R}^{3}\end{cases}
$$

which considered by Jiang et. al, [15], of course in homogeneous case. The problem of finding infinitely many large solutions is a vary classical problem. There is an extensive literature concerning the existence of infinitely many large energy solutions of a plethora of problems via the symmetric Mountain Pass theorem and Fountain theorem [4, 7, 10]. But, the existence of solutions for problem 1.1 has been discussed under different ranges of p , for examples [11,3] for $p \in[3,5), 5$ for $p \in(2,5)$ and $[1,2,17]$ for $p \in(1,5)$. In particular case, with $V(x)=1$ and $p \in(2,5)$, Ambrosetti and Ruiz have proved that the system 1.2 has infinitely many solutions for all $\lambda>0$ [1]. Here, we will show infinitely many large energy solutions for 1.1 , where $V \in C\left(\mathbb{R}^{3}, \mathbb{R}\right)$ and $p \in(2,6)$, via the Fountain theorem under cerami condition. In recent years, for the potential V, many authors assumed (see for examples $[19,18]$).
$\left.V^{*}\right) V \in C\left(\mathbb{R}^{3}, \mathbb{R}\right)$ and $V(x) \geq M_{0}>0$ and there exists some $M>0$ such that $\Omega_{M}:=\left\{x \in \mathbb{R}^{3} \mid V(x) \leq M\right\}$ is nonempty and has finite Lebesgue measure.

We consider the more general case and weaken the condition of V^{*}. We assume
$\left.V_{1}{ }^{*}\right) V \in C\left(\mathbb{R}^{3}, \mathbb{R}\right)$ and there exists some $M>0$ such that the set $\Omega_{M}:=\left\{x \in \mathbb{R}^{3} \mid V(x) \leq M\right\}$ is nonempty and has finite Lebesgue measure. Also we suppose that there exists a constant $\theta \geq 1$ such that

$$
\begin{equation*}
\theta f_{\lambda}(u) \geq f_{\lambda}(t u) \tag{1.3}
\end{equation*}
$$

for all $x \in \mathbb{R}^{3}, u \in \mathbb{R}$ and $t \in[0,1]$, where $f_{\lambda}(u)=\left(1-\frac{4}{\lambda(p+1)}\right) \int_{\mathbb{R}^{3}}|u|^{p+1} d x-\|u\|_{E}^{2}$, where $\lambda \in \mathbb{R}^{+}-\left(\frac{4}{7}, \frac{4}{3}\right)$. The assumption $V_{1} *$ implies that the potential V is not periodie and changes sign.

2. Main results

Here, we express Cerami condition which was established by G. Cerami in [12]. To approach the main result, we need the following critical point theorem.

Definition 2.1. Suppose that functional I is C^{1} and $c \in \mathbb{R}$, if any sequence $\left\{u_{n}\right\}$ satisfies in $I\left(u_{n}\right) \rightarrow c$ and $(1+$ $\left.\left\|u_{n}\right\|\right) I^{\prime}\left(u_{n}\right) \rightarrow 0$ has a convergence subsequence, we say the I is said to Cerami condition at the level c.

Theorem 2.2. (Fountain theorem under Cerami condition) Let X be a Banach space with the norm $\|$.$\| and let X_{j}$ be a sequence of subspace of X with dim $X_{j}<\infty$ for any $j \in \mathbb{N}$. Further, $X=\overline{\oplus_{j \in \mathbb{N}} X_{j}}$, the closure of the direct sum of all X_{j}. Set $W_{k}=\oplus_{j=0}^{k} X_{j}, Z_{k}=\oplus_{j=k}^{\infty} X_{j}$.

Consider an even functional $I \in C^{1}(X, \mathbb{R})$, that is $I(-u)=I(u)$ for any $u \in X$. Suppose that for any $k \in \mathbb{N}$, there exists $\rho_{k}>r_{k}>0$ such that
$\left.I_{1}\right) a_{k}:=\max _{u \in W_{k},\|u\|=\rho_{k}} I(u) \leq 0$,
$\left.I_{2}\right) b_{k}:=\inf _{u \in Z_{k},\|u\|=r_{k}} I(u) \rightarrow+\infty$ as $k \rightarrow \infty$,
I_{3}) the Cerami condition holds at any level $c>0$. Then the functional I has an unbounded sequence of critical values.
Now, our main result is the following:
Theorem 2.3. Let $V_{1}{ }^{*}$, and assumption 1.3 satisfies. Then the system 1.1 has infinitely many solutions $\left\{\left(u_{k}, \phi_{k}\right)\right\}_{k \in \mathbb{N}}$ in $H^{1}\left(\mathbb{R}^{3}\right) \times D^{1,2}\left(\mathbb{R}^{3}\right)$ satisfying

$$
\frac{1}{2} \int_{\mathbb{R}^{3}}\left(\left|\nabla_{u_{k}}\right|^{2}+V(x) u_{k}^{2}\right) d x-\frac{\lambda}{4} \int_{\mathbb{R}^{3}}\left|\nabla_{\phi_{k}}\right|^{2} d x+\frac{\lambda}{2} \int_{\mathbb{R}^{3}} \phi_{k} u_{k}^{2} d x-\frac{1}{p+1}|u|^{p+1} d x \rightarrow+\infty
$$

as $k \rightarrow \infty$.

3. Some auxiliary results and notations

In this section we give some notations and definitions on the function product space. We set

$$
\begin{equation*}
H^{1}\left(\mathbb{R}^{3}\right):=\left\{u \in L^{2}\left(\mathbb{R}^{3}\right) \mid \nabla_{u} \in L^{2}\left(\mathbb{R}^{3}\right)\right\} \tag{3.1}
\end{equation*}
$$

endowed with the norm

$$
\begin{equation*}
\|u\|_{H^{1}}:=\left(\int_{\mathbb{R}^{3}}\left|\nabla_{u}\right|^{2}+u^{2} d x\right)^{\frac{1}{2}} \tag{3.2}
\end{equation*}
$$

and we consider the function space

$$
\begin{equation*}
D^{1,2}\left(\mathbb{R}^{3}\right):=\left\{u \in L^{2^{*}}\left(\mathbb{R}^{3}\right) \mid \nabla_{u} \in L^{2}\left(\mathbb{R}^{3}\right)\right\} \tag{3.3}
\end{equation*}
$$

with the norm

$$
\begin{equation*}
\|u\|_{D^{1,2}}:=\left(\int_{\mathbb{R}^{3}}\left|\nabla_{u}\right|^{2} d x\right)^{\frac{1}{2}} \tag{3.4}
\end{equation*}
$$

where $2 *=\frac{2 n}{n-2}=6$. Now, we consider the function space

$$
E:=\left\{\left.u \in H^{1}\left(\mathbb{R}^{3}\right)\left|\int_{\mathbb{R}^{3}}\right| \nabla_{u}\right|^{2}+u^{2} d x<\infty\right\} .
$$

Then E is a Hilbert space [20] with the inner product

$$
\begin{equation*}
(u, v)_{E}:=\int_{\mathbb{R}^{3}}\left(\nabla_{u} \nabla_{v}+V(x) u v\right) d x \tag{3.5}
\end{equation*}
$$

and $\|u\|_{E}:=(u, v)_{E}^{\frac{1}{2}}$.
Lemma 3.1. [19] If $V_{1}{ }^{*}$ holds. Then $E \hookrightarrow L^{p}\left(\mathbb{R}^{N}, \mathbb{R}^{2}\right)$ is continuous for $p \in\left[2,2^{*}\right]$ and $E \hookrightarrow L_{\text {loc }}^{p}\left(\mathbb{R}^{N}, \mathbb{R}^{2}\right)$ is compact for $p \in\left[2,2^{*}\right)$.

Remark 3.2. The system 1.1 is the Euler-Lagrange equations of the functional $J_{\lambda}: E \times D^{1,2}\left(\mathbb{R}^{3}\right) \rightarrow \mathbb{R}$ defind by

$$
\begin{equation*}
J_{\lambda}(u, \phi):=\frac{1}{2}\|u\|_{E}^{2}-\frac{\lambda}{4} \int_{\mathbb{R}^{3}}|\nabla \phi|^{2} d x+\frac{\lambda}{2} \int_{\mathbb{R}^{3}} \phi u^{2} d x-\frac{1}{p+1} \int_{\mathbb{R}^{3}}|\mathbf{u}|^{p+1} d x \tag{3.6}
\end{equation*}
$$

The functional $J_{\lambda} \in C^{1}\left(E \times D^{1,2}\left(\mathbb{R}^{3}\right), \mathbb{R}\right)$ and its critical points are the solutions of system 1.1. It is easy to know that J_{λ} exhibits a strong indefiniteness, namely it is unbounded both from below and from above on infinitely dimensional subspaces. This indefiniteness can be removed using the reduction method described in [9]. We recall this method. For any $u \in E$, the Lax-Milgram theorem [14] implies there exists a unique $\phi_{u} \in D^{1,2}\left(\mathbb{R}^{3}\right)$ such that

$$
-\Delta \phi_{u}=u^{2}
$$

in a weak sense. We can write an integral expression for ϕ_{u} in the form:

$$
\begin{equation*}
\phi_{u}=\frac{1}{4 \pi} \int_{\mathbb{R}^{3}} \frac{u(y)^{2}}{|x-y|} d y \tag{3.7}
\end{equation*}
$$

for any $u \in E$.
Lemma 3.3. [13] for any $u \in E$
i. $\quad\left\|\phi_{u}\right\|_{D^{1,2}} \leq M_{1}\|u\|_{L^{\frac{12}{5}}}^{2}$, where M_{1} is positive constant which does not depend on u. In particular, there exists a positive constant M_{2} such that

$$
\begin{aligned}
& \quad \int_{\mathbb{R}^{3}} \phi_{u} u^{2} d x \leq M_{2}\|u\|_{E}^{4} ; \\
& \text { ii. } \quad \phi_{u} \geq 0 .
\end{aligned}
$$

According to the Lemma 3.3, we define the functional $I_{\lambda}: E \rightarrow \mathbb{R}$ by

$$
I_{\lambda}(u):=J_{\lambda}\left(u, \phi_{u}\right)
$$

Remark 3.4. Using the relation $-\Delta \phi_{u}=u^{2}$ and integration by parts, we can obtain

$$
\int_{\mathbb{R}^{3}}\left|\nabla \phi_{u}\right|^{2} d x=\int_{\mathbb{R}^{3}} \phi_{u} u^{2} d x .
$$

Then, we can consider the functional 3.6 as following

$$
\begin{equation*}
I_{\lambda}(u)=\frac{1}{2}\|u\|_{E}^{2}+\frac{\lambda}{4} \int_{\mathbb{R}^{3}} \phi_{u} u^{2} d x-\frac{1}{p+1} \int_{\mathbb{R}^{3}}|u|^{p+1} d x . \tag{3.9}
\end{equation*}
$$

It well-known that I is C^{1}-functional with derivative given by

$$
\begin{equation*}
\left\langle I_{\lambda}^{\prime}(u), u\right\rangle=\int_{\mathbb{R}^{3}}\left[\nabla_{u} \nabla_{v}+V(x) u v+\phi_{u} u v-|u|^{p-1} u v\right] d x \tag{3.10}
\end{equation*}
$$

Now, using the proposition 2.3 in [16] we can consider the following proposition for our functional J_{λ} :
Proposition 3.5. The following statements are equivalent:
i) $(u, \phi) \in E \times D^{1,2}\left(\mathbb{R}^{3}\right)$ is a critical point J_{λ} i.e. (u, ϕ) is a solution of problem 1.1;
ii) u is a critical point of I_{λ} and $\phi_{u}=\phi$.

Proof. It follows using the remark 3.2 and theorem 2.3 in [9].

4. Proof of main theorem

We take an orthogonal basis $\left\{e_{j}\right\}$ of product space $X:=E$ and we define $W_{k}:=\operatorname{span}\left\{e_{j}\right\}_{j=1, \ldots, k}, Z_{k}:=W_{k}^{\perp}$.
Lemma 4.1. [13] for any $p \in\left[2,2^{*}\right) \beta_{k}:=\quad \sup \quad\|u\|_{L p} \rightarrow 0$, as $k \rightarrow \infty$.

$$
u \in Z_{k},\|u\|=1
$$

Now, we prove that the functional $I_{\lambda}: E \rightarrow \mathbb{R}$ satisfies the Cerami condition.
Proposition 4.2. Under the assumption 1.3, the functional $I_{\lambda}(u)$ satisfies the Cerami condition at any positive level.
Proof. We suppose that $\left\{u_{n}\right\}$ is the Cerami sequence, that is for some $c \in \mathbb{R}^{+}$,

$$
\begin{equation*}
I_{\lambda}\left(u_{n}\right)=\frac{1}{2}\|u\|_{E}^{2}+\frac{\lambda}{4} \int_{\mathbb{R}^{3}} \phi_{u_{n}} u_{n}^{2} d x-\frac{1}{p+1} \int_{\mathbb{R}^{3}}\left|u_{n}\right|^{p+1} d x \rightarrow c \tag{4.1}
\end{equation*}
$$

as $n \rightarrow \infty$ and

$$
\begin{equation*}
\left(1+\left\|u_{n}\right\|_{E}\right) I_{\lambda}^{\prime}\left(u_{n}\right) \rightarrow 0 \tag{4.2}
\end{equation*}
$$

as $n \rightarrow \infty$. From relations 4.1 and 4.2 for n large enough,

$$
\begin{aligned}
& 1+c \geq I_{\lambda}\left(u_{n}\right)-\frac{\lambda}{4}\left\langle I_{\lambda}^{\prime}\left(u_{n}\right), u_{n}\right\rangle=\frac{1}{2}\left\|u_{n}\right\|_{E}^{2}+\int_{\mathbb{R}^{3}} \phi_{u_{n}} u_{n}^{2} d x- \\
& \frac{1}{p+1} \int_{\mathbb{R}^{3}}\left|u_{n}\right|^{p+1} d x-\frac{\lambda}{4}\left[\int_{\mathbb{R}^{3}}\left(\nabla_{u_{n}} \nabla_{u_{n}}+V(x) u_{n}^{2}+\phi_{u_{n}} u_{n}^{2}-\left|u_{n}\right|^{p-1} u_{n}^{2}\right) d x\right] .
\end{aligned}
$$

Then,

$$
\begin{equation*}
1+c \geq\left(\frac{1}{2}-\frac{\lambda}{4}\right)\left\|u_{n}\right\|_{E}^{2}-\left(\frac{1}{p+1}-\frac{\lambda}{4}\right) \int_{\mathbb{R}^{3}}\left|u_{n}\right|^{p+1} d x . \tag{4.3}
\end{equation*}
$$

We show that $\left\{u_{n}\right\}$ is bounded sequence. Otherwise, there exists a subsequence of $\left\{u_{n}\right\}$ satisfying $\left\|u_{n}\right\|_{E} \rightarrow \infty$ as $n \rightarrow$ ∞. Then we consider $\omega_{n}=\frac{u_{n}}{\left\|u_{n}\right\|_{E}} \in E$, so the sequence ω_{n} is bounded. Up to a subsequence, for some $\omega \in E$,

$$
\omega_{n} \rightharpoonup \omega
$$

in E,

$$
\omega_{n} \rightarrow \omega \text { in } L^{t}\left(\mathbb{R}^{3}\right) \forall t \in\left[2,2^{*}\right)
$$

and

$$
\begin{equation*}
\omega_{n}(x) \rightarrow \omega(x) \text { a.e. in } \mathbb{R}^{3} . \tag{4.4}
\end{equation*}
$$

Now, we consider two cases. In first case suppose that $\omega \neq 0$ in E. Dividing by $\left\|u_{n}\right\|_{E}^{2}$ in both sides of relation 4.1 and by lemma 3.3 we can get

$$
\begin{equation*}
\frac{1}{p+1} \int_{\mathbb{R}^{3}} \frac{\left|u_{n}\right|^{p+1}}{\left|u_{n}\right|^{2}} d x=1+\frac{\int_{\mathbb{R}^{3}} \phi_{u_{n}} u_{n}^{2} d x}{\left\|u_{n}\right\|_{E}^{2}}+\mathcal{O}\left(\left\|u_{n}\right\|_{E}^{2}\right) \leq M_{3}<\infty \tag{4.5}
\end{equation*}
$$

where M_{3} is a positive constant. We consider,

$$
\Omega:=\left\{x \in \mathbb{R}^{3} \mid \omega(x) \neq 0\right\}
$$

then for all $x \in \Omega$ and $p \in(2, \infty)$

$$
\begin{equation*}
\frac{\left|u_{n}\right|^{p+1}}{\left\|u_{n}\right\|_{E}^{2}}=\frac{\left|u_{n}\right|^{p+1}}{\left|u_{n}\right|^{2}} \omega_{n}(x)^{2} \rightarrow+\infty \tag{4.6}
\end{equation*}
$$

as $n \rightarrow \infty$. Since meas $(\Omega)>0$, using Fatou's lemma,

$$
\begin{equation*}
\frac{1}{p+1} \int_{\mathbb{R}^{3}} \frac{\left|u_{n}\right|^{p+1}}{\left\|u_{n}\right\|_{E}^{2}} d x \rightarrow+\infty \tag{4.7}
\end{equation*}
$$

as $n \rightarrow \infty$. This is contradiction with relation 4.5. In second case, suppose that $\omega(x)=0$, then we define a sequence, $t_{n} \in \mathbb{R}$ as

$$
I_{\lambda}\left(t_{n} u_{n}\right)=\max _{t \in[0,1]} I_{\lambda}\left(t u_{n}\right)
$$

For any positive m, we set $\bar{\omega}_{n}=\sqrt{4 m} \frac{u_{n}}{\left\|u_{n}\right\|_{E}}=\sqrt{4 m} \omega_{n}$. Hence, by relation 4.5 and for n large enough,

$$
\begin{align*}
I_{\lambda}\left(t_{n} u_{n}\right) \geq I_{\lambda}\left(\bar{\omega}_{n}\right) & =\frac{1}{2}\left\|\bar{\omega}_{n}\right\|_{E}^{2}+\frac{\lambda}{4} \int_{\mathbb{R}^{3}} \phi_{\bar{\omega}_{n}} \bar{\omega}_{n}^{2} d x-\frac{1}{p+1} \int_{\mathbb{R}^{3}}\left|\bar{\omega}_{n}\right|^{p+1} d x \\
& =2 m+\frac{\lambda}{4} \int_{\mathbb{R}^{3}} \phi_{\bar{\omega}_{n}} \bar{\omega}_{n}^{2} d x-\frac{1}{p+1} \int_{\mathbb{R}^{3}}\left|\bar{\omega}_{n}\right|^{p+1} d x \geq m . \tag{4.8}
\end{align*}
$$

Therefore, $\lim _{n \rightarrow \infty} I_{\lambda}\left(t_{n} u_{n}\right)=+\infty$ by relation 4.8. Since $I_{\lambda}(0)=0$ and $I_{\lambda}\left(u_{n}\right) \rightarrow c$ then for $t_{n} \in(0,1)$ and n large enough, we obtain that

$$
\begin{aligned}
\int_{\mathbb{R}^{3}}\left(\nabla_{t_{n} u_{n}} \nabla_{t_{n} u_{n}}+\right. & \left.V(x) t_{n} u_{n} t_{n} u_{n}+\phi_{t_{n} u_{n}} t_{n} u_{n} t_{n} u_{n}-\left|t_{n} u_{n}\right|^{p-1} t_{n} u_{n} t_{n} u_{n}\right) d x=\left\langle I_{\lambda}^{\prime}\left(t_{n} u_{n}\right), t_{n} u_{n}\right\rangle \\
& =\left.t_{n} \frac{d}{d t}\right|_{t=t_{n}} I_{\lambda}\left(t u_{n}\right)=0 .
\end{aligned}
$$

Hence, by assumption 1.3,

$$
\begin{aligned}
& I_{\lambda}\left(u_{n}\right)-\frac{\lambda}{4}\left\langle I_{\lambda}^{\prime}\left(u_{n}\right), u_{n}\right\rangle=\frac{2-\lambda}{4}\left\|u_{n}\right\|_{E}^{2}-\frac{4-\lambda(p+1)}{4(p+1)} \int_{\mathbb{R}^{3}}\left|u_{n}\right|^{p+1} d x= \\
& \frac{1}{2}\left\|u_{n}\right\|_{E}^{2}-\frac{1}{p+1} \int_{\mathbb{R}^{3}}\left|u_{n}\right|^{p+1} d x-\frac{\lambda}{4}\left\|u_{n}\right\|_{E}^{2}+\frac{\lambda}{4} \int_{\mathbb{R}^{3}}\left|u_{n}\right|^{p+1} d x= \\
& \frac{1}{2}\left\|u_{n}\right\|_{E}^{2}+\frac{\lambda}{4}\left[1-\frac{4}{\lambda(p+1)} \int_{\mathbb{R}^{3}}\left|u_{n}\right|^{p+1} d x-\left\|u_{n}\right\|_{E}^{2}\right]= \\
& \frac{1}{2}\left\|u_{n}\right\|_{E}^{2}+\frac{\lambda}{4} f_{\lambda}\left(u_{n}\right) \geq \frac{1}{2 \theta}\left\|t_{n} u_{n}\right\|_{E}^{2}+\frac{\lambda}{4 \theta} f_{\lambda}\left(t_{n} u_{n}\right)= \\
& \frac{1}{\theta} I_{\lambda}\left(t_{n} u_{n}\right)-\frac{\lambda}{4 \theta}\left\langle I_{\lambda}^{\prime}\left(t_{n} u_{n}\right), t_{n} u_{n}\right\rangle \rightarrow \infty,
\end{aligned}
$$

as $n \rightarrow \infty$. This contradicts relation 4.3. Therefore, $\left\{u_{n}\right\}$ is bounded sequence. Assume that $u_{n} \rightharpoonup u$ in E. By lemma 3.1 $u_{n} \rightarrow u$ in $L^{t}\left(\mathbb{R}^{3}\right)$ for any $t \in\left[2,2^{*}\right)$. By relation 3.10,

$$
\left\|u_{n}-u\right\|_{E}^{2}=\left\langle I_{\lambda}^{\prime}\left(u_{n}\right)-I_{\lambda}^{\prime}(u), u_{n}-u\right\rangle+\int_{\mathbb{R}^{3}}\left|u_{n}\right|^{p-1}-|u|^{p-1}\left(u_{n}-u\right) d x-\int_{\mathbb{R}^{3}}\left(\phi_{u_{n}} u_{n}-\phi_{u} u\right)\left(u_{n}-u\right) d x
$$

By the Höder inequality, Sobolev inequality and lemma 3.3

$$
\begin{aligned}
& \left|\int_{\mathbb{R}^{3}} \phi_{u_{n}} u_{n}\left(u_{n}-u\right) d x\right| \leq\left\|\phi_{u_{n}} u_{n}\right\|_{L^{2}}\left\|u_{n}-u\right\|_{L^{2}} \leq\left\|\phi_{u_{n}}\right\|_{L^{6}}\left\|u_{n}\right\|_{L^{3}}\left\|u_{n}-u\right\|_{L^{2}} \\
& M_{4}\left\|\phi_{u_{n}}\right\|_{D^{1,2}}\left\|u_{n}\right\|_{L^{3}}\left\|u_{n}-u\right\|_{L^{2}} \leq M_{2} M_{4}\left\|u_{n}\right\|_{L^{\frac{12}{5}}}^{2}\left\|u_{n}\right\|_{L^{3}}\left\|u_{n}-u\right\|_{L^{2}},
\end{aligned}
$$

where M_{4} is a positive constant. Again using $u_{n} \rightarrow u$ in $L^{t}\left(\mathbb{R}^{3}\right)$ for any $t \in\left[2,2^{*}\right)$, we obtain that

$$
\int_{\mathbb{R}^{3}} \phi_{u_{n}} u_{n}\left(u_{n}-u\right) d x \rightarrow 0
$$

as $n \rightarrow \infty$. Similarly,

$$
\int_{\mathbb{R}^{3}} \phi_{u_{n}} u\left(u_{n}-u\right) d x \rightarrow 0
$$

as $n \rightarrow \infty$. Hence,

$$
\int_{\mathbb{R}^{3}}\left(\phi_{u_{n}} u_{n}-\phi_{u} u\right)\left(u_{n}-u\right) d x \rightarrow 0
$$

as $n \rightarrow \infty$. Thus $\left\|u_{n}-u\right\|_{E} \rightarrow 0$. Therefore, $I_{\lambda}(u)$ satisfies Cerami condition.

Proof of theorem 2.3.From proposition 4.2. $I_{\lambda}(u)$ satisfies Cerami condition. Next, we show that $I_{\lambda}(u)$ satisfies the rest conditions of theorem 2.2. First of all, we prove that $I_{\lambda}(u)$ satisfies I_{1}. Since $p \in(2,6)$, so $\lim _{|u| \rightarrow \infty} \frac{|u|^{p+1}}{|u|^{2}}=+\infty$. Then for any $K>0$ there exist $\delta>0$ such that for $|u| \geq \delta$,

$$
\begin{equation*}
|u|^{p+1} \geq \frac{\lambda}{4} K|u|^{2} . \tag{4.9}
\end{equation*}
$$

Hence,

$$
I_{\lambda}(u) \leq \frac{1}{2}\|u\|_{E}^{2}+\frac{\lambda M_{2}}{4}\|u\|_{E}^{4}-\frac{\lambda K}{4(p+1)}\|u\|_{L^{2}} .
$$

Since, norms on finite dimension spaces W_{k} are equivalent,

$$
I_{\lambda}(u) \leq \frac{1}{2}\|u\|_{E}^{2}+\frac{\lambda M_{2}}{4}\|u\|_{E}^{4}-\frac{\lambda K M_{5}}{4(p+1)}\|u\|_{E}^{2}
$$

where M_{5} is a constant. Since

$$
\frac{\lambda M_{2}}{4}-\frac{\lambda K M_{5}}{4(p+1)}<0
$$

when K is large enough, it follows that

$$
a_{k}:=\max _{u \in W_{k},\|u\|=\rho_{k}} I_{\lambda}(u) \leq 0
$$

for some $\rho_{k}>0$ large enough. Using the lemma 3.3 and 3.1 we show that $I_{\lambda}(u)$ satisfies in condition I_{2}. By definition of I_{λ},

$$
I_{\lambda}(u) \geq \frac{1}{2}\|u\|_{E}^{2}-\frac{1}{p+1} \int_{\mathbb{R}^{3}}|u|^{p+1} d x \geq \frac{1}{2}\|u\|_{E}^{2}-\frac{1}{p+1}\|u\|_{L^{p}}^{p} \geq \frac{1}{2}\|u\|_{E}^{2}-\frac{\beta_{k}^{p}}{p+1}\|u\|_{E}^{p},
$$

where β_{k} is defined in lemma 4.1. defining $r_{k}:=\left(\frac{p \beta_{k}^{p}}{p+1}\right)^{\frac{1}{2-p}}$, implies that

$$
b_{k}:=\inf _{u \in Z_{k},\|u\|_{E}=r_{k}} I_{\lambda}(u) \geq \inf _{u \in Z_{k},\|u\|_{E}}\left(\frac{1}{2}\|u\|_{E W}^{2}-\frac{\beta_{k}^{p} p}{p+1}\|u\|_{E}^{p}\right) \geq\left(\frac{1}{2}-\frac{1}{p}\right)\left(\frac{p \beta_{k}^{p}}{p+1}\right)^{\frac{2}{2-p}} \rightarrow+\infty
$$

as $k \rightarrow \infty$. Using 2.2 completes the proof.

References

[1] A. AMBROSETTI, D.RUIZ, multiple bound states for the Schrödinger-Poisson problem, Commun. Contemp. Math., 10(3) (2008), 391-404.
[2] A. AZZOLINI, P. D'AVENIA, A. POMPONIO, On the Schrödinger-Maxwell equations under effect of a general nonlinear term, Ann. Inst. H. Poincare Anal. Non Lineair., 27(2) (2010), 779-791.
[3] T. D’APRIL, D. MUGNAL, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schördinger-Maxwell equations, Proc.Roy.Soc.Edinburgh. Sect. (A)., 134(5) (2004), 893-906.
[4] A. AMBROSETTI, A. MALCHIODI, Perturbation Methods and Semilinear Elliptic Problems on $\mathrm{R}^{\wedge} \mathrm{n}$, Progr. Math. Birkhuser Verlag, Vol. 240 (2006).
[5] A. AZZOLINI, A. POMPONIO, Ground staes solutions for the nonlinear Schördinger-Maxwell equations, J.Math. Anal. Appl., 345(1) (2008), 90-108.
[6] V.BENCI, D. FORTUNATO, An eigenvalue problem for the Schördinger-Maxwell equations ,Topol.Methods nonlinear Anal., 11(2) (1998), 283-293.
[7] TH. BARTHS, SH. PENG, Semiclassical symmetric Schrdinger equations: existence of solutions concentrating simultaneously on several spheres, Z. Angew. Math. Phys., 58(5) (2007), 778-804.
[8] D. BONHEURE, J. VAN SCHAFTINGEN, Bound state solutions for a class of nonlinear Schrdinger equations, Rev. Mat. Iberoam., 24 (2008), 297-351.
[9] V. BENCI, D. FORTUNATO, A. MASIELLO, L. PISANI, Solitons and the electromagneticfield, Math. Z., 232(1) (1999), 73-102.
[10] D. BONHEURE, J.DI COSMO, J.VAN SCHAFTINGEN, Nonlinear Schrdinger equation with unbounded or vanishing potentials: Solutions concentrating on lower dimensional spheres, J.Differential Equations., 252 (2012), 941-968.
[11] G.M. COCLITE, A multiplicity result for the nonlinear Schrödinger -Maxwell equations, Commun. Apll.Anal., 7(2-3) (2003), 417-423.
[12] G. CERAMI, An existence criterion for the points on unbounded manifolds, Istit. Lombardo Accad. Sci. Lett. Rend. A ., 112(2) (1979), 332336.
[13] S.J. CHEN, C.L. TANG, High energy solutions for the superlinear Schrödinger-Maxwell ewuations, Nonlinear Anal., 71(10) (2009), 49274934.
[14] D. GILBARG, N.S. TRUDINGER, Elliptic partial differential equations of second order, Classics in Mathematics. Springer-Verlag, Berlin, (2001).
[15] Y.JIANG, ZH. WANG, H-S ZHOU, multiple solutions for a nonhomogeneous Schrödinger-Maxwell system in R^3, arXiv: 1204.3359 v 1 [math.AP], 16Apr (2012).
[16] L.LI, SH-J. CHEN, Infinitely many large energy solutions of superlinear Schrödinger-maxwell equations, Electron. j. Differential Equations., Vol.(2012) No. 224 (2012), 1-9.
[17] D. RUIZ, The Schrödinger-Poisson equation under effect of nonlinear local term, J. Funct. Anal., 232(2) (2006), 655-674.
[18] F.K. ZHAO, Y.H. DING, On Hamiltonian elliptic systes with periodic and non-periodic potentials, J.Differential Equations., 249 (2010) , 2964-2985.
[19] J. ZHANG, W. QIN, F. ZHAO, Existence and multiplicity of solutions for asymptotically linear nonpreiodic Hamiltonian elliptic system, J. Math. Anal. Appl., 399 (2013), 433-441.
[20] W. M. ZOU, M. SCHECHETER, Critical point theory and its applications, Springer, New York (2006)

