

Generalization of $([e], [e] \lor [c])$ -Ideals of BE-algebras

A. F. Ali¹, S. Abdullah² and M. S. Kamran³ and M. Aslam⁴

¹ Department of Basic Sciences, Riphah Internaional University, Islamabad, Pakistan.

² Department of Mathematics, Quaid-e-Aazam University, Islamabad, Pakistan.

³ Department of Basic Sciences, Riphah Internaional University, Islamabad Pakistan

⁴ Department of Mathematics, King Khlid University Saudi Arabia.

Received: 12 April 2014, Revised: 8 September 2014, Accepted: 10 October 2014 Published online: 1 December 2014

Abstract: In this paper, using *N*-structure, the notion of an *N*-ideal in a BE-algebra is introduced. To obtain a more general form of an *N*-ideal, a point *N*-structure which is (*k*-conditionally) employed in an *N*-structure is proposed. Using these notions, the concept of an $([e], [e] \vee [c_k])$ -ideal is introduced and related properties are investigated. The notion $([e], [e] \vee [c_k])$ -ideal is a generalization of $([e], [e] \vee [c])$ -ideal. We derive some characterizations of $([e], [e] \vee [c_k])$ -ideals of BE-algebras.

Keywords: BE-algebra, (Transitive, self distributive) BE-algebra, Ideal, N-ideal, $([e], [e] \lor [c_k])$ -ideal.

1 Introduction

A (crisp) set *A* in a universe *X* can be defined in the form of its characteristic function $\mu_A : X \to \{0, 1\}$ yielding the value 1 for elements belonging to the set *A* and the value 0 for elements excluded from the set *A*.

So far most of the generalization of the crisp set have been conducted on the unit interval [0,1] and they are consistent with the asymmetry observation. In other words, the generalization of the crisp set to fuzzy sets spread positive information that fit the crisp point $\{1\}$ into the interval [0,1].

Because no negative meaning of information is suggested, we now feel a need to deal with negative information. To do so, we also feel a need to supply a mathematical tool.

To attain such an object, Lee et al.[12] introduced a new function which is called a negative-valued function, and constructed N-structures. They applied N-structures to BCK/BCI-algebras, and discussed N-ideals in BCK/BCI-algebras. In 1966, Iseki and Imai [7] and Iseki [8] introduced two classes of abstract algebras: BCK-algebras and BCI-algebras. It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. As a generalization of a BCK-algebra, Kim and Kim [3] introduced the notion of a BE-algebra and filter of a BE-algebra, and investigated several properties. So and Ahn [6] introduced the notion of ideals in BE-algebras. They considered several descriptions of ideals in BE-algebras. Kim and Lee generalized the concept of So and Ahn, to defined extended upper set in BE-algebras [4]. They provided the relations between filters and extended upper set in BE-algebras. Ahn et al. introduced the concepts of self-distributive and transitive BE-algebras and also discussed some properties of filters in

* Corresponding author e-mail: saleemabdullah81@yahoo.com

commutative BE-algebras [1]. They discussed some properties of characterizations of generalized upper set $A_n(u,v)$ to the structure of ideals and filters in BE-algebras. The Congruence's and BE-relations on BE-algebra was defined by Yon et al. [2]. Recently, Saeid et al. studied filters in BE-algebras [10]. They defined positive filters, normal filters and implicative filters of BE-algebras. Also gave some relation among these types of filters in BE-algebras. They introduced some interesting results on these filters. Also gave some characterization of BE-algebras by these filters.

Kang, and Jun [9], introduced the notion of an *N*-ideal of BE-algebra. In [9], a point *N*-structure which is (Conditionally) employed in an *N*-structure is proposed. The concept of $([e], [e] \lor [c])$ -ideals and discussed the related properties. The present author introduce the new notion called *k*-conditionally employed of point N-structure. We use this concept to N-ideal of BE-algebra to introduce a generalization of $([e], [e] \lor [c])$ -ideals of BE-algebras.

In this paper, we introduce the notion of k-conditionally employed to N-structure. By applying of employed and k-conditionally employed to N-structure with point N-structure to introduce the concept of an $([e], [e] \lor [c_k])$ -ideal in a BE-algebra and give some related properties. The aim of this paper is to introduce a new generalization of the concept of $([e], [e] \lor [c])$ -ideal. We give some characterization of $([e], [e] \lor [c_k])$ -ideals of BE-algebras by the level sets. We further discuss some interesting results of $([e], [e] \lor [c_k])$ -ideals of BE-algebra.

2 Preliminaries

Definition 1. [3] Let $K(\tau)$ be a class of type $\tau = (2,0)$. A system $(X;*,1) \in K(\tau)$ define a **BE-Algebra** if the following axioms hold:

Definition 2. [6] A relation " \leq " on a BE-algebra *X* is defined by $(\forall x, y \in X)$ ($x \leq y \Leftrightarrow x * y = 1$).

Definition 3. [6] A BE-algebra X is called **Self-distributive** if x * (y * z) = (x * y) * (x * z) for all $x, y, z \in X$.

Definition 4. [4] A BE-algebra (X; *, 1) is said to be **Transitive** if it satisfies: $(\forall x, y, z \in X)$ $(y * z \le (x * y) * (x * z))$.

Definition 5. [6] Let *I* a non-empty subset of an BE-algebra *X* then *I* is called an **Ideal** of *X* if; (1) $(\forall x \in X, s \in I) (x * s \in I)$, (2) $(\forall x \in X, s, q \in I) ((s * (q * x)) * x \in I)$.

Lemma 1. [6] A non-empty subset I of X is an ideal of X if and only if it satisfies:

(1) $1 \in I$, (2) $(\forall x, z \in X)$ $(\forall y \in I)$ $(x * (y * z) \in I \Rightarrow x * z \in I)$).

3 N-ideals of a BE-algebra

Definition 6. [9] An element of $\tau(X, [-1, 0])$ is called a **Negative-valued function** from *X* to [-1, 0] (briefly, *N*-function on *X*).

Definition 7. [9] An ordered pair (X, f) of X and an N-function f on X is called an N-structure.

Definition 8. [9] For any *N*-structure (X, f) the non-empty set

$$C(f;t) := \{x \in X \mid f(x) \le t\}$$

is called a **closed** (f,t)-cut of (X, f), where $t \in [-1,0]$.

Definition 9. [9] By an *N*-ideal of *X* we mean an *N*-structure (X, f) which satisfies the following condition: $(\forall t \in [-1, 0])$ $(C(f;t) \in J(X) \cup \{\emptyset\})$.where J(X) is a set of all ideal of *X*.

Example 1. Let $X = \{1, \alpha, h, m, 0\}$ be a set with a multiplication table given by;

*	1	α	h	т	0
1	1	α	h	т	0
α	1	1	α	т	т
h	1	1	1	т	т
m	1	α	h	1	α
0	1	1	α	1	1

Then (X; *, 1) is a BE-algebra. Consider an *N*-structure (X, f) in which *t* is defined by;

$$f(y) = \begin{cases} -0.7 \text{ if } y \in \{1, \alpha, h\} \\ -0.2 \text{ if } y \in \{m, 0\} \end{cases}$$

Then

$$C(f;t) = \begin{cases} \{1, \alpha, h\} \text{ if } t \in [-0.7, 0] \\ \emptyset & \text{ if } t \in [-1, -0.7) \end{cases}$$

Note that $\{1, \alpha, h\}$ is an ideals of BE-algebra *X*, and hence (X, f) is an *N*-ideal of *X*.

Lemma 2. Each *N*-ideal (X, f) of BE-algebra *X* satisfies the condition $(\forall x \in X) (f(1) \le f(x))$. *Proof.* Since in BE-algebra we have x * x = 1, thus we have $f(1) = f(x * x) \le f(x)$ for all $x \in X$. **Proposition 1.** Each *N*-ideal *f* of BE-algebra *X* satisfies the condition $(\forall x, y \in X) (f((x * y) * y) \le f(x))$. *Proof.* Straightforward.

Proposition 2. Each *N*-ideal *f* of BE-algebra *X* satisfies the condition; $(\forall x, y \in X) (f(y) \le \max\{f(x), f(x * y)\})$. *Proof.* It can be easily proved.

Corollary 1. If $x \le y$, then each *N*-ideal *f* of BE-algebra *X* satisfies the condition; $f(y) \le f(x)$. *Proof.* Suppose $x \le y$ for all $x, y \in X$. Then x * y = 1, so

$$f(y) = f(1 * y) = f((x * y) * y)$$

By proposition 1, $f((x * y) * y) \le f(x)$, hence $f(y) \le f(x)$.

4 BISKA

4 ([e], [e] \lor [c_k])-Ideals

In [9], Jun et. al introduced the concept of N-ideals in BE-algebras and generalized N-ideals in BE-algebra by using the concept of employed and conditionally employed. In this section, we give further generalization of conditionally employed which is called *k*-conditionally employed. We use this concept to N-ideals of BE-algebras to introduce the notion of $([e], [e] \lor [c_k])$ -ideals of BE-algebras. The concept of $([e], [e] \lor [c_k])$ -ideals of BE-algebras is a generalization of N-ideals and $([e], [e] \lor [c])$ -ideals of BE-algebras.

Let f be an N-structure of of BE-algebra X in which f is given by;

$$f(y) = \begin{cases} 0 \text{ if } y \neq x \\ t \text{ if } y = x \end{cases}$$

where $t \in [-1,0)$, In this case, f is represented by $\frac{x}{t}$. $(X, \frac{x}{t})$ is called **Point** *N*-structure [9]. A Point *N*-structure $(X, \frac{x}{t})$ is called **Employed** in an *N*-structure (X, f) of BE-algebra X if $f(x) \le t$ for all $x \in X$, and $t \in [-1,0)$. It is represented as $(X, \frac{x}{t})[e](X, f)$ or $\frac{x}{t}[e]f$. A point *N*-structure $(X, \frac{x}{t})$ is called (*k*-**Conditionally**) **Employed** with an *N*-structure (X, f) if f(x) + t + k + 1 < 0 for all $x \in X$, $t \in [-1,0)$ and $k \in [0,1)$. It is denoted by $(X, \frac{x}{t})[c_k](X, f)$ or $\frac{x}{t}[c_k]f$. To say that $(X, \frac{x}{t})([e] \lor [c_k])(X, f)$ (or briefly, $\frac{x}{t}([e] \lor [c_k])f$) we mean $(X, \frac{x}{t})[e](X, f)$ or $(X, \frac{x}{t})[c_k](X, f)$ (or briefly, $\frac{x}{t}[e]$ or $\frac{x}{t}[c_k]f$). To say that $\frac{x}{t}\overline{\alpha}f$ we mean $\frac{x}{t}\alpha f$ does not hold for $\alpha \in \{[e], [c_k], [e] \lor [c_k]\}$.

Definition 10. An *N*-structure (X, f) is called $([e], [e] \lor [c_k])$ -ideal of *X* if it satisfied; (1) $\frac{y}{t}[e]f \Rightarrow \frac{x*y}{t}([e] \lor [c_k])f$,

(2) $\frac{x}{t}[e]f, \frac{y}{r}[e]f \Rightarrow \frac{(x*(y*z))*z}{\max\{t,r\}}([e] \lor [c_k])f$ for all $x, y, z \in X$, where $t, r \in [-1,0)$ and $k \in [0,1)$.

Example 2. Let $X = \{1, \gamma, 0, m, \omega\}$ be a set with a multiplication table given by;

*	1	γ	0	т	ω
1	1	γ	0	т	ω
γ	1	1	γ	т	т
0	1	1	1	т	т
т	1	γ	0	1	γ
ω	1	1	γ	1	1

Let (X, f) be an *N*-structure. Then *f* is defined an *N*-structure (X, f), as;

$$f = \begin{pmatrix} 1 & \gamma & 0 & m & \omega \\ -0.9 & -0.8 & -0.7 & -0.9 & -0.8 \end{pmatrix}$$

For $k \in (0.4, 1)$ Hence, f is an $([e], [e] \lor [c_k])$ -ideal of X.

Theorem 1. For any *N*-structure (X, f), the following are equivalent:

1. (X, f) is a $([e], [e] \lor [c_k])$ -ideal of X.

2. (X, f) satisfies the following inequalities:

2.1. $(\forall x, y \in X)$ $(f(x * y) \le \max\{f(y), \frac{-k-1}{2}\}),$ 2.2. $(\forall x, y, z \in X)$ $(f((x * (y * z)) * z) \le \max\{f(x), f(y), \frac{-k-1}{2}\}).$ where $k \in (-1, 0].$

Proof. Let (X, f) be a $([e], [e] \vee [c_k])$ -ideal of X. Suppose that $f(x * y) > \max\{f(y), \frac{-k-1}{2}\}$ for all $x, y \in X$. If we take $t_y := \max\{f(y), \frac{-k-1}{2}\}, t_y \in [\frac{-k-1}{2}, 0], \frac{y}{t_y}[e]f$ and $\frac{x*y}{t_y}[e]f$. Also, $f(x * y) + t_y + k + 1 > 2t_y + 1 \ge 0$, and so $\frac{x*y}{t_y}[c_k]f$. This is a contradiction. Thus, $f(x * y) \le \max\{f(y), \frac{-k-1}{2}\}$ for all $x, y \in X$. Also, suppose that $f((x * (y * z)) * z) > \max\{f(x), f(y), \frac{-k-1}{2}\}$ for some $x, y, z \in X$. Take $t := \max\{f(x), f(y), \frac{-k-1}{2}\}$. Then, $t \ge \frac{-k-1}{2}, \frac{x}{t}[e]f$ and $\frac{y}{t}[e]f$, but $\frac{x*(y*z))*z}{t}[\overline{e}]f$. Also, $f((x * (y * z) * z) + t + k + 1 > 2t + k + 1 \ge 0$, i.e., $\frac{x*(y*z))*z}{t}[\overline{c_k}]f$. This is a contradiction, and hence $f((x * (y * z)) * z) \le \max\{f(x), f(y), \frac{-k-1}{2}\}$ for all $x, y, z \in X$.

Conversely, suppose that (X, f) satisfies (2.1) and (2.2). Let $\frac{y}{t}[e]f$ for all $y \in X$ and $t \in [-1,0)$. Then, $f(y) \leq t$. We shall prove that $\frac{(x*y)}{t}[e] \lor [c_k]f$. Since from (2.1) we have $f(x*y) \leq \max\{f(y), \frac{-k-1}{2}\}$. Then, if $f(y) > \frac{-k-1}{2}$, then $f(x*y) \leq \max\{f(y), \frac{-k-1}{2}\} = f(y) \leq t$. Thus, $\frac{(x*y)}{t}[e]f$ which is a contradiction. If $f(y) \leq \frac{-k-1}{2}$, which implies that $f(x*y) + t + k + 1 < 2f(x*y) + k + 1 \leq 2\max\{f(y), \frac{-k-1}{2}\} + k + 1 = 0$, i.e., $\frac{x*y}{t}[c_k]f$. Thus $\frac{x*y}{t}([e] \lor [c_k])f$. Let $\frac{x}{t}[e]f$ and $\frac{y}{r}[e]f$ for all $x, y, z \in X$ and $t, r \in [-1, 0)$. Then $f(x) \leq t$ and $f(y) \leq r$. Suppose that $\frac{(x*y*z))*z}{\max\{t,r\}}[\overline{e}]f$, i.e., $f((x*(y*z))*z) > \max\{t,r\}$. If $\max\{f(x), f(y)\} > \frac{-k-1}{2}$, then

$$f((x * (y * z)) * z) \le \max\{f(x), f(y), \frac{-k-1}{2}\} = \max\{f(x), f(y)\} \le \max\{t, r\}.$$

This is impossible, and so $\max\{f(x), f(y)\} \leq \frac{-k-1}{2}$. It follows that $f((x * (y * z)) * z) + \max\{t, r\} + k + 1 < 2f((x * (y * z)) * z) + k + 1 \leq 2\max\{f(x), f(y), \frac{-k-1}{2}\} + k + 1 = 0 \Rightarrow \frac{(x*y*z))*z}{\max\{t, r\}} [\overline{c_k}]f$. Hence $\frac{(x*y*z))*z}{\max\{t, r\}} ([e] \lor [c_k])f$, and therefore (X, f) is a $([e], [e] \lor [c_k])$ -ideal of X.

If (k = 0), then the following holds.

Corollary 2. For any *N*-structure (X, f), the following are equivalent:

(X, f) is a ([e], [e] ∨ [c])-ideal of X.
(X, f) satisfies the following inequalities:

2.1. $(\forall x, y \in X) (f(x * y) \le \max\{f(y), -0.5\}).$ 2.2. $(\forall x, y, z \in X) (f((x * (y * z)) * z) \le \max\{f(x), f(y), \frac{-k-1}{2}\})$

Theorem 2. Every $([e], [e] \lor [c_k])$ -ideal (X, f) of an BE-algebra X satisfies the following inequalities: (1) $(\forall x \in X).(f(1) \le \max\{f(x), \frac{-k-1}{2}\}),$

(2) $(\forall x, y \in X)$ $(f((x * y) * y) \le \max\{f(x), \frac{-k-1}{2}\})$. where $k \in (-1, 0]$.

Proof. (1): By using (V_1) and theorem 1(2.1), we have

$$f(1) = f(x * x) \le \max\{f(x), \frac{-k - 1}{2}\}$$

for all $x \in X$.

(2): By using (V_3) , we have f((x * y) * y) = f((x * (1 * y)) * y) for all $x, y \in X$

Then by using theorem 1(2.2), we get

 $f((x*(1*y))*y) \le \max\{f(x), f(1), \frac{-k-1}{2}\} = \max\{f(x), \frac{-k-1}{2}\}, \text{ because by } (1) \ f(1) \le \max\{f(x), \frac{-k-1}{2}\} \text{ for all } x, y \in X.$ Hence, $f((x*y)*y) \le \max\{f(x), \frac{-k-1}{2}\}$ for all $x, y \in X.$

If (k = 0), then the following holds.

Corollary 3. Every $([e], [e] \lor [c])$ -ideal of a BE-algebra X satisfies the following inequalities: (1) $(\forall x \in X).(f(1) \le \max\{f(x), -0.5\}),$ (2) $(\forall x, y \in X) (f((x*y)*y) \le \max\{f(x), -0.5\}).$

Corollary 4. Each $([e], [e] \lor [c_k])$ -ideal (X, f) satisfies the following condition; $(\forall x, y \in X) \ (x \le y \Rightarrow f(y) \le \max\{f(x), \frac{-k-1}{2}\})$. where $k \in (-1, 0]$.

Proof. Let $x \le y$ for all $x, y \in X$. Then x * y = 1, and so

$$f(y) = f(1 * y) = f((x * y) * y) \le \max\{f(x), \frac{-k-1}{2}\}$$

Hence, $f(y) \le \max\{f(x), \frac{-k-1}{2}\}.$

If (k = 0), then the following holds.

Lemma 3. Each $([e], [e] \lor [c])$ -ideal (X, f) satisfies the following condition; $(\forall x, y \in X) (x \le y \Rightarrow f(y) \le \max\{f(x), -0.5\}).$

Proposition 3. Let (X, f) be an *N*-structure such that

(1) $(\forall x \in X)$ $(f(1) \le \max\{f(x), \frac{-k-1}{2}\}),$ (2) $(\forall x, y, z \in X)$ $(f(x * z) \le \max\{f(x * (y * z)), f(y), \frac{-k-1}{2}\}).$ Then the following implication is valid. $(\forall x, y \in X)$ $(x \le y \Rightarrow f(y) \le \max\{f(x), \frac{-k-1}{2}\}),$ where $k \in (-1, 0].$

Proof. Suppose $x \le y$ for all $x, y \in X$. Then x * y = 1, and by using (1) we get

$$\begin{split} f(y) &= f(1*y) \leq \max\{f(1*(x*y)), f(x), \frac{-k-1}{2}\} \\ &= \max\{f(1*1), f(x), \frac{-k-1}{2}\} \\ &= \max\{f(1), f(x), \frac{-k-1}{2}\} \\ &= \max\{f(x), \frac{-k-1}{2}\} \end{split}$$

Hence, $f(y) \le \max\{f(x), \frac{-k-1}{2}\}.$

If (k = 0), then the following holds.

Lemma 4. Let (X, f) be an *N*-structure such that

 $\begin{aligned} &(1) \ (\forall x \in X) \ (\ f(1) \leq \max\{f(x), -0.5\} \), \\ &(2) \ (\forall x, y, z \in X) \ (\ f(x * z) \leq \max\{f(x * (y * z)), f(y), -0.5\} \). \end{aligned} \\ & \text{Then the following implication is valid.} \\ &(\forall x, y \in X) \ (\ x \leq y \Rightarrow f(y) \leq \max\{f(x), -0.5\} \). \end{aligned}$

Theorem 3. Let (X, f) be an *N*-structure of transitive BE-algebra *X*. Then (X, f) is an $([e], [e] \lor [c_k])$ -ideal of *X* if and only if it satisfies the following inequalities:

(1)
$$(\forall x \in X)$$
 $(f(1) \le \max\{f(x), \frac{-k-1}{2}\}),$
(2) $(\forall x, y, z \in X)$ $(f(x * z) \le \max\{f(x * (y * z)), f(y), \frac{-k-1}{2}\}),$ where $k \in (-1, 0].$

Proof. Suppose that (X, f) is an $([e], [e] \lor [c])$ -ideal of X. From theorem 2(1), it is easily seen that

$$f(1) \le \max\{f(x), \frac{-k-1}{2}\}.$$

Since X is transitive,

$$((y*z)*z)*((x*(y*z))*(x*z)) = 1$$
 (G)

for all $x, y, z \in X$. By using (V_3) and (\mathbf{G})

$$f(x * z) = f(1 * (x * z)) = f(((y * z) * z) * ((x * (y * z)) * (x * z)) * (x * z))$$

By using theorem 1(2.2), 2(2), we have

$$\begin{aligned} f(((y*z)*z)*((x*(y*z))*(x*z))*(x*z)) &\leq \max\{f((y*z)*z), f(x*(y*z)), \frac{-k-1}{2}\} \\ &= \max\{f(x*(y*z)), f((y*z)*z), \frac{-k-1}{2}\} \\ &\leq \max\{f(x*(y*z)), f(y), \frac{-k-1}{2}\} \end{aligned}$$

Hence $f(x * z) \le \max\{f(x * (y * z)), f(y), \frac{-k-1}{2}\}$ for all $x, y, z \in X$. Conversely suppose that (X, f) satisfies (1) and (2). By using (2), (V_1) , (V_2) and (1)

$$f(x*y) \le \max\{f(x*(y*y)), f(y), \frac{-k-1}{2}\}\$$

= $\max\{f(x*1), f(y), \frac{-k-1}{2}\}\$
= $\max\{f(1), f(y), \frac{-k-1}{2}\}\$
= $\max\{f(y), \frac{-k-1}{2}\}\$

Also by using (2) and (1) we get

$$f((x*y)*y) \le \max\{f((x*y)*(x*y)), f(x), \frac{-k-1}{2}\}\$$

= $\max\{f(1), f(x), \frac{-k-1}{2}\}\$
= $\max\{f(x), \frac{-k-1}{2}\}\$

for all $x, y \in X$. Now, since $(y * z) * z \le (x * (y * z)) * (x * z)$ for all $x, y, z \in X$, it follows that from proposition 3, we have

$$f((x*(y*z))*(x*z)) \le \max\{f((y*z)*z), \frac{-k-1}{2}\}$$

So, from (2), we have

$$\begin{aligned} f((x*(y*z))*z) &\leq \max\{f((x*(y*z))*(x*z)), f(x), \frac{-k-1}{2}\} \\ &\leq \max\{f((y*z)*z), f(x), \frac{-k-1}{2}\} \\ &\leq \max\{f(x), f(y), \frac{-k-1}{2}\} \end{aligned}$$

for all $x, y, z \in X$. Using theorem 1, we conclude that (X, f) is a $([e], [e] \lor [c])$ -ideal of X.

If (k = 0), then the following holds.

Corollary 5. Let (X, f) be an *N*-structure of transitive BE-algebra *X*. Then (X, f) is an $([e], [e] \lor [c])$ -ideal of *X* if and only if it satisfies the following inequalities:

(1) $(\forall x \in X)$ $(f(1) \le \max\{f(x), -0.5\}),$ (2) $(\forall x, y, z \in X)$ $(f(x * z) \le \max\{f(x * (y * z)), f(y), -0.5\}).$

Theorem 4. Let X be a transitive BE-algebra. If (X, f) is a $([e], [e] \lor [c_k])$ -ideal of X such that $f(1) > \frac{-k-1}{2}$, then (X, f) is an N-ideal of X, where $k \in (-1, 0]$.

Proof. Suppose that (X, f) is a $([e], [e] \vee [c_k])$ -ideal of X such that $\frac{-k-1}{2} < f(1)$. Then $\frac{-k-1}{2} < f(x)$ and so $\frac{-k-1}{2} < f(1) \le f(x)$ for all $x \in X$ by theorem 3(1)

$$f(1) \le \max\{f(x), \frac{-k-1}{2}\}$$

for all $x \in X$. It follows that from theorem 3(2),

$$f(x*z) \le \max\{f(x*(y*z)), f(y), \frac{-k-1}{2}\}\$$

= max{f(x*(y*z)), f(y)}

for all $x, y, z \in X$. Hence (X, f) is an *N*-ideal of *X*.

If (k = 0), then the following holds.

Corollary 6. Let X be a transitive BE-algebra. If (X, f) is a $([e], [e] \lor [c])$ -ideal of X such that f(1) > -0.5, then (X, f) is an N-ideal of X.

Theorem 5. If (X, f) is a $([e], [e] \lor [c_k])$ -ideal of a transitive BE-algebra X. Show that

$$(\forall t \in [-1, \frac{-k-1}{2})) \; (\mathcal{Q}(f;t) \in J(X) \cup \{ \emptyset \})$$

where $Q(f;t) := \{x \in X \mid \frac{x}{t}[c_k]f\}, J(X)$ is a set of all ideal of X and $k \in (-0.5, 0]$.

Proof. Suppose that $Q(f;t) \neq \emptyset$ for all $t \in [-1, \frac{-k-1}{2})$. Then there exists $x \in Q(f;t)$, and so $\frac{x}{t}[c]f$, i.e., f(x) + t + k + 1 < 0. Using theorem 3(1), we have

$$f(1) \le \max\{f(x), \frac{-k-1}{2}\} \\ = \begin{cases} \frac{-k-1}{2} & \text{if } f(x) \le \frac{-k-1}{2} \\ f(x) & \text{if } f(x) > \frac{-k-1}{2} \\ < -1 - t - k \end{cases}$$

which indicates that $1 \in Q(f;t)$. Let $x * (y * z) \in Q(f;t)$ for all $x, y, z \in X$ here $y \in Q(f;t)$. Then $\frac{x*(y*z)}{t}[c_k]f$ and $\frac{y}{t}[c]f$, i.e., f(x*(y*z))+t+k+1 < 0 and f(y)+t+k+1 < 0. Using theorem 3(2), we get

$$f(x*z) \le \max\{f(x*(y*z)), f(y), \frac{-k-1}{2}\}\$$

Thus, if $\max\{f(x * (y * z)), f(y)\} > \frac{-k-1}{2}$, then

$$f(x * z) \le \max\{f(x * (y * z)), f(y)\} < -1 - t - k$$

If $\max\{f(x*(y*z)), f(y)\} \leq \frac{-k-1}{2}$, then $f(x*z) \leq \frac{-k-1}{2} < -1 - t - k$. This show that $\frac{x*z}{t}[c_k]f$ i.e., $x*z \in Q(f;t)$. By using lemma 1, we have Q(f;t) is an ideal of X.

If (k = 0), then the following holds.

Corollary 7. If (X, f) is a $([e], [e] \lor [c])$ -ideal of a transitive BE-algebra X. Show that

$$(\forall t \in [-1, -0.5)) (Q(f;t) \in J(X) \cup \{\emptyset\})$$

where $Q(f;t) := \{x \in X \mid \frac{x}{t}[c]f\}$, and J(X) is a set of all ideal of X

Theorem 6. Let *X* be a transitive BE-algebra. Then the followings are equivalent: (1) An *N*-structure (X, f) is a $([e], [e] \lor [c_k])$ -ideal of *X* (2) $(\forall t \in [-1,0)) ([f]_t \in J(X) \cup \{\emptyset\})$

where $[f]_t := C(f;t) \cup \{x \in X \mid f(x) + t + k + 1 \le 0\}$, J(X) is a set of all ideal of X, and $k \in (-1,0]$.

Proof. (1) \Rightarrow (2): Suppose that (1) satisfies. Let $[f]_t \neq \emptyset$, here $t \in [-1,0)$. Then there exists $x \in [f]_t$, and so $f(x) \leq t$ or $f(x) + t + k + 1 \leq 0$ for all $x \in X$ and $t \in [-1,0)$. If $f(x) \leq t$, then

$$f(1) \le \max\{f(x), \frac{-k-1}{2}\} \le \max\{t, \frac{-k-1}{2}\} \\ = \begin{cases} t & \text{if } t > \frac{-k-1}{2} \\ \frac{-k-1}{2} \le -1 - t - k \text{ if } t \le \frac{-k-1}{2} \end{cases}$$

By theorem 3(1). Hence $1 \in [f]_t$. If $f(x) + t + k + 1 \le 0$, then

$$f(1) \le \max\{f(x), \frac{-k-1}{2}\} \le \max\{-1-t-k, \frac{-k-1}{2}\} \\ = \begin{cases} -1-t-k \text{ if } t < \frac{-k-1}{2} \\ \frac{-k-1}{2} \le t \text{ if } t \ge \frac{-k-1}{2} \end{cases}$$

And so $1 \in [f]_t$. Let $x, y, z \in X$ be such that $y \in [f]_t$ and $x * (y * z) \in [f]_t$. Then $f(y) \le t$ or $f(y) + t + k + 1 \le 0$, and $f(x * (y * z)) \le t$ or $f(x * (y * z)) + t + k + 1 \le 0$. Thus we let the four cases:

- $(a_1) f(y) \le t$ and $f(x * (y * z)) \le t$,
- (a₂) $f(y) \le t$ and $f(x * (y * z)) + t + k + 1 \le 0$, (a₃) $f(y) + t + k + 1 \le 0$ and $f(x * (y * z)) \le t$,
- $(a_4) f(y) + t + k + 1 \le 0$ and $f(x * (y * z)) + t + k + 1 \le 0$.

For case (a_1) , theorem 3(2), implies that

$$f(x*z) \le \max\{f(x*(y*z)), f(y), \frac{-k-1}{2}\} \le \max\{t, \frac{-k-1}{2}\}$$

=
$$\begin{cases} \frac{-k-1}{2} & \text{if } t < \frac{-k-1}{2} \\ t & \text{if } t \ge \frac{-k-1}{2} \end{cases}$$

so that $x * z \in C(f;t)$ or $f(x * z) + t + k \le \frac{-k-1}{2} + \frac{-k-1}{2} + k = -1$. Thus $x * z \in [f]_t$. For case (a_2) , we have

$$\begin{split} f(x*z) &\leq \max\{f(x*(y*z)), f(y), \frac{-k-1}{2}\} \leq \max\{-1-t-k, t, \frac{-k-1}{2}\}\\ &= \begin{cases} -1-t-k \text{ if } t < \frac{-k-1}{2}\\ t & \text{ if } t \geq \frac{-k-1}{2} \end{cases} \end{split}$$

Thus $x * z \in [f]_t$.

10

For case (a_3) , the prove is same to case (a_2) . For case (a_4) we have,

$$f(x*z) \le \max\{f(x*(y*z)), f(y), \frac{-k-1}{2}\} \le \max\{-1-t-k, \frac{-k-1}{2}\}$$
$$= \begin{cases} -1-t-k \text{ if } t < \frac{-k-1}{2} \\ \frac{-k-1}{2} & \text{ if } t \ge \frac{-k-1}{2} \end{cases}$$

So that, $x * z \in [f]_t$. By using lemma 1, $[f]_t$ is an ideal of *X*.

 $(2) \Rightarrow (1): \text{ Suppose that } (2) \text{ hold. If } f(1) > \max\{f(y), \frac{-k-1}{2}\} \text{ for all } y \in X, \text{ then } f(1) > t_y \ge \max\{f(y), \frac{-k-1}{2}\} \text{ for some } t_y \in [\frac{-k-1}{2}, 0). \text{ It follows that } x \in C(f; t_y) \subseteq [f]_{t_y} \text{ but } 1 \notin C(f; t_y). \text{ Also, } f(1) + t_y + k + 1 > 2t_y + k + 1 \ge 0. \text{ Hence } 1 \notin [f]_{t_y}, \text{ which contradicts the supposition. So, } f(1) \le \max\{f(y), \frac{-k-1}{2}\} \text{ for all } y \in X. \text{ Suppose that for some } x, z \in X, \text{ we have } f(x * z) > \max\{f(x * (y * z)), f(y), \frac{-k-1}{2}\} \text{ (D)}$ Taking $t := \max\{f(x * (y * z)), f(y), \frac{-k-1}{2}\} \text{ implies that } t \in [\frac{-k-1}{2}, 0), x \in C(f; t) \subseteq [f]_t, \text{ and } x * (x * z) \in C(f; t) \subseteq [f]_t.$ Since $[f]_t$ is an ideal of X, we have $x * z \in [f]_t$, and so $f(x * z) \le t$ or $f(x * z) + t + k + 1 \le 0$. The inequality (D) induces $x * z \notin C(f; t), \text{ and } f(x * z) + t + k + 1 > 2t + k + 1 \ge 0$. Thus $x * z \notin [f]_t$. It contradicts the supposition. Hence $f(x * z) \le \max\{f(x * (y * z)), f(y), \frac{-k-1}{2}\}$ for all $x, y, z \in X$. Using theorem 3, we have, (X, f) is a $([e], [e] \lor [c_k])$ -ideal of $f(x * z) \le x, y \in C(f; t)$ is a fixed of $f(x * (y * z)), f(y), \frac{-k-1}{2}$.

Χ.

If (k = 0), then the following holds.

Corollary 8. Let X be a transitive BE-algebra. Then the followings are equivalent:

(1) An *N*-structure (X, f) is a $([e], [e] \lor [c])$ -ideal of *X* (2) $(\forall t \in [-1, 0)) ([f]_t \in J(X) \cup \{\emptyset\})$ where $[f]_t := C(f; t) \cup \{x \in X \mid f(x) + t + 1 \le 0\}$, and J(X) is a set of all ideal of *X*

5 Conclusion:

BE-algebra is a type of logical algebra like BCK/BCI/BCH-algebras. A BE-algebra is a another generalization of BCK/BCI/BCH-algebras. In this paper, we have investigated the concept of $([e], [e] \lor [c_k])$ -ideal of a BE-algebra by using (*k*-conditionally) employed of *N*-structure with point *N*-structure. We also characterized transitive and distributive BE-algebra by $([e], [e] \lor [c_k])$ -ideal. We also discussed their related properties and provide characterizations of $([e], [e] \lor [c_k])$ -ideals.

References

- [1] Ahn, S.S., Kim, Y.H., Ko, J.M, Filters in commutative BE-algebras. Commun. Korean Math. Soc., 27, (2012)(2), 233–242.
- [2] Y. H. Yon, S. M. Lee and K. H. Kim, On congruences and BE-relations in BE-Algebras, Int. Math. Forum, 5, 2010, 46, 2263-2270.
- [3] Kim, H.S., and Y.H. Kim, On BE-algebras, Scientiae Mathematicae Japonicae, 66, 2007, 1, 113-117.
- [4] H. S. Kim and K. J. Lee, Extended upper sets in BE-algebras, Bull. Malays. Math. Sci. Soc. (2) 34(3) (2011), 511-520.
- [5] Rezaei, A., and A. Borumand Saeid, Some results in BE-algebras, Analele Universitatii Oradea Fasc. Matematica, Tom XIX, 1 2012, 33-44.
- [6] K. S. So, and S. S. Ahn, On ideals and upper sets in BE-algebras, Sci. Math. Japo., Online 2008 351-357.
- [7] K. Iseki, and Y. Imai, On axiom systems of propositional calculi XIV, Proc. Japan Academy 42 (1966), 19-22.
- [8] K. Iseki, An algebra related with a propositional calculus, Proc. Japan Academy 42 (1966), 26–29.
- [9] M.S. Kang, and Y.B. Jun, Ideal theory of BE-algebras based on N-structures Hacettepe Journal of Mathematics and Statistics volume 41(4) (2012), 435-447.
- [10] A. B.Saeid, A. R. Rajab and A. Borzooei, Some types of filters in BE-algebras, Math.Comput.Sci., 7, (2013), 341-352.
- [11] Walendziak, A., On commutative BE-algebras, Scientiae Mathematicae Japonicae, 69, 2008, 2, 585-588,
- [12] K. J. Lee, S. Z. Song, and Y. B. Jun, N-ideals of BCK/BCI-algebras, J. Chungcheong Math. Soc. 22 (2009), 417-437.