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Abstract: In this paper, an efficient method namely
(

G′

G

)
-expansion method for solving the fractional generalized reaction duffing

model is considered. The fractional derivative is described in the Jumarie’s modified Riemann– Liouville sense. As a result, we obtain
the hyperbolic and periodic function solutions of this equation. The results obtained by this method have been compared with the other
solutions show that proposed method is accuracy and convenience for solving nonlinear fractional differential equations.
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1 Introduction

Nonlinear fractional differential equations have shown to be adequate models for many important phenomena in physics,
engineering, electromagnetic, mathematics and material science.[1,2,3]. The exact and approximate solutions for
nonlinear fractional differential equations may guide peoples to better understand relevant phenomena and further apply
them in practical scientific research. In recent years, the analytical solution of fractional differential equations have been
devoted a lot of attention of specialists and scholars’s interest. Fistly, a promising analytic approach called the fractional
sub-equation method [4,5,6] has been successfully applied to solve many kinds of nonlinear fractional differential
equations. Then several mathematical methods such as the fractional exp-function method [7,8,9,10], the fractional first
integral method [11,12], the fractioanal modified trial equation method [13], the fractional

(
G′
G

)
-expansion method [14,

15,16,17], the fractional fractional functional variable method [18,19] and the fractional simplest equation method [20]
have been developed to obtain exact analytic solutions. We notice that the method relies on the homogeneous balance
principle [21] and the symbolic computation.

There are several definitions of a fractional derivative of order α . Most commonly used definitions are the modified
Riemann–Liouville and Caputo [22,23]. We firstly give some properties and definitions of the modified
Riemann–Liouville derivative which are used further in this paper. Jumarie proposed a modified Riemann–Liouville
derivative. Assume that f : R → R, t → f (t) denote a continuous (but not necessarily differentiable) function. The
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modified Riemann–Liouville derivative of order α is defined by the expression [24]

Dα
t f (t) =


1

Γ (−α)

∫ t
0(t −ξ )−α−1[ f (ξ )− f (0)]dξ , α < 0,

1
Γ (1−α)

d
dt
∫ t

0(t −ξ )−α [ f (ξ )− f (0)]dξ , 0 < α < 1,

( f (n)(t))(α−n), n ≤ α ≤ n+1, n ≥ 1,

(1)

and its some useful formulas of them are

Dα
t xγ =

Γ (1+ γ)
Γ (1+ γ −α)

xγ−α ,γ > 0, (2)

Dα
t (c f (t)) = cDα

t f (t), c = constant (3)

Dα
t {a f (t)+bg(t)}= aDα

t f (t)+bDα
t g(t), (4)

where a and b constant.

Dα
t c = 0, c = constant (5)

which are direct consequences of the equality dα x(t) = Γ (1+α)dx(t).

The organization of this paper is as follows. In section 2, the description of the
(

G′
G

)
-expansion method is given for

solving fractional partial differential equations. Then in section 3 this method is applied to establish exact solutions for
the fractional generalized reaction duffing model. Some conclusions are given in last section.

2 Algorithm of the proposed method for FDEs

In the following, we give the main steps of the
(

G′
G

)
-expansion method for solving fractional differential equations. We

consider the following nonlinear FDE of the type

F(u,Dα
t u,Dβ

x u,Dα
t Dα

t u,Dα
t Dβ

x u,Dβ
x Dβ

x u, ...) = 0, 0 < α ,β < 1 (6)

where u is an unknown function, and P is a polynomial of u and its partial fractional derivatives.

Step 1: Li and He [25] proposed a fractional complex transform to convert fractional differential equations into ordinary

differential equations (ODEs). The traveling wave variable

u(x, t) =U(ξ ), (7)

ξ =
kxα

Γ (1+α)
− ctα

Γ (1+α)
, (8)
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where c and k are non zero arbitrary constants. By using the chain rule

Dα
t u = σ

′
t

dU
dξ

Dα
t ξ

Dα
x u = σ

′
x

dU
dξ

Dα
x ξ (9)

where σ ′
t and σ ′

x are called the sigma indexes see [26,27], without loss of generality we can take σ ′
t = σ ′

x = l, where l is
a constant.

Substituting (8) with (2) and (9) into (6), we can rewrite Eq. (6) in the following nonlinear ODE;

Q(U,U
′
,U ′′,U ′′′, .....) = 0, (10)

where the prime denotes the derivation with respect to ξ .

Step 2: Suppose that the solution of equation (10) can be expressed by a polynomial in
(

G′
G

)
as follows:

U(ξ ) =
m

∑
i=0

ai

(
G′

G

)i

, am ̸= 0, (11)

where ai (i = 0,1,2, .....,m) are constants, while G(ξ ) satisfies the second ordinary differential equation in the form

G′′(ξ )+λG′(ξ )+µG(ξ ) = 0, (12)

and λ , µ and ai (i = 0,1,2, .....,m) are constants to be determined later. The positive integer m can be determined by
considering the homogeneous balance between the highest order derivatives and nonlinear terms appearing in (10). By
the generalized solutions of Eq. (12) we have

(
G′

G

)
=



√
λ 2−4µ

2

(
C1 sinh

√
λ2−4µ

2 ξ+C2 cosh

√
λ2−4µ

2 ξ

C1 cosh

√
λ2−4µ

2 ξ+C2 sinh

√
λ2−4µ

2 ξ

)
− λ

2 , λ 2 −4µ > 0,

√
4µ−λ 2

2

(
−C1 sin

√
4µ−λ2

2 ξ+C2 cos

√
4µ−λ2

2 ξ

C1 cos

√
4µ−λ2

2 ξ+C2 sin

√
4µ−λ2

2 ξ

)
− λ

2 , λ 2 −4µ < 0,

−λ
2 + C2

C1+C2ξ , λ 2 −4µ = 0,

(13)

where C1, C2 are arbitrary constants.

Step 3: Substituting equation (11) into equation (10) and using equation (13) collecting all terms with the same order of(
G′
G

)
together. Then equating each coefficient of the resulting polynomial to zero, we obtain a set of algebraic equations

for ai (i = 0,1,2, .....,m), λ , µ, k1, k2, k3, ...and c.

Step 4: Solving the equations system in Step 3, and using equation then substituting ai (i = 0,1,2, .....,m), λ , µ ,

k1, k2, k3,...,c and the general solutions of equation (13) into equation (11), we can get a variety of exact solutions of
equation (6) [28,29,30].
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3 Applications

In this section, we consider the exact solutions of fractional generalized reaction duffing model can be given as follows
[31,32]

∂ 2α u(x, t)
∂ t2α + p

∂ 2α u(x, t)
∂x2α +qu(x, t)+ ru2(x, t)+ su3(x, t) = 0, t > 0, 0 < α ≤ 1, (14)

where p, q, r and s are all constants. If we take r = 0 Eq. (14) reduces

∂ 2α u(x, t)
∂ t2α + p

∂ 2α u(x, t)
∂x2α +qu(x, t)+ su3(x, t) = 0, t > 0, 0 < α ≤ 1, (15)

nonlinear wave equation. Substituting (8) with (2) and (9) into (15), Eq. (15) reduced into an ODE

c2U
′′
+ pk2U ′′+qU + sU3 = 0, (16)

where U ′ = dU
dξ .

We can determine value of m by balancing U
′′

and U3 in Eq.(16). We find

m+2 = 3m, (17)

m = 1.

We can suppose that the solutions of Eq. (16) is of the form

U(ξ ) = a0 +a1

(
G′
G

)
, a1 ̸= 0. (18)

By using Eq. (18) and (13) we have

U ′′(ξ ) = 2a1

(
G′

G

)3

+3a1λ
(

G′

G

)2

+(2a1µ +a1λ 2)

(
G′

G

)
+a1λ µ , (19)

and

U3(ξ ) = a3
1

(
G′

G

)3

+3a0a2
1

(
G′

G

)2

+3a2
0a1

(
G′

G

)
+a3

0. (20)

Substituting Eq. (18)-(20) into Eq. (16), collecting the coefficients of
(

G′
G

)i
(i = 0, ...,3) and set it to zero we obtain the

system
c2a1λ µ + pk2a1λ µ +qa0 + sa3

0 = 0,

(λ 2 +2µ)a1c2 + p(λ 2 +2µ)a1k2 +qa1 +3sa2
0a1 = 0,

3c2a1λ +3pk2a1λ +3sa0a2
1 = 0,

2c2a1 +2pk2a1 + sa3
1 = 0.

(21)
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Solving this system by using Maple gives

a0 =±λ
√

q
(4µ−λ 2)s a1 =±2

√
q

(4µ−λ 2)s

k = k, c =±
√
−pk2 + 2q

λ 2−4µ .
(22)

where λ and µ are arbitrary constants. By using Eq. (18), expression (22) can be written as

U(ξ ) =±λ
√

q
(4µ−λ 2)s ±2

√
q

(4µ−λ 2)s

(
G′

G

)
. (23)

Substituting Eq. (13) into Eq. (23) we have two types of exact solutions of this equation as follows:

When λ 2 −4µ > 0,

U1,2(ξ ) =±
√

−q
s

(
C1 sinh 1

2
√

λ 2−4µξ+C2 cosh 1
2
√

λ 2−4µξ

C1 cosh 1
2
√

λ 2−4µξ+C2 sinh 1
2
√

λ 2−4µξ

)
, (24)

where ξ = kxα

Γ (1+α) ∓
√

−pk2 + 2q
λ 2−4µ

tα

Γ (1+α) .

When λ 2 −4µ < 0,

U3,4(ξ ) =±
√

q
s

(
−C1 sin 1

2
√

4µ−λ 2ξ+C2 cos 1
2
√

4µ−λ 2ξ

C1 cos 1
2
√

4µ−λ 2ξ+C2 sin 1
2
√

4µ−λ 2ξ

)
, (25)

where ξ = kxα

Γ (1+α) ∓
√

−pk2 + 2q
λ 2−4µ

tα

Γ (1+α) .

In particular, if C1 ̸= 0, C2 = 0, λ > 0, µ = 0, then U1,2 and U3,4 become

u1,2(x, t) =±
√

−q
s

tanh

(
λkxα

2Γ (1+α)
∓
√

2q− pλ 2k2tα

2Γ (1+α)

)
. (26)

Remark 1. Eq. (14) reductions many well-known nonlinear fractional wave equations such as:

(i). p =−1, q =−m2, r = 0 and s = g2, Eq. (14) reduces to the fractional Landau-Ginzburg-Higgs equation.

∂ 2α u(x, t)
∂ t2α − ∂ 2α u(x, t)

∂x2α −m2u(x, t)+g2u3(x, t) = 0, t > 0, 0 < α ≤ 1, (27)

and its exact solutions

u3,4(x, t) =±m
g

tanh

(
λkxα

2Γ (1+α)
∓
√

2q+λ 2k2tα

2Γ (1+α)

)
. (28)

(ii). p =−1, q =−a, r = 0 and s =−b, Eq. (14) reduces to the classical fractional Klein-Gordon equation.

∂ 2α u(x, t)
∂ t2α − ∂ 2α u(x, t)

∂x2α −au(x, t)−bu3(x, t) = 0, t > 0, 0 < α ≤ 1, (29)

and its exact solutions

u5,6(x, t) =±
√
−a

b
tanh

(
λkxα

2Γ (1+α)
∓

√
−2a+λ 2k2tα

2Γ (1+α)

)
. (30)

c⃝ 2015 BISKA Bilisim Technology



130 O. Guner and M. Atik: A study on the nonlinear fractional generalized reaction duffing model

(iii). p =−1, q = 1, r = 0 and s =−1, Eq. (14) reduces to the ϕ 4 equation.

∂ 2α u(x, t)
∂ t2α − ∂ 2α u(x, t)

∂x2α +u(x, t)−u3(x, t) = 0, t > 0, 0 < α ≤ 1, (31)

and its exact solutions

u7,8(x, t) =± tanh

(
λkxα

2Γ (1+α)
∓

√
2+λ 2k2tα

2Γ (1+α)

)
. (32)

(iv). p =−1, q = 1, r = 0 and s =− 1
6 , Eq. (14) reduces to the Sine-Gordon equation.

∂ 2α u(x, t)
∂ t2α − ∂ 2α u(x, t)

∂x2α +u(x, t)− 1
6

u3(x, t) = 0, t > 0, 0 < α ≤ 1, (33)

and its exact solutions

u9,10(x, t) =±
√

6tanh

(
λkxα

2Γ (1+α)
∓

√
2+λ 2k2tα

2Γ (1+α)

)
. (34)

(v). p = 0, q = a, r = 0 and s = b, Eq. (14) reduces to the Duffing equation.

∂ 2α u(x, t)
∂ t2α +au(x, t)+bu3(x, t) = 0, t > 0, 0 < α ≤ 1, (35)

also its exact solutions

u11,12(x, t) =±
√
−a

b
tanh

(
λkxα

2Γ (1+α)
∓

√
2atα

2Γ (1+α)

)
. (36)

Remark 2. Comparing our results to Mirzazadeh’s and Bekir’s results [32,33], it can be seen that the results are same

when we choose some proper values. In [31], our results different than Jafari’s result.

4 Conclusion

In this paper, the fractional complex transform can easily convert a fractional differential equation into its equivalent
ordinary differential equation. Then, the

(
G′
G

)
-expansion method has been successfully employed to obtain the exact

solution of the fractional generalized reaction duffing model. The obtained solutions demonstrate the reliability of the
algorithm and its wider applicability to nonlinear fractional partial differential equations. These solutions include the
generalized hyperbolic function solutions, generalized trigonometric function solutions, and rational function solutions,
which may be very useful to understand the nonlinear FDEs. From the results we seen that the proposed method is a very
effective and powerful technique in determining exact solutions of time fractional nonlinear partial differential equations.
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