
144 NTMSCI 3, No. 4, 144-153 (2015)

New Trends in Mathematical Sciences
http://www.ntmsci.com

Numerical and analytical study for integro-differential
equations using spectral collocation method

M. M. Khader1,2 and N. H. Sweilam3

1Department of Mathematics and Statistics, Al-Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
2Department of Mathematics, Faculty of Science, Benha University, Benha, Egypt
3Department of Mathematics, Faculty of Science, Cairo University Giza, Egypt

Received: 25 October 2015, Revised: 1 November 2015, Accepted: 16 November 2015
Published online: 12 December 2015.

Abstract: A numerical method for solving integro-differential equations is presented. This method is based on replacement of the
unknown function by truncated series of well-known shifted Legendre expansion of functions. An approximate formula of the integer
derivative is introduced. The introduced method converts the proposed equation by means of collocation points to system of algebraic
equations with shifted Legendre coefficients. Thus, by solving this system of equations, the shifted Legendre coefficients are obtained.
Special attention is given to study the convergence analysis and derive an upper bound of the error of the presented approximate
formula. Numerical results are performed in order to illustrate the usefulness and show the efficiency and the accuracy of the present
method.
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1 Introduction

The integro-differential equation (IDE) is an equation that involves both integrals and derivatives of an unknown

function. Mathematical modeling of real-life problems usually results in functional equations, like ordinary or partial

differential equations, integral and integro-differential equations, stochastic equations. Many mathematical formulations

of physical phenomena contain integro-differential equations, these equations arise in many fields like physics,

astronomy, potential theory, fluid dynamics, biological models and chemical kinetics. The integro-differential equations,

are usually difficult to solve analytically, so it is required to obtain an efficient approximate solution ([1], [2],

[4], [5], [15]). Recently, several numerical methods to solve IDEs have been given, such as variational iteration method

[7], homotopy perturbation method ([6], [14]), spline functions expansion ([9], [12]) and collocation method

([8], [10], [16], [17]). Several numerical methods to solve the fourth integro-differential equations have been given such

as, Chebyshev cardinal functions [11], variational iteration method [13] and others.

Legendre polynomials occur in the solution of Laplace equation of the potential, ∇2Φ(x) = 0, in a charge-free region of

space, using the method of separation of variables, where the boundary conditions have axial symmetry, the solution for

the potential will be

Φ(r,θ) =
∞

∑
l=0

[Alrl +Blr−(l+1)]Pl(cosθ),
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Al and Bl are to be determined according to the boundary conditions of each problem. They also appear when solving

Schrödinger equation in three dimensions for a central force.

In this work, we will derive an approximate formula of the integral derivative y(n)(x) and derive an upper bound of the

error of this formula, then we use this formula to solve integro-differential equations:

N

∑
r=0

y(r)(x) = f (x)+α
∫ x

0
K(x, t)F(y(t))dt, 0 ≤ x, t ≤ 1, (1)

under the initial conditions:

y(r)(0) = λr, r = 0,1, ...,N −1, (2)

where λr are suitable constants; N = 0,1,2, ..., f (x) and kernel k(x, t) are given functions.

2 An approximate formula of the integer derivative

The well-known Legendre polynomials are defined on the interval [−1,1] and can be determined with the aid of the

following recurrence formula [3]

Lk+1(z) =
2k+1
k+1

zLk(z)−
k

k+1
Lk−1(z), k = 1,2, ...,

where L0(z) = 1 and L1(z) = z. In order to use these polynomials on the interval [0,1] we define the so called shifted

Legendre polynomials by introducing the change of variable z = 2t −1. Let the shifted Legendre polynomials Lk(2t −1)

be denoted by L∗
k(t). Then L∗

k(t) can be obtained as follows

L∗
k+1(t) =

(2k+1)(2t −1)
(k+1)

L∗
k(t)−

k
k+1

L∗
k−1(t), k = 1,2, ...,

where L∗
0(t) = 1 and L∗

1(t) = 2t −1. The analytic form of the shifted Legendre polynomials L∗
k(t) of degree k is given by

L∗
k(t) =

k

∑
i=0

(−1)k+i (k+ i)!
(k− i)!(i!)2 t i. (3)

Note that L∗
k(0) = (−1)k and L∗

k(1) = 1. The orthogonality condition is

∫ 1

0
L∗

i (t)L
∗
j(t)dt =

{
1

2i+1 , for i = j;

0, for i ̸= j.

The function u(t), which is a square integrable in [0,1], may be expressed in terms of shifted Legendre polynomials as

u(t) =
∞

∑
i=0

ciL∗
i (t), (4)
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where the coefficients ci are given by

ci = (2i+1)
∫ 1

0
u(t)L∗

i (t)dt, i = 0,1, ... . (5)

In practice, only the first (m+1)-terms of shifted Legendre polynomials are considered. Then we have

um(t) =
m

∑
i=0

ciL∗
i (t). (6)

The main approximate formula of the integer derivative is given in the following theorem.

Theorem 1. Let u(t) be approximated by shifted Legendre polynomials as (6) then the integer derivative of order n is

given by

D(n)(um(t)) =
m

∑
i=n

i

∑
k=n

ci γ(n)i,k tk−n, (7)

where γ(n)i,k is given by

γ(n)i,k =
(−1)(i+k)(i+ k)

(i− k)!(k)!(k−n)!
. (8)

Proof. Since the differentiation is a linear operation, then from (6) we have

D(n)(um(t)) =
m

∑
i=0

ciD(n)(L∗
i (t)). (9)

From the formula (3) we have

D(n)L∗
i (t) = 0, i = 0,1, ...,n−1. (10)

Therefore, for i = n,n+1, ...,m and formula (3) we get

D(n)L∗
i (t) =

i

∑
k=0

(−1)i+k(i+ k)!
(i− k)!(k!)2 D(n)(tk) =

i

∑
k=n

(−1)i+k(i+ k)!
(i− k)!(k!)2 tk−n. (11)

A combination of Eqs.(9), (10) and (11) leads to the desired result (7).

Test Example. Consider the function u(t) = t2 and m = 2, n = 1, the shifted Legendre series of t2 is

t2 =
1
3

L∗
0(t)+

1
2

L∗
1(t)+

1
6

L∗
2(t).

Hence,

D(1)t2 =
2

∑
i=1

i

∑
k=1

ci γ(1)i,k tk−1, where, γ(1)1,1 = 2, γ(1)2,1 =−6, γ(1)2,2 = 12,

therefore

D(1)t2 = c1 γ(1)1,1 + c2 γ(1)2,1 + c2 γ(1)2,2 t = 2t,

which agrees with the exact derivative.
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3 Error analysis

In this section, special attention is given to study the convergence analysis and evaluate an upper bound of the error for

the proposed approximate formula.

Theorem 2. (Legendre truncation theorem) [3] The error in approximating u(t) by the sum of its first m terms is

bounded by the sum of the absolute values of all the neglected coefficients. If

um(t) =
m

∑
k=0

ck Lk(t), (12)

then

ET (m)≡ |u(t)−um(t)| ≤
∞

∑
k=m+1

|ck|, (13)

for all u(t), all m, and all t ∈ [−1,1].

Theorem 3. The integer derivative of order n for the shifted Legendre polynomials can be expressed in terms of the

shifted Legendre polynomials themselves in the following form

D(n)(L∗
i (t)) =

i

∑
k=n

k−n

∑
j=0

Θi, j,k L∗
j(t), (14)

where

Θi, j,k =
(−1)i+k(i+ k)!(2 j+1)
(i− k)!(k)!Γ (k−n+1)

×
j

∑
r=0

(−1) j+r( j+ r)!
( j− r)!(r!)2(k−n+ r+1)

, j = 0,1, ... . (15)

Proof. Using the properties of the shifted Legendre polynomials [3], then tk−n in (11) can be expanded in the following

form

tk−n =
k−n

∑
j=0

ck jL∗
j(t), (16)

where ck j can be obtained using (5) such that u(t) = tk−n, then we can claim the following

ck j = (2 j+1)
∫ 1

0
tk−nL∗

j(t)dt, j = 0,1, ... .

But at j = 0 we have, ck0 =
∫ 1

0
tk−ndt =

1
k−n+1

,

also, for any j, and using the formula (3), we can claim

ck j = (2 j+1)
j

∑
r=0

(−1) j+r ( j+ r)!
( j− r)!(r!)2(k−n+ r+1)

, j = 1,2, ...,

employing Eqs.(11) and (16) gives

D(n)(L∗
i (t)) =

i

∑
k=n

k−n

∑
j=0

Θi, j,kL∗
j(t), i = n,n+1, ... ,
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where Θi, j,k is defined in (15) and this completes the proof of the theorem.

Theorem 4. The error |ET (m)|= |D(n)u(t)−D(n)um(t)| in approximating D(n)u(t) by D(n)um(t) is bounded by

|ET (m)| ≤
∣∣∣ ∞

∑
i=m+1

ci

( i

∑
k=n

k−n

∑
j=0

Θi, j,k

)∣∣∣. (17)

Proof. A combination of Eqs.(4), (6) and (14) leads to

|ET (m)|=
∣∣∣D(n)u(t)−D(n)um(t)

∣∣∣= ∣∣∣ ∞

∑
i=m+1

ci

( i

∑
k=n

k−n

∑
j=0

Θi, j,kL∗
j(t)
)∣∣∣,

but |L∗
j(t)| ≤ 1, so, we can obtain

|ET (m)| ≤
∣∣∣ ∞

∑
i=m+1

ci

( i

∑
k=n

k−n

∑
j=0

Θi, j,k

)∣∣∣,
and subtracting the truncated series from the infinite series, bounding each term in the difference, and summing the bounds

completes the proof of the theorem.

4 Procedure solution for the integro-differential equation

In this section, we present the proposed method to solve numerically the integro-differential equation of the form (1). The

unknown function y(x) may be expanded by finite series of shifted Legendre polynomials as the following approximation:

ym(x) =
m

∑
n=0

cnL∗
n(x), (18)

From Eqs.(1), (18) and Theorem 1 we have

N

∑
r=0

m

∑
i=r

i

∑
k=r

ci γ(r)i,k xk−r = f (x)+α
∫ x

0
K(x, t)F(

m

∑
n=0

cnL∗
n(t))dt, 0 ≤ x, t ≤ 1. (19)

We now collocate Eq.(19) at (m−1+N) points xs, s = 0,1, ...,m−N as:

N

∑
r=0

m

∑
i=r

i

∑
k=r

ci γ(r)i,k xk−r
s = f (xs)+α

∫ xs

0
K(xs, t)F(

m

∑
n=0

cnL∗
n(t))dt. (20)

For suitable collocation points, we use roots of shifted Legendre polynomial L∗
m+1−N(x). The integral terms in Eq.(20)

can be found using composite trapezoidal integration technique as:

∫ xs

0
K(xs, t)F(

m

∑
n=0

cnL∗
n(t))dt ∼=

hs

2
(Ω(t0)+Ω(tl)+2

l−1

∑
k=1

Ω(tk)), (21)

c⃝ 2015 BISKA Bilisim Technology



NTMSCI 3, No. 4, 144-153 (2015) / www.ntmsci.com 149

where Ω(t)=K(xs, t)F(∑m
n=0 cnL∗

n(t))dt, hs =
xs
l , for an arbitrary integer l, t j+1 = t j+hs, s= 0,1, ...,m−N, j = 0,1, ..., l.

So, by using Eqs.(21) and (20) we obtain

N

∑
r=0

m

∑
i=r

i

∑
k=r

ci γ(r)i,k xk−r
s = f (xs)+α

hs

2
(Ω(t0)+Ω(tl)+2

l−1

∑
k=1

Ω(tk)). (22)

Also, by substituting Eqs.(18) in the initial conditions (2) we can obtain N −1 equations as follows:

N−1

∑
r=1

m

∑
i=r

ciL
∗(r)
i (0) = λr. (23)

Eq.(22), together with N−1 equations of the initial conditions (23), give system of (m+1) algebraic equations which can

be solved, for the unknowns cn,n = 0,1, ...,m, using conjugate gradient method or Newton iteration method.

5 Numerical results

In this section, to achive the validity, the accuracy and support our theoretical discussion of the proposed method, we

give some computational results of numerical examples.

Example 1. Consider the linear integro-differential equation as in Eq.(1) and (2) with N = 1, f (x) = 2x+ 3x2

2 − 7x4

12 ,

α = 1, K(x, t) = x+ t, F(y(t)) = y(t), then the integro-differential equation will be

y′(x) = 2x+
3x2

2
− 7x4

12
+
∫ x

0
(x+ t)y(t)dt, 0 ≤ x ≤ 1, (24)

subject to the initial condition

y(0) =−1. (25)

The exact solution of this problem is y(x) = x2 −1.

We apply the suggested method with m = 3, and approximate the solution y(x) as follows

y3(x) =
3

∑
n=0

cnL∗
n(x). (26)

From Eqs.(24), (26) and Theorem 1 we have

3

∑
i=1

i

∑
k=1

ci γ(1)i,k xk−1 = 2x+
3x2

2
− 7x4

12
+
∫ x

0
(x+ t)

3

∑
n=0

cnL∗
n(t)dt. (27)

We now collocate Eq.(27) at points xs, s = 0,1 as:

3

∑
i=1

i

∑
k=1

ci γ(1)i,k xk−1
s = 2xs +

3x2
s

2
− 7x4

s

12
+
∫ xs

0
(xs + t)

3

∑
n=0

cnL∗
n(t)dt. (28)
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For suitable collocation points we use roots of shifted Legendre polynomial L∗
2(x). The integral terms in Eq.(28) can be

found using composite trapezoidal integration technique as:

∫ xs

0
(xs + t)

3

∑
n=0

cnL∗
n(t)dt =

hs

2
(Ω(t0)+Ω(tl)+2

l−1

∑
k=1

Ω(tk)), (29)

where Ω(t) = (xs + t)∑3
n=0 cnL∗

n(t), hs =
xs
l , for an arbitrary integer l, t j+1 = t j +hs, s = 0,1, j = 0,1, ..., l. So by using

Eqs.(29) and (28) we obtain

3

∑
i=1

i

∑
k=1

ci γ(1)i,k xk−1
s = 2xs +

3x2
s

2
− 7x4

s

12
+

hs

2
(Ω(t0)+Ω(tℓ)+2

ℓ−1

∑
k=1

Ω(tk)). (30)

Also, by substituting Eqs.(26) in the initial condition (25) we can obtain fourth equation as follows:

c0 − c1 + c2 − c3 =−1. (31)

Eq.(30), together with the equation of the initial condition (31), represent a linear system of four algebraic equations in

the coefficients cn, by solving it using the conjugate iteration method, we obtain:

c0 =−0.6667, c1 = 0.500, c2 = 0.1667, c3 = 5.4433×10−18.

Fig. 1: The behavior of the exact solution and the approximate solution at m = 3.

The behavior of the approximate solution using the proposed method with m = 3 and the exact solution are presented in

Figure 1. From Figure 1, it is clear that the proposed method can be considered as an efficient method to solve the linear

integro-differential equations.
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Example 2. Consider the non-linear integro-differential equation as in Eq.(1) and (2) with N = 2, f (x) = 2+ x2 − 11x6

30 ,

α = 1, K(x, t) = x+ t, F(y(t)) = (y(t))2, then the integro-differential equation will be

y′′(x)+ y(x) = 2+ x2 − 11x6

30
+
∫ x

0
(x+ t)(y(t))2dt, 0 ≤ x ≤ 1, (32)

subject to the initial conditions

y(0) = 0, y′(0) = 0. (33)

The exact solution of this problem is y(x) = x2.

We apply the suggested method with m = 4, and approximate the solution y(x) as follows

y4(x) =
4

∑
n=0

cnL∗
n(x). (34)

From Eqs.(32), (34) and Theorem 1 we have

4

∑
i=2

i

∑
k=2

ci γ(2)i,k xk−2 +
4

∑
n=0

cnL∗
n(x) = 2+ x2 − 11x6

30
+
∫ x

0
(x+ t)(

4

∑
n=0

cnL∗
n(t))

2dt. (35)

We now collocate Eq.(35) at points xs, s = 0,1,2 as:

4

∑
i=2

i

∑
k=2

ci γ(2)i,k xk−2
s +

4

∑
n=0

cnL∗
n(xs) = 2+ x2

s −
11x6

s

30
+
∫ xs

0
(xs + t)(

4

∑
n=0

cnL∗
n(t))

2dt. (36)

For suitable collocation points we use roots of shifted Legendre polynomial L∗
3(x). The integral terms in Eq.(36) can be

found using composite trapezoidal integration technique as:

∫ xs

0
(xs + t)

(
4

∑
n=0

cnL∗
n(t)

)2

dt =
hs

2
(Ω(t0)+Ω(tl)+2

l−1

∑
k=1

Ω(tk)), (37)

where Ω(t) = (xs + t)
(
∑4

n=0 cnL∗
n(t)
)2, hs =

xs
l , for an arbitrary integer l, t j+1 = t j +hs, s = 0,1,2, j = 0,1, ..., l. So by

using Eqs.(37) and (36) we obtain

4

∑
i=2

i

∑
k=2

ci γ(2)i,k xk−2
s +

4

∑
n=0

cnL∗
n(xs)

= 2xs +
3x2

s

2
− 7x4

s

12
+

hs

2
(Ω(t0)+Ω(tl)+2

l−1

∑
k=1

Ω(tk)). (38)

Also, by substituting Eq.(34) in the initial conditions (33) we can obtain two equations as follows:

c0 − c1 + c2 − c3 + c4 = 0,

c0L∗′
0 (0)+ c1L∗′

1 (0)+ c2L∗′
2 (0)+ c3L∗′

3 (0)+ c4L∗′
4 (0) = 0. (39)
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Eq.(38), together with two equations of the initial conditions (39), represent a non-linear system of five algebraic equations

in the coefficients cn, by solving it using the Newton iteration method, we obtain:

c0 = 0.375, c1 = 0.500, c2 = 0.125, c3 =−2.533×10−17, c4 =−3.86428∗10−18.

Fig. 2: The behavior of the exact solution and the approximate solution at m = 4.

The behavior of the approximate solution using the proposed method with m = 4 and the exact solution are presented

in Figure 2. From Figure 2, it is clear that the proposed method can be considered as an efficient method to solve the

non-linear integro-differential equations.

6 Conclusion and discussion

Integro-differential equations are usually difficult to solve analytically. so, it is required to obtain the approximate solution.

In this paper, we proposed the spectral collocation method using shifted Legendre polynomials for solving the integro-

differential equations. The proposed method is useful both for acquiring the general solution and particular solution as

demonstrated in examples. Special attention is given to study the converges analysis and derive an upper bound of the

error of the derived approximate formula. From our obtained results, we can conclude that the proposed method gives

the solutions in excellent agreement with the exact solution and better than the other methods. An interesting feature of

this method is that when an integral system has linearly independent polynomial solution of degree m or less than m, the

method can be used for finding the analytical solution. All computational are done using Matlab 8.
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