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Abstract: In this paper, we study the k-step α-generalized Pell-Padovan sequence modulo m. We define the k-step α-generalized
Pell-Padovan sequences in a finite group and we examine the periods of these sequences. Also, we obtain the periods of the k-step
α-generalized Pell-Padovan sequences in the semidihedral group SD2m .
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1 Introduction and Preliminaries

The Pell-Padovan sequence {P(n)} is defined [12,13] recursively by the equation

P(n+3) = 2P(n+1)+P(n) (1)

for n ≥ 0, where P(0) = P(1) = P(2) = 1.

Kalman [8] mentioned that these sequences are special cases of a sequence which is defined recursively as a linear

combination of the preceding k terms:

an+k = c0an + c1an+1 + · · ·+ ck−1an+k−1,

where c0,c1, · · · ,ck−1 are real constants. In [8], Kalman derived a number of closed-form formulas for the generalized

sequence by companion matrix method as follows:

Ak = [ai j]k×k =



0 1 0 · · · 0 0

0 0 1 · · · 0 0

0 0 0 · · · 0 0
...

...
... · · ·

...
...

0 0 0 · · · 0 1

c0 c1 c2 · · · ck−2 ck−1


k×k

.
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Then by an inductive argument he obtained that

An
k


a0

a1
...

ak−1

=


an

an+1
...

an+k−1

 .

It is well-known that a sequence is periodic if, after a certain point, it consists only of repetitions of a fixed subsequence.

The number of elements in the repeating subsequence is the period of the sequence.

The study of the linear recurrence sequences in groups began with the earlier work of Wall [14] where the ordinary

Fibonacci sequences in cyclic groups were investigated. Recently, many authors have studied on some special linear

recurrence sequences in groups; see for example, [1-7,9-11]. Now we extend the concept to the k-step α-generalized

Pell-Padovan sequences. In this paper, the usual notation p is used for a prime number.

2 The k-step α-generalized Pell-Padovan sequence

The k-step α-generalized Pell-Padovan sequence is defined as

Pα
k (n+ k+1) = 2α Pα

k (n+ k−1)+Pα
k (n+ k−2)+ · · ·+ Pα

k (n) (2)

for n ≥ 0, where Pα
k (0) = Pα

k (1) = · · ·= Pα
k (k) = 1.

When k = 2 and α = 1, this sequence reduces to the usual Pell-Padovan sequence, {P(n)}. By (2), we have



P(n)

P(n+1)

P(n+2)
...

P(n+ k)


=



0 1 0 0 · · · 0 0

0 0 1 0 · · · 0 0

0 0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 0 · · · 0 1

1 1 1 1 · · · 2α 0





P(n−1)

P(n)

P(n+1)
...

P(n+ k−1)



for the k-step α-generalized Pell-Padovan sequence. Let

M = [mi j](k+1)×(k+1) =



0 1 0 0 · · · 0 0

0 0 1 0 · · · 0 0

0 0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 0 · · · 0 1

1 1 1 1 · · · 2α 0


(k+1)×(k+1)

.
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By inductive argument we have

Mn



1

1

1
...

1


=



P(n)

P(n+1)

P(n+2)
...

P(n+ k)


(3)

for n ≥ 0.

3 The k-step α-generalized Pell-Padovan sequence modulo m

Reducing the k-step α-generalized Pell-Padovan sequence modulo m, we can get a repeating sequence, denoted by

{
Pα

k,m (n)
}
=
{

Pα
k,m (0) , Pα

k,m (1) , Pα
k,m (2) , · · · ,Pα

k,m (k) , · · ·
}

where Pα
k,m (i)≡ Pα

k (i) (mod m) and it has the same recurrence relation as in (2).

Theorem 3.1.
{

Pα
k,m (n)

}
is a simply periodic sequence.

Proof. Let Ak+1 = { (a0,a1, · · · ,ak)|0 ≤ ai ≤ m−1}. Then we have S(Ak+1) = mk+1 being finite (S(Ak+1) mean that the

number of the elements of Ak+1) , that is, for any v ≥ 0, there exist w ≥ v+ k such that

Pα
k,m (v+1) = Pα

k,m (w+1) , Pα
k,m (v+2) = Pα

k,m (w+2) , · · · ,Pα
k,m (v+ p+1) = Pα

k,m (w+ p+1) .

From definition of the the k-step α-generalized Pell-Padovan sequence we have

Pα
k (n) = Pα

k (n+ k+1) − 2α Pα
k (n+ k−1) − Pα

k (n+ k−2) − ·· · − Pα
k (n+1) so if Pα

k,m (v) = Pα
k,m (w),

Pα
k,m (v−1) = Pα

k,m (w−1), · · · , Pα
k,m (1) = Pα

k,m (w− v+1) and Pα
k,m (0) = Pα

k,m (w− v), which implies that this sequence is

simply periodic. We denote the smallest period of
{

Pα
k,m (n)

}
by hPα

k,m.

Example 1. We have
{

P1
5,2 (n)

}
= {1,1,1,1,1,1,0,0,0,1,0,1,1,1,0,1,1,1,1,1,1, · · ·}, and then repeat. So, we get

hP1
5,2 = 15.

For given a matrix M = [ei j](k+1)×(k+1) with ei j’s being integers, M (mod m) means that every entries of M are reduced

modulo m, that is, M (mod m) ≡ (ei j (mod m)). Let a be an positive integer and let ⟨M⟩pa =
{

Mi (mod pa)
∣∣ i ≥ 0

}
.

Then, it is clear that the set ⟨M⟩pa is a cyclic group. Let
∣∣∣⟨M⟩pa

∣∣∣ denote the order of ⟨M⟩pa .

Let a be an positive integer, then by (3), it is shown that hPα
k,pa =

∣∣∣⟨M⟩pa

∣∣∣.
Theorem 3.2. Let t be the largest positive integer such that hPα

k,p = hPα
k,pt . Then hPα

k,pu = pu−thPα
k,p , for every u ≥ t.

Proof. By hPα
k,pa =

∣∣∣⟨M⟩pa

∣∣∣ we see that for each positive integer λ , M
hPα

k,pλ+1 ≡ I
(
mod pλ+1

)
, hence,
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M
hPα

k,pλ+1 ≡ I
(
mod pλ ), which means that hPα

k,pλ divides hPα
k,pλ+1 . Also, we can write M

hPα
k,pλ = I +

(
m(λ )

i j pλ
)

. Thus,

M

(
hPα

k,pλ

)
p
=
(

I +
(

m(λ )
i j pλ

))p
=

p

∑
i=0

(
p

i

)(
m(λ )

i j pλ
)i

≡ I
(

mod pλ+1
)
,

which yields that hPα
k,pλ+1 divides

(
hPα

k,pλ+1

)
p. So, we can write hPα

k,pλ+1 = hPα
k,pλ or hPα

k,pλ+1 =
(

hPα
k,pλ

)
p, and the

latter holds if, and only if, there is a m(λ )
i j which is not divisible by p. Since hPα

k,pt ̸= hPα
k,pt+1 , there is an m(t+1)

i j which is

not divisible by p, thus, hPα
k,pt+1 ̸= hPα

k,pt+2 . The proof is completed by induction on t.

Theorem 3.3. If m = ∏u
i=1 pvi

i , (u ≥ 1) where pi’s are distinct primes, then hPα
k,pm =lcm

[
hPα

k,p
v1
1
,hPα

k,p
v2
2
, · · · , hPα

k,pvu
u

]
.

Proof. Since hPα
k,p

vi
i

is the period of
{

Pα
k,p

vi
i
(n)
}

, the sequence
{

Pα
k,p

vi
i
(n)
}

repeats only after blocks of length β .hPα
k,p

vi
i

,

(β is a natural numbers). Also, since hPα
k,m is the period

{
Pα

k,m (n)
}

, the sequence
{

Pα
k,p

vi
i
(n)
}

repeats after hPα
k,m terms

for all values i. Thus, hPα
k,m is of the form β .hPα

k,p
vi
i

for all values of i, and since any such number gives a period of{
Pα

k,p
vi
i
(n)
}

. So we get hPα
k,pm =lcm

[
hPα

k,p
v1
1
,hPα

k,p
v2
2
, · · · , hPα

k,pvu
u

]
.

4 The k-step α-generalized Pell-Padovan sequence in groups

Definition 4.1. For a generating pair (x,y) ∈ G, we define the Pell-Padovan orbit Px,y,y (G) = {xi} and co-Pell-Padovan

orbit c−Px,y,y (G) = {xi}, respectively as follows:

x0 = xy, x1 = y, x2 = y, xi+2 = (xi−1) · (xi)
2 , i ≥ 1

and

x0 = yx, x1 = y, x2 = y, xi+2 = (xi−1) · (xi)
2 , i ≥ 1.

Definition 4.2. A k-step α-generalized Pell-Padovan sequence in a finite group is a sequence of group elements

a0,a1, · · ·an, · · · for which, given an initial (seed) set a0 = x0,a1 = x1, · · · ,a j−1 = x j−1,a j = x j−1, each element is defined

by

an =

{
a0a1 · · ·(an−2)

2 for j < n ≤ k,

an−k−1 · · ·(an−2)
2 for n > k.

It is require that the initial elements of the sequence, x0, · · · ,x j−1, generate the group, thus, forcing the k-step

α-generalized Pell-Padovan sequence to reflect the structure of the group. We denote the k-step α-generalized

Pell-Padovan sequence of a group generated by x0, · · · ,x j−1 by PPk
(
G;x0, · · · ,x j−1

)
.

The k-step α-generalized Pell-Padovan sequence in a cyclic group Cn of order n can be written as PPk (Cn;x,x, · · · ,x).

Theorem 4.1. A k-step α-generalized Pell-Padovan sequence in a finite group is periodic.
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Proof. Let G be a finite group and |G| be the order of G. Since there are |G|k+1 distinct k+1-tuples of elements of the

group G, at least one of the k+1-tuples appears twice in a k-step α-generalized Pell-Padovan sequence of the group G.

Because of the repeating, the k-step α-generalized Pell-Padovan sequence is periodic.

We denote the period of the sequence PPk
(
G;x0, · · · ,x j−1

)
by Perk

(
G;x0, · · · ,x j−1

)
. From the definition it is clear that

the period of the k-step α-generalized Pell-Padovan sequence in a finite group depends on the chosen generating set and

the order in which the assignments of x0,x1,x2, · · · ,x j−1.

It is clear that hP1
k,n =Perk (Cn;x,x, · · · ,x).

A group SD2m is semidihedral group of order 2m if

SD2m =
⟨

x,y|x2m−1
= y2 = e, yxy = x−1+2m−2

⟩
for every m ≥ 4. Note that the orders x and y are 2m−1 and 2, respectively.

Theorem 4.2. The periods of the k-step α-generalized Pell-Padovan sequences in the semidihedral group SD2mfor initial

(seed) set x, y are as follows:

i. Per2 (SD2m ;x, y) = 3 ·2m−2

ii. Perk (SD2m ;x, y) = hP1
k,2 ·2m−2for 3 ≤ k ≤ 4.

iii. Perk (SD2m ;x, y) = hP1
k,2 ·2m−3 for k ≥ 5.

Proof.i. The sequence PP2 (SD2m ;x, y) is

x, y, y, x, y, x2m−1−2y, x, y, x2m−1−4y, x, y, x2m−1−6y, · · · .

Using the relations of the SD2m , this sequence becomes:

x0 = x, x1 = y, x2 = y, · · · ,
x3i = x, x3i+1 = y, x3i+2 = x2m−1−2iy, · · · .

So we need the smallest such that 2m−1 − 2i = 0, i is a natural numbers. Thus, we obtain

x3·2m−2 = x, x3·2m−2+1 = y and x3·2m−2+2 = y. Since the elements succeeding x3·2m−2 ,x3·2m−2+1,x3·2m−2+2, depend on x,y

and y for their values, the cycle begins again with the
(
3 ·2m−2

)nd element. So we get Per2 (SD2m ;x, y) = 3 ·2m−2.

ii. Note that hP1
3,2 = 15 and the sequence PP3 (SD2m ;x, y) is

x, y, y, x, xy, x2, x2m−1−1y, x2m−1−2y, x2m−2−1y, xy,

x2m−2+1, x2m−2−1, e, x2y, e, x2m−2−1, x2y, x4y, x2m−2−1, · · · .
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So, by the relations of the SD2m , this sequence becomes:

x0 = x, x1 = y, x2 = y, x3 = x, · · · ,
x30 = x, x31 = x4y, x32 = y, x33 = x2m−1−3, · · · ,
x30i = x, x30i+1 = x4iy, x30i+2 = y, x30i+3 = x2m−1−4i+1, · · · .

So we need the smallest such that 2m−1 = 4i, i is a natural numbers. If 2m−3 = i, we obtain

x30·2m−3 = x, x30·2m−3+1 = y, x30·2m−2+2 = y and x30·2m−2+3 = x. Since the elements succeeding

x15·2m−2 ,x15·2m−2+1,x15·2m−2+2,x15·2m−2+3 depend on x,y,y and x for their values, the cycle begins again with the(
15 ·2m−2

)nd element. So we get Per3 (SD2m ;x, y) = 15 ·2m−2 = hP1
3,22m−2.

The proof for k = 4 is similar to the above and it is omitted.

iii. Let k ≥ 5. We have the sequence

x0 = x, x1 = y, x2 = y, x3 = x, x4 = xy, x5 = x3, · · · ,
x2hP1

k,2−k+3 = e, x2hP1
k,2−k+2 = e, · · · , x2hP1

k,2−1 = e,

x2hP1
k,2

= x9, x2hP1
k,2+1 = y, x2hP1

k,2+2 = y, x2hP1
k,2+3 = x, x2hP1

k,2+4 = x9y, x2hP1
k,2+5 = x11, · · · ,

x2hP1
k,2·i−k+3 = e, x2hP1

k,2·i−k+2 = e, · · · , x2hP1
k,2·i−1 = e,

x2hP1
k,2·i

= x8i+1, x2hP1
k,2·i+1 = y, x2hP1

k,2·i+2 = y, x2hP1
k,2·i+3 = x, xi·2hP1

k,2+4 = x8i+1y, x2hP1
k,2·i+5 = x8i+3, · · · .

So, we need the smallest such that 2m−1 = 8i, i is a natural numbers. If 2m−4 = i, we obtain

xhP1
k,2·2m−3−k+3 = e, xhP1

k,2·2m−3−k+2 = e, · · · , xhP1
k,2·2m−3−1 = e, xhP1

k,2·2m−3 = x, xhP1
k,2·2m−3+1 = y, xhP1

k,2·2m−3+2 =

y,xhP1
k,2·2m−3+3 = x, xhP1

k,2·2m−3+4 = xy and xhP1
k,2·2m−3+5 = x3. Thus, the cycle begins again with the

(
hP1

k,2 ·2m−3
)nd

element. So we get Perk (SD2m ;x, y) = hP1
k,2 ·2m−3.
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