Generalization of $([e],[e] \vee[c])$-Ideals of BE-algebras

A. F. Ali ${ }^{1}$, S. Abdullah ${ }^{2}$ and M. S. Kamran ${ }^{3}$ and M. Aslam ${ }^{4}$
${ }^{1}$ Department of Basic Sciences, Riphah Internaional University, Islamabad, Pakistan.
${ }^{2}$ Department of Mathematics, Quaid-e-Aazam University, Islamabad, Pakistan.
${ }^{3}$ Department of Basic Sciences, Riphah Internaional University, Islamabad Pakistan
${ }^{4}$ Department of Mathematics, King Khlid University Saudi Arabia.

Received: 12 April 2014, Revised: 8 September 2014, Accepted: 10 October 2014
Published online: 1 December 2014

Abstract

In this paper, using N-structure, the notion of an N-ideal in a BE-algebra is introduced. To obtain a more general form of an N-ideal, a point N-structure which is (k-conditionally) employed in an N-structure is proposed. Using these notions, the concept of an $\left([e],[e] \vee\left[c_{k}\right]\right)$-ideal is introduced and related properties are investigated. The notion $\left([e],[e] \vee\left[c_{k}\right]\right)$-ideal is a generalization of $([e],[e] \vee[c])$-ideal. We derive some characterizations of $\left([e],[e] \vee\left[c_{k}\right]\right)$-ideals of BE-algebras.

Keywords: BE-algebra, (Transitive, self distributive) BE-algebra, Ideal, N-ideal, $\left([e],[e] \vee\left[c_{k}\right]\right)$-ideal.

1 Introduction

A (crisp) set A in a universe X can be defined in the form of its characteristic function $\mu_{A}: X \rightarrow\{0,1\}$ yielding the value 1 for elements belonging to the set A and the value 0 for elements excluded from the set A.

So far most of the generalization of the crisp set have been conducted on the unit interval $[0,1]$ and they are consistent with the asymmetry observation. In other words, the generalization of the crisp set to fuzzy sets spread positive information that fit the crisp point $\{1\}$ into the interval $[0,1]$.

Because no negative meaning of information is suggested, we now feel a need to deal with negative information. To do so, we also feel a need to supply a mathematical tool.

To attain such an object, Lee et al.[12] introduced a new function which is called a negative-valued function, and constructed N -structures. They applied N-structures to $\mathrm{BCK} / \mathrm{BCI}$-algebras, and discussed N-ideals in BCK/BCI-algebras. In 1966, Iseki and Imai [7] and Iseki [8] introduced two classes of abstract algebras: BCK-algebras and BCI-algebras. It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. As a generalization of a BCK-algebra, Kim and Kim [3] introduced the notion of a BE-algebra and filter of a BE-algebra, and investigated several properties. So and Ahn [6] introduced the notion of ideals in BE-algebras. They considered several descriptions of ideals in BE-algebras. They defined the upper set in BE-algebra and derived some relation between ideal theory and upper set in BE-algebras. Kim and Lee generalized the concept of So and Ahn, to defined extended upper set in BE-algebras [4]. They provided the relations between filters and extended upper set in BE-algebras. Ahn et al. introduced the concepts of self-distributive and transitive BE-algebras and also discussed some properties of filters in

[^0]commutative BE-algebras [1]. They discussed some properties of characterizations of generalized upper set $A_{n}(u, v)$ to the structure of ideals and filters in BE-algebras. The Congruence's and BE-relations on BE-algebra was defined by Yon et al. [2]. Recently, Saeid et al. studied filters in BE-algebras [10]. They defined positive filters, normal filters and implicative filters of BE-algebras. Also gave some relation among these types of filters in BE-algebras. They introduced some interesting results on these filters. Also gave some characterization of BE-algebras by these filters.

Kang, and Jun [9], introduced the notion of an N-ideal of BE-algebra. In [9], a point N-structure which is (Conditionally) employed in an N-structure is proposed. The concept of $([e],[e] \vee[c])$-ideals and discussed the related properties. The present author introduce the new notion called k-conditionally employed of point N -structure. We use this concept to N -ideal of BE-algebra to introduce a generalization of $([e],[e] \vee[c])$-ideals of BE-algebras.

In this paper, we introduce the notion of k-conditionally employed to N -structure. By applying of employed and k-conditionally employed to N -structure with point N -structure to introduce the concept of an $\left([e],[e] \vee\left[c_{k}\right]\right)$-ideal in a BE-algebra and give some related properties. The aim of this paper is to introduce a new generalization of the concept of $([e],[e] \vee[c])$-ideal. We give some characterization of $\left([e],[e] \vee\left[c_{k}\right]\right)$-ideals of BE-algebras by the level sets. We further discuss some interesting results of $\left([e],[e] \vee\left[c_{k}\right]\right)$-ideals of BE-algebra.

2 Preliminaries

Definition 1. [3] Let $K(\tau)$ be a class of type $\tau=(2,0)$. A system $(X ; *, 1) \in K(\tau)$ define a BE-Algebra if the following axioms hold:
$\left(V_{1}\right)(\forall x \in X)(x * x=1)$,
$\left(V_{2}\right)(\forall x \in X)(x * 1=1)$,
$\left(V_{3}\right)(\forall x \in X)(1 * x=x)$,
$\left(V_{4}\right)(\forall x, y, z \in X)(x *(y * z)=y *(x * z))$.
Definition 2. [6] A relation " \leq " on a BE-algebra X is defined by $(\forall x, y \in X)(x \leq y \Leftrightarrow x * y=1)$.
Definition 3. [6] A BE-algebra X is called Self-distributive if $x *(y * z)=(x * y) *(x * z)$ for all $x, y, z \in X$.
Definition 4. [4] A BE-algebra $(X ; *, 1)$ is said to be Transitive if it satisfies: $(\forall x, y, z \in X)(y * z \leq(x * y) *(x * z))$.
Definition 5. [6] Let I a non-empty subset of an BE-algebra X then I is called an Ideal of X if;
(1) $(\forall x \in X, s \in I)(x * s \in I)$,
(2) $(\forall x \in X, s, q \in I)((s *(q * x)) * x \in I)$.

Lemma 1. [6] A non-empty subset I of X is an ideal of X if and only if it satisfies:
(1) $1 \in I$,
(2) $(\forall x, z \in X)(\forall y \in I)(x *(y * z) \in I \Rightarrow x * z \in I))$.

3 N -ideals of a BE-algebra

Definition 6. [9] An element of $\tau(X,[-1,0])$ is called a Negative-valued function from X to $[-1,0]$ (briefly, N-function on X).

Definition 7. [9] An ordered pair (X, f) of X and an N-function f on X is called an N-structure.
Definition 8. [9] For any N-structure (X, f) the non-empty set

$$
C(f ; t):=\{x \in X \mid f(x) \leq t\}
$$

is called a closed (f, t)-cut of (X, f), where $t \in[-1,0]$.
Definition 9. [9] By an N-ideal of X we mean an N-structure (X, f) which satisfies the following condition: $(\forall t \in[-1,0])$ $(C(f ; t) \in J(X) \cup\{\emptyset\}$). where $J(X)$ is a set of all ideal of X.

Example 1. Let $X=\{1, \alpha, h, m, 0\}$ be a set with a multiplication table given by;

$*$	1	α	h	m	0
1	1	α	h	m	0
α	1	1	α	m	m
h	1	1	1	m	m
m	1	α	h	1	α
0	1	1	α	1	1

Then $(X ; *, 1)$ is a BE-algebra. Consider an N-structure (X, f) in which t is defined by;

$$
f(y)=\left\{\begin{array}{l}
-0.7 \text { if } y \in\{1, \alpha, h\} \\
-0.2 \text { if } y \in\{m, 0\}
\end{array}\right.
$$

Then

$$
C(f ; t)= \begin{cases}\{1, \alpha, h\} & \text { if } t \in[-0.7,0] \\ \emptyset & \text { if } t \in[-1,-0.7)\end{cases}
$$

Note that $\{1, \alpha, h\}$ is an ideals of BE-algebra X, and hence (X, f) is an N-ideal of X.

Lemma 2. Each N-ideal (X, f) of BE-algebra X satisfies the condition $(\forall x \in X)(f(1) \leq f(x))$.
Proof. Since in BE-algebra we have $x * x=1$, thus we have $f(1)=f(x * x) \leq f(x)$ for all $x \in X$.
Proposition 1. Each N-ideal f of BE-algebra X satisfies the condition $(\forall x, y \in X)(f((x * y) * y) \leq f(x))$.
Proof. Straightforward.
Proposition 2. Each N-ideal f of BE-algebra X satisfies the condition; $(\forall x, y \in X)(f(y) \leq \max \{f(x), f(x * y)\})$.
Proof. It can be easily proved.
Corollary 1. If $x \leq y$, then each N-ideal f of BE-algebra X satisfies the condition; $f(y) \leq f(x)$.
Proof. Suppose $x \leq y$ for all $x, y \in X$. Then $x * y=1$, so

$$
f(y)=f(1 * y)=f((x * y) * y)
$$

By proposition 1, $f((x * y) * y) \leq f(x)$, hence $f(y) \leq f(x)$.

$4\left([e],[e] \vee\left[c_{k}\right]\right)$-Ideals

In [9], Jun et. al introduced the concept of N-ideals in BE-algebras and generalized N -ideals in BE-algebra by using the concept of employed and conditionally employed. In this section, we give further generalization of conditionally employed which is called k-conditionally employed. We use this concept to N -ideals of BE-algberas to introduce the notion of $\left([e],[e] \vee\left[c_{k}\right]\right)$-ideals of BE-algebras. The concept of $\left([e],[e] \vee\left[c_{k}\right]\right)$-ideals of BE-algebras is a generalization of N -ideals and $([e],[e] \vee[c])$-ideals of BE-algebras.

Let f be an N-structure of of BE-algebra X in which f is given by;

$$
f(y)=\left\{\begin{array}{l}
0 \text { if } y \neq x \\
t \text { if } y=x
\end{array}\right.
$$

where $t \in[-1,0)$, In this case, f is represented by $\frac{x}{t}$. $\left(X, \frac{x}{t}\right)$ is called Point N-structure [9]. A Point N-structure ($X, \frac{x}{t}$) is called Employed in an N-structure (X, f) of BE-algebra X if $f(x) \leq t$ for all $x \in X$, and $t \in[-1,0)$. It is represented as $\left(X, \frac{x}{t}\right)[e](X, f)$ or $\frac{x}{t}[e] f$. A point N-structure $\left(X, \frac{x}{t}\right)$ is called (k-Conditionally) Employed with an N-structure (X, f) if $f(x)+t+k+1<0$ for all $x \in X, t \in[-1,0)$ and $k \in[0,1)$. It is denoted by $\left(X, \frac{x}{t}\right)\left[c_{k}\right](X, f)$ or $\frac{x}{t}\left[c_{k}\right] f$. To say that $\left(X, \frac{x}{t}\right)\left([e] \vee\left[c_{k}\right]\right)(X, f)$ (or briefly, $\left.\frac{x}{t}\left([e] \vee\left[c_{k}\right]\right) f\right)$ we mean $\left(X, \frac{x}{t}\right)[e](X, f)$ or $\left(X, \frac{x}{t}\right)\left[c_{k}\right](X, f)$ (or briefly, $\frac{x}{t}[e]$ or $\frac{x}{t}\left[c_{k}\right] f$). To say that $\frac{x}{t} \bar{\alpha} f$ we mean $\frac{x}{t} \alpha f$ does not hold for $\alpha \in\left\{[e],\left[c_{k}\right],[e] \vee\left[c_{k}\right]\right\}$.

Definition 10. An N-structure (X, f) is called $\left([e],[e] \vee\left[c_{k}\right]\right)$-ideal of X if it satisfied;
(1) $\frac{y}{t}[e] f \Rightarrow \frac{x * y}{t}\left([e] \vee\left[c_{k}\right]\right) f$,
(2) $\frac{x}{t}[e] f, \frac{y}{r}[e] f \Rightarrow \frac{(x *(y * z)) * z}{\max \{t, r\}}\left([e] \vee\left[c_{k}\right]\right) f$ for all $x, y, z \in X$, where $t, r \in[-1,0)$ and $k \in[0,1)$.

Example 2. Let $X=\{1, \gamma, 0, m, \omega\}$ be a set with a multiplication table given by;

$*$	1	γ	0	m	ω
1	1	γ	0	m	ω
γ	1	1	γ	m	m
0	1	1	1	m	m
m	1	γ	0	1	γ
ω	1	1	γ	1	1

Let (X, f) be an N-structure. Then f is defined an N-structure (X, f), as;

$$
f=\left(\begin{array}{ccccc}
1 & \gamma & 0 & m & \omega \\
-0.9 & -0.8 & -0.7 & -0.9 & -0.8 .
\end{array}\right)
$$

For $k \in(0.4,1)$ Hence, f is an $\left([e],[e] \vee\left[c_{k}\right]\right)$-ideal of X.

Theorem 1. For any N-structure (X, f), the following are equivalent:

1. (X, f) is a $\left([e],[e] \vee\left[c_{k}\right]\right)$-ideal of X.
2. (X, f) satisfies the following inequalities:
2.1. $(\forall x, y \in X)\left(f(x * y) \leq \max \left\{f(y), \frac{-k-1}{2}\right\}\right)$,
2.2. $(\forall x, y, z \in X)\left(f((x *(y * z)) * z) \leq \max \left\{f(x), f(y), \frac{-k-1}{2}\right\}\right)$. where $k \in(-1,0]$.

Proof. Let (X, f) be a $\left([e],[e] \vee\left[c_{k}\right]\right)$-ideal of X. Suppose that $f(x * y)>\max \left\{f(y), \frac{-k-1}{2}\right\}$ for all $x, y \in X$. If we take $t_{y}:=\max \left\{f(y), \frac{-k-1}{2}\right\}, t_{y} \in\left[\frac{-k-1}{2}, 0\right], \frac{y}{t_{y}}[e] f$ and $\frac{x * y}{t_{y}}[\bar{e}] f$. Also, $f(x * y)+t_{y}+k+1>2 t_{y}+1 \geq 0$, and so $\frac{x * y}{t_{y}}\left[\overline{c_{k}}\right] f$. This is a contradiction. Thus, $f(x * y) \leq \max \left\{f(y), \frac{-k-1}{2}\right\}$ for all $x, y \in X$. Also, suppose that $f((x *(y * z)) * z)>\max \left\{f(x), f(y), \frac{-k-1}{2}\right\}$ for some $x, y, z \in X$. Take $t:=\max \left\{f(x), f(y), \frac{-k-1}{2}\right\}$. Then, $t \geq \frac{-k-1}{2}, \frac{x}{t}[e] f$ and $\frac{y}{t}[e] f$, but $\frac{x *(y * z)) * z}{t}[\bar{e}] f$. Also, $f\left((x *(y * z) * z)+t+k+1>2 t+k+1 \geq 0\right.$, i.e., $\frac{x *(y * z)) * z}{t}\left[\overline{c_{k}}\right] f$. This is a contradiction, and hence $f((x *(y * z)) * z) \leq \max \left\{f(x), f(y), \frac{-k-1}{2}\right\}$ for all $x, y, z \in X$.
Conversely, suppose that (X, f) satisfies (2.1) and (2.2). Let $\frac{y}{t}[e] f$ for all $y \in X$ and $t \in[-1,0)$. Then, $f(y) \leq t$. We shall prove that $\frac{(x * y)}{t}[e] \vee\left[c_{k}\right] f$. Since from (2.1) we have $f(x * y) \leq \max \left\{f(y), \frac{-k-1}{2}\right\}$. Then, if $f(y)>\frac{-k-1}{2}$, then $f(x * y) \leq \max \left\{f(y), \frac{-k-1}{2}\right\}=f(y) \leq t$. Thus, $\frac{(x * y)}{t}[e] f$ which is a contradiction. If $f(y) \leq \frac{-k-1}{2}$, which implies that $f(x * y)+t+k+1<2 f(x * y)+k+1 \leq 2 \max \left\{f(y), \frac{-k-1}{2}\right\}+k+1=0$, i.e., $\frac{x * y}{t}\left[c_{k}\right] f$. Thus $\frac{x * y}{t}\left([e] \vee\left[c_{k}\right]\right) f$. Let $\frac{x}{t}[e] f$ and $\frac{y}{r}[e] f$ for all $x, y, z \in X$ and $t, r \in[-1,0)$. Then $f(x) \leq t$ and $f(y) \leq r$. Suppose that $\frac{(x * y * z)) * z}{\max \{t, r\}}[\bar{e}] f$, i.e., $f((x *(y * z)) * z)>\max \{t, r\}$. If $\max \{f(x), f(y)\}>\frac{-k-1}{2}$, then

$$
f((x *(y * z)) * z) \leq \max \left\{f(x), f(y), \frac{-k-1}{2}\right\}=\max \{f(x), f(y)\} \leq \max \{t, r\} .
$$

This is impossible, and so $\max \{f(x), f(y)\} \leq \frac{-k-1}{2}$. It follows that $f((x *(y * z)) * z)+\max \{t, r\}+k+1<2 f((x *(y *$ $z)) * z)+k+1 \leq 2 \max \left\{f(x), f(y), \frac{-k-1}{2}\right\}+k+1=0 \Rightarrow \frac{(x * y * z)) * z}{\max \{t, r\}}[\bar{c} \bar{k}] f$. Hence $\frac{(x * y * z)) * z}{\max \{t, r\}}\left([e] \vee\left[c_{k}\right]\right) f$, and therefore (X, f) is a $\left([e],[e] \vee\left[c_{k}\right]\right)$-ideal of X.

If $(k=0)$, then the following holds.
Corollary 2. For any N-structure (X, f), the following are equivalent:

1. (X, f) is a $([e],[e] \vee[c])$-ideal of X.
2. (X, f) satisfies the following inequalities:
2.1. $(\forall x, y \in X)(f(x * y) \leq \max \{f(y),-0.5\})$.
2.2. $(\forall x, y, z \in X)\left(f((x *(y * z)) * z) \leq \max \left\{f(x), f(y), \frac{-k-1}{2}\right\}\right)$

Theorem 2. Every $\left([e],[e] \vee\left[c_{k}\right]\right)$-ideal (X, f) of an BE-algebra X satisfies the following inequalities:
(1) $(\forall x \in X) \cdot\left(f(1) \leq \max \left\{f(x), \frac{-k-1}{2}\right\}\right)$,
(2) $(\forall x, y \in X)\left(f((x * y) * y) \leq \max \left\{f(x), \frac{-k-1}{2}\right\}\right)$. where $k \in(-1,0]$.

Proof. (1): By using (V_{1}) and theorem 1(2.1), we have

$$
f(1)=f(x * x) \leq \max \left\{f(x), \frac{-k-1}{2}\right\}
$$

for all $x \in X$.
(2): By using $\left(V_{3}\right)$, we have $f((x * y) * y)=f((x *(1 * y)) * y)$ for all $x, y \in X$

Then by using theorem $1(2.2)$, we get
$f((x *(1 * y)) * y) \leq \max \left\{f(x), f(1), \frac{-k-1}{2}\right\}=\max \left\{f(x), \frac{-k-1}{2}\right\}$, because by $(1) f(1) \leq \max \left\{f(x), \frac{-k-1}{2}\right\}$ for all $x, y \in X$. Hence, $f((x * y) * y) \leq \max \left\{f(x), \frac{-k-1}{2}\right\}$ for all $x, y \in X$.

If $(k=0)$, then the following holds.

Corollary 3. Every $([e],[e] \vee[c])$-ideal of a BE-algebra X satisfies the following inequalities:
(1) $(\forall x \in X) .(f(1) \leq \max \{f(x),-0.5\})$,
(2) $(\forall x, y \in X)(f((x * y) * y) \leq \max \{f(x),-0.5\})$.

Corollary 4. Each $\left([e],[e] \vee\left[c_{k}\right]\right)$-ideal (X, f) satisfies the following condition;
$(\forall x, y \in X)\left(x \leq y \Rightarrow f(y) \leq \max \left\{f(x), \frac{-k-1}{2}\right\}\right)$. where $k \in(-1,0]$.
Proof. Let $x \leq y$ for all $x, y \in X$. Then $x * y=1$, and so

$$
f(y)=f(1 * y)=f((x * y) * y) \leq \max \left\{f(x), \frac{-k-1}{2}\right\}
$$

Hence, $f(y) \leq \max \left\{f(x), \frac{-k-1}{2}\right\}$.
If $(k=0)$, then the following holds.
Lemma 3. Each $([e],[e] \vee[c])$-ideal (X, f) satisfies the following condition;
$(\forall x, y \in X)(x \leq y \Rightarrow f(y) \leq \max \{f(x),-0.5\})$.
Proposition 3. Let (X, f) be an N-structure such that
(1) $(\forall x \in X)\left(f(1) \leq \max \left\{f(x), \frac{-k-1}{2}\right\}\right)$,
(2) $(\forall x, y, z \in X)\left(f(x * z) \leq \max \left\{f(x *(y * z)), f(y), \frac{-k-1}{2}\right\}\right)$.

Then the following implication is valid.

$$
(\forall x, y \in X)\left(x \leq y \Rightarrow f(y) \leq \max \left\{f(x), \frac{-k-1}{2}\right\}\right), \text { where } k \in(-1,0] .
$$

Proof. Suppose $x \leq y$ for all $x, y \in X$. Then $x * y=1$, and by using (1) we get

$$
\begin{aligned}
f(y) & =f(1 * y) \leq \max \left\{f(1 *(x * y)), f(x), \frac{-k-1}{2}\right\} \\
& =\max \left\{f(1 * 1), f(x), \frac{-k-1}{2}\right\} \\
& =\max \left\{f(1), f(x), \frac{-k-1}{2}\right\} \\
& =\max \left\{f(x), \frac{-k-1}{2}\right\}
\end{aligned}
$$

Hence, $f(y) \leq \max \left\{f(x), \frac{-k-1}{2}\right\}$.
If $(k=0)$, then the following holds.
Lemma 4. Let (X, f) be an N-structure such that
(1) $(\forall x \in X)(f(1) \leq \max \{f(x),-0.5\})$,
(2) $(\forall x, y, z \in X)(f(x * z) \leq \max \{f(x *(y * z)), f(y),-0.5\})$.

Then the following implication is valid.
$(\forall x, y \in X)(x \leq y \Rightarrow f(y) \leq \max \{f(x),-0.5\})$.
Theorem 3. Let (X, f) be an N-structure of transitive BE-algebra X. Then (X, f) is an $\left([e],[e] \vee\left[c_{k}\right]\right)$-ideal of X if and only if it satisfies the following inequalities:
(1) $(\forall x \in X)\left(f(1) \leq \max \left\{f(x), \frac{-k-1}{2}\right\}\right)$,
(2) $(\forall x, y, z \in X)\left(f(x * z) \leq \max \left\{f(x *(y * z)), f(y), \frac{-k-1}{2}\right\}\right)$, where $k \in(-1,0]$.

Proof. Suppose that (X, f) is an $([e],[e] \vee[c])$-ideal of X. From theorem 2(1), it is easily seen that

$$
f(1) \leq \max \left\{f(x), \frac{-k-1}{2}\right\} .
$$

Since X is transitive,

$$
\begin{equation*}
((y * z) * z) *((x *(y * z)) *(x * z))=1 \tag{G}
\end{equation*}
$$

for all $x, y, z \in X$. By using $\left(V_{3}\right)$ and (\mathbf{G})

$$
f(x * z)=f(1 *(x * z))=f(((y * z) * z) *((x *(y * z)) *(x * z)) *(x * z))
$$

By using theorem $1(2.2), 2(2)$, we have

$$
\begin{aligned}
f(((y * z) * z) *((x *(y * z)) *(x * z)) *(x * z)) & \leq \max \left\{f((y * z) * z), f(x *(y * z)), \frac{-k-1}{2}\right\} \\
& =\max \left\{f(x *(y * z)), f((y * z) * z), \frac{-k-1}{2}\right\} \\
& \leq \max \left\{f(x *(y * z)), f(y), \frac{-k-1}{2}\right\}
\end{aligned}
$$

Hence $f(x * z) \leq \max \left\{f(x *(y * z)), f(y), \frac{-k-1}{2}\right\}$ for all $x, y, z \in X$.
Conversely suppose that (X, f) satisfies (1) and (2). By using (2), (V_{1}), (V_{2}) and (1)

$$
\begin{aligned}
f(x * y) & \leq \max \left\{f(x *(y * y)), f(y), \frac{-k-1}{2}\right\} \\
& =\max \left\{f(x * 1), f(y), \frac{-k-1}{2}\right\} \\
& =\max \left\{f(1), f(y), \frac{-k-1}{2}\right\} \\
& =\max \left\{f(y), \frac{-k-1}{2}\right\}
\end{aligned}
$$

Also by using (2) and (1) we get

$$
\begin{aligned}
f((x * y) * y) & \leq \max \left\{f((x * y) *(x * y)), f(x), \frac{-k-1}{2}\right\} \\
& =\max \left\{f(1), f(x), \frac{-k-1}{2}\right\} \\
& =\max \left\{f(x), \frac{-k-1}{2}\right\}
\end{aligned}
$$

for all $x, y \in X$. Now, since $(y * z) * z \leq(x *(y * z)) *(x * z)$ for all $x, y, z \in X$, it follows that from proposition 3, we have

$$
f((x *(y * z)) *(x * z)) \leq \max \left\{f((y * z) * z), \frac{-k-1}{2}\right\}
$$

So, from (2), we have

$$
\begin{aligned}
f((x *(y * z)) * z) & \leq \max \left\{f((x *(y * z)) *(x * z)), f(x), \frac{-k-1}{2}\right\} \\
& \leq \max \left\{f((y * z) * z), f(x), \frac{-k-1}{2}\right\} \\
& \leq \max \left\{f(x), f(y), \frac{-k-1}{2}\right\}
\end{aligned}
$$

for all $x, y, z \in X$. Using theorem 1 , we conclude that (X, f) is a $([e],[e] \vee[c])$-ideal of X.
If $(k=0)$, then the following holds.
Corollary 5. Let (X, f) be an N-structure of transitive BE-algebra X. Then (X, f) is an $([e],[e] \vee[c])$-ideal of X if and only if it satisfies the following inequalities:
(1) $(\forall x \in X)(f(1) \leq \max \{f(x),-0.5\})$,
(2) $(\forall x, y, z \in X)(f(x * z) \leq \max \{f(x *(y * z)), f(y),-0.5\})$.

Theorem 4. Let X be a transitive BE-algebra. If (X, f) is a $\left([e],[e] \vee\left[c_{k}\right]\right)$-ideal of X such that $f(1)>\frac{-k-1}{2}$, then (X, f) is an N-ideal of X, where $k \in(-1,0]$.

Proof. Suppose that (X, f) is a $\left([e],[e] \vee\left[c_{k}\right]\right)$-ideal of X such that $\frac{-k-1}{2}<f(1)$. Then $\frac{-k-1}{2}<f(x)$ and so $\frac{-k-1}{2}<f(1) \leq$ $f(x)$ for all $x \in X$ by theorem 3(1)

$$
f(1) \leq \max \left\{f(x), \frac{-k-1}{2}\right\}
$$

for all $x \in X$. It follows that from theorem 3(2),

$$
\begin{aligned}
f(x * z) & \leq \max \left\{f(x *(y * z)), f(y), \frac{-k-1}{2}\right\} \\
& =\max \{f(x *(y * z)), f(y)\}
\end{aligned}
$$

for all $x, y, z \in X$. Hence (X, f) is an N-ideal of X.
If $(k=0)$, then the following holds.
Corollary 6. Let X be a transitive BE-algebra. If (X, f) is a $([e],[e] \vee[c])$-ideal of X such that $f(1)>-0.5$, then (X, f) is an N-ideal of X.

Theorem 5. If (X, f) is a $\left([e],[e] \vee\left[c_{k}\right]\right)$-ideal of a transitive BE-algebra X. Show that

$$
\left(\forall t \in\left[-1, \frac{-k-1}{2}\right)\right)(Q(f ; t) \in J(X) \cup\{\emptyset\})
$$

where $Q(f ; t):=\left\{x \in X \left\lvert\, \frac{x}{t}\left[c_{k}\right] f\right.\right\}, J(X)$ is a set of all ideal of X and $k \in(-0.5,0]$.
Proof. Suppose that $Q(f ; t) \neq \emptyset$ for all $t \in\left[-1, \frac{-k-1}{2}\right)$. Then there exists $x \in Q(f ; t)$, and so $\frac{x}{t}[c] f$, i.e., $f(x)+t+k+1<0$. Using theorem 3(1), we have

$$
\begin{aligned}
f(1) & \leq \max \left\{f(x), \frac{-k-1}{2}\right\} \\
& =\left\{\begin{array}{l}
\frac{-k-1}{2} \text { if } f(x) \leq \frac{-k-1}{2} \\
f(x) \text { if } f(x)>\frac{-k-1}{2}
\end{array}\right. \\
& <-1-t-k
\end{aligned}
$$

which indicates that $1 \in Q(f ; t)$. Let $x *(y * z) \in Q(f ; t)$ for all $x, y, z \in X$ here $y \in Q(f ; t)$. Then $\frac{x *(y * z)}{t}\left[c_{k}\right] f$ and $\frac{y}{t}[c] f$, i.e., $f(x *(y * z))+t+k+1<0$ and $f(y)+t+k+1<0$. Using theorem 3(2), we get

$$
f(x * z) \leq \max \left\{f(x *(y * z)), f(y), \frac{-k-1}{2}\right\}
$$

Thus, if $\max \{f(x *(y * z)), f(y)\}>\frac{-k-1}{2}$, then

$$
f(x * z) \leq \max \{f(x *(y * z)), f(y)\}<-1-t-k
$$

If $\max \{f(x *(y * z)), f(y)\} \leq \frac{-k-1}{2}$, then $f(x * z) \leq \frac{-k-1}{2}<-1-t-k$. This show that $\frac{x * z}{t}\left[c_{k}\right] f$ i.e., $x * z \in Q(f ; t)$. By using lemma 1 , we have $Q(f ; t)$ is an ideal of X.

If $(k=0)$, then the following holds.

Corollary 7. If (X, f) is a $([e],[e] \vee[c])$-ideal of a transitive BE-algebra X. Show that

$$
(\forall t \in[-1,-0.5))(Q(f ; t) \in J(X) \cup\{\emptyset\})
$$

where $Q(f ; t):=\left\{x \in X \left\lvert\, \frac{x}{t}[c] f\right.\right\}$, and $J(X)$ is a set of all ideal of X

Theorem 6. Let X be a transitive BE-algebra. Then the followings are equivalent:
(1) An N-structure (X, f) is a $\left([e],[e] \vee\left[c_{k}\right]\right)$-ideal of X
(2) $(\forall t \in[-1,0))\left([f]_{t} \in J(X) \cup\{\emptyset\}\right)$
where $[f]_{t}:=C(f ; t) \cup\{x \in X \mid f(x)+t+k+1 \leq 0\}, J(X)$ is a set of all ideal of X, and $k \in(-1,0]$.

Proof. (1) \Rightarrow (2): Suppose that (1) satisfies. Let $[f]_{t} \neq \emptyset$, here $t \in[-1,0)$. Then there exists $x \in[f]_{t}$, and so $f(x) \leq t$ or $f(x)+t+k+1 \leq 0$ for all $x \in X$ and $t \in[-1,0)$. If $f(x) \leq t$, then

$$
\begin{aligned}
f(1) & \leq \max \left\{f(x), \frac{-k-1}{2}\right\} \leq \max \left\{t, \frac{-k-1}{2}\right\} \\
& =\left\{\begin{array}{lr}
t \quad \text { if } t>\frac{-k-1}{2} \\
\frac{-k-1}{2} \leq-1-t-k & \text { if } t \leq \frac{-k-1}{2}
\end{array}\right.
\end{aligned}
$$

By theorem $3(1)$. Hence $1 \in[f]_{t}$. If $f(x)+t+k+1 \leq 0$, then

$$
\begin{aligned}
f(1) & \leq \max \left\{f(x), \frac{-k-1}{2}\right\} \leq \max \left\{-1-t-k, \frac{-k-1}{2}\right\} \\
& =\left\{\begin{array}{l}
-1-t-k \text { if } t<\frac{-k-1}{2} \\
\frac{-k-1}{2} \leq t \text { if } t \geq \frac{-k-1}{2}
\end{array}\right.
\end{aligned}
$$

And so $1 \in[f]_{t}$. Let $x, y, z \in X$ be such that $y \in[f]_{t}$ and $x *(y * z) \in[f]_{t}$. Then $f(y) \leq t$ or $f(y)+t+k+1 \leq 0$, and $f(x *(y * z)) \leq t$ or $f(x *(y * z))+t+k+1 \leq 0$. Thus we let the four cases:
$\left(a_{1}\right) f(y) \leq t$ and $f(x *(y * z)) \leq t$,
$\left(a_{2}\right) f(y) \leq t$ and $f(x *(y * z))+t+k+1 \leq 0$,
$\left(a_{3}\right) f(y)+t+k+1 \leq 0$ and $f(x *(y * z)) \leq t$,
$\left(a_{4}\right) f(y)+t+k+1 \leq 0$ and $f(x *(y * z))+t+k+1 \leq 0$.

For case $\left(a_{1}\right)$, theorem 3(2), implies that

$$
\begin{aligned}
f(x * z) & \leq \max \left\{f(x *(y * z)), f(y), \frac{-k-1}{2}\right\} \leq \max \left\{t, \frac{-k-1}{2}\right\} \\
& = \begin{cases}\frac{-k-1}{2} & \text { if } t<\frac{-k-1}{2} \\
t & \text { if } t \geq \frac{-k-1}{2}\end{cases}
\end{aligned}
$$

so that $x * z \in C(f ; t)$ or $f(x * z)+t+k \leq \frac{-k-1}{2}+\frac{-k-1}{2}+k=-1$. Thus $x * z \in[f]_{t}$. For case (a_{2}), we have

$$
\begin{aligned}
f(x * z) & \leq \max \left\{f(x *(y * z)), f(y), \frac{-k-1}{2}\right\} \leq \max \left\{-1-t-k, t, \frac{-k-1}{2}\right\} \\
& = \begin{cases}-1-t-k & \text { if } t<\frac{-k-1}{2} \\
t & \text { if } t \geq \frac{-k-1}{2}\end{cases}
\end{aligned}
$$

Thus $x * z \in[f]_{t}$.
For case $\left(a_{3}\right)$, the prove is same to case $\left(a_{2}\right)$. For case $\left(a_{4}\right)$ we have,

$$
\begin{aligned}
f(x * z) & \leq \max \left\{f(x *(y * z)), f(y), \frac{-k-1}{2}\right\} \leq \max \left\{-1-t-k, \frac{-k-1}{2}\right\} \\
& = \begin{cases}-1-t-k \text { if } t<\frac{-k-1}{2} \\
\frac{-k-1}{2} & \text { if } t \geq \frac{-k-1}{2}\end{cases}
\end{aligned}
$$

So that, $x * z \in[f]_{t}$. By using lemma $1,[f]_{t}$ is an ideal of X.
$(2) \Rightarrow(1)$: Suppose that (2) hold. If $f(1)>\max \left\{f(y), \frac{-k-1}{2}\right\}$ for all $y \in X$, then $f(1)>t_{y} \geq \max \left\{f(y), \frac{-k-1}{2}\right\}$ for some $t_{y} \in\left[\frac{-k-1}{2}, 0\right)$. It follows that $x \in C\left(f ; t_{y}\right) \subseteq[f]_{t_{y}}$ but $1 \notin C\left(f ; t_{y}\right)$. Also, $f(1)+t_{y}+k+1>2 t_{y}+k+1 \geq 0$. Hence $1 \notin[f]_{t_{y}}$, which contradicts the supposition. So, $f(1) \leq \max \left\{f(y), \frac{-k-1}{2}\right\}$ for all $y \in X$. Suppose that for some $x, z \in X$, we have $f(x * z)>\max \left\{f(x *(y * z)), f(y), \frac{-k-1}{2}\right\}$
(D)

Taking $t:=\max \left\{f(x *(y * z)), f(y), \frac{-k-1}{2}\right\}$ implies that $t \in\left[\frac{-k-1}{2}, 0\right), x \in C(f ; t) \subseteq[f]_{t}$, and $x *(x * z) \in C(f ; t) \subseteq[f]_{t}$. Since $[f]_{t}$ is an ideal of X, we have $x * z \in[f]_{t}$, and so $f(x * z) \leq t$ or $f(x * z)+t+k+1 \leq 0$. The inequality (D) induces $x * z \notin C(f ; t)$, and $f(x * z)+t+k+1>2 t+k+1 \geq 0$. Thus $x * z \notin[f]_{t}$. It contradicts the supposition. Hence $f(x * z) \leq \max \left\{f(x *(y * z)), f(y), \frac{-k-1}{2}\right\}$ for all $x, y, z \in X$. Using theorem 3, we have, (X, f) is a $\left([e],[e] \vee\left[c_{k}\right]\right)$-ideal of X.

If $(k=0)$, then the following holds.
Corollary 8. Let X be a transitive BE -algebra. Then the followings are equivalent:
(1) An N-structure (X, f) is a $([e],[e] \vee[c])$-ideal of X
(2) $(\forall t \in[-1,0))\left([f]_{t} \in J(X) \cup\{\emptyset\}\right)$
where $[f]_{t}:=C(f ; t) \cup\{x \in X \mid f(x)+t+1 \leq 0\}$, and $J(X)$ is a set of all ideal of X

5 Conclusion:

BE-algebra is a type of logical algebra like $\mathrm{BCK} / \mathrm{BCI} / \mathrm{BCH}$-algebras. A BE-algebra is a another generalization of $\mathrm{BCK} / \mathrm{BCI} / \mathrm{BCH}$-algebras. In this paper, we have investigated the concept of $\left([e],[e] \vee\left[c_{k}\right]\right)$-ideal of a BE-algebra by using (k-conditionally) employed of N-structure with point N-structure. We also characterized transitive and distributive BE-algebra by $\left([e],[e] \vee\left[c_{k}\right]\right)$-ideal. We also discussed their related properties and provide characterizations of $\left([e],[e] \vee\left[c_{k}\right]\right)$-ideals.

References

[1] Ahn, S.S., Kim, Y.H., Ko, J.M, Filters in commutative BE-algebras. Commun. Korean Math. Soc., 27, (2012)(2), 233-242.
[2] Y. H. Yon, S. M. Lee and K. H. Kim, On congruences and BE-relations in BE-Algebras, Int. Math. Forum, 5, 2010, 46, 2263-2270.
[3] Kim, H.S., and Y.H. Kim, On BE-algebras, Scientiae Mathematicae Japonicae, 66, 2007, 1, 113-117.
[4] H. S. Kim and K. J. Lee, Extended upper sets in BE-algebras, Bull. Malays. Math. Sci. Soc. (2) 34(3) (2011), 511-520.
[5] Rezaei, A., and A. Borumand Saeid, Some results in BE-algebras, Analele Universitatii Oradea Fasc. Matematica, Tom XIX, 1 2012, 33-44.
[6] K. S. So, and S. S. Ahn, On ideals and upper sets in BE-algebras, Sci. Math. Japo., Online 2008 351-357.
[7] K. Iseki, and Y. Imai, On axiom systems of propositional calculi XIV, Proc. Japan Academy 42 (1966), 19-22.
[8] K. Iseki, An algebra related with a propositional calculus, Proc. Japan Academy 42 (1966), 26-29.
[9] M.S. Kang, and Y.B. Jun, Ideal theory of BE-algebras based on N-structures Hacettepe Journal of Mathematics and Statistics volume 41(4) (2012), 435-447.
[10] A. B.Saeid, A. R. Rajab and A. Borzooei, Some types of filters in BE-algebras, Math.Comput.Sci., 7, (2013), 341-352.
[11] Walendziak, A., On commutative BE-algebras, Scientiae Mathematicae Japonicae, 69, 2008, 2, 585-588,
[12] K. J. Lee, S. Z. Song, and Y. B. Jun, N-ideals of BCK/BCI-algebras, J. Chungcheong Math. Soc. 22 (2009), 417-437.

[^0]: * Corresponding author e-mail: saleemabdullah81@yahoo.com

