New Trends in Mathematical Sciences

$(\in, \in \lor q)$ -Fuzzy Ideals of *BG*-algebras with respect to t-norm

Saidur R. Barbhuiya

Department of mathematics, Srikishan Sarda College, Hailakandi Assam, India

Received: 2 july 2015, Revised: 1 November 2015, Accepted: 16 November 2015 Published online: 12 December 2015.

Abstract: The aim of this paper is to introduce the concept of \in , $\in \lor q$)-fuzzy ideals of BG-algebra with respect to t-norm and derive some interesting result.

Keywords: *BG*-algebra, Fuzzy ideal, $(\in, \in \lor q)$ -Fuzzy ideal, $(\in, \in \lor q)$ -T-Fuzzy ideal, homomorphism.

1 Introduction

The name triangular norm, or simply t-norm originated from the study of generalized triangle inequalities for statistical metric spaces, hence the name triangular norm or simply t-norm. The name first appeared in a paper entitled statistical metrics [13] that was published on 27th october in 1942. A t-norm was supposed to act on the values of two distribution functions, hence on the unit square. Here is the original definition by Menger, a real-valued function T defined on a unit square is called a t-norm in the sense of Menger if $(i) 0 \le T(\alpha, \beta) \le 1$ (ii) T is non-decreasing in either variable (iii) $T(\alpha,\beta) = T(\beta,\alpha)$ (iv) T(1,1) = 1 (v) If $\alpha > 0$ then $T(\alpha,1) > 0$. The real starting point of t-norms came in 1960, when Berthold Schweizer and Abe Sklar, (two students of Menger) published their paper, statistical metric spaces [19] After a very short time, Schweizer and Sklar [20] introduced several basic notions and properties. Namely, they introduced triangular conorms (briefly t-conorms) as a dual concept of t-norms. For a given t-norm T, its dual t-conorm S is defined by S(a,b) = 1 - T(1 - a, 1 - b). They pointed out that the boundary condition is the only difference between the t-norm and t-conorm axioms. The last substantial step in the foundation of t-norms and t-conorms was given in 1965 by Ling [12]. Among other things, she recognised that continuous t-norms and t-conorms form a topological semigroup on [0,1]. She preserved the semigroup theory notation and hence she introduced Archimedean and nilpotent t-norms (and t-conorms). In order to formulate the triangle inequality property in a probabilistic metric space and following the ideas of Menger [13], Schweizer and Sklar [21] introduced a special class of two-place functions on the unit square, the so-called triangular norms. Together with their duals, the triangular conorms, they have been applied in various mathematical disciplines, such as probabilistic metric spaces [22], fuzzy set theory, multiple-valued logic, and in the theory of non-additive measures [17]. In recent years, a systematic study concerning the properties and related matters of t-norms have been made by Klement et al. [9, 10].

After the introduction of *BCK* and *BCI*-algebras in 1966 by Imai and Iseki [5,6]. Neggers and Kim [16] introduced a new algebraic structure called *B*-algebras, which are related to wide classes of algebras such as *BCI/BCK*-algebras. In

[7] Kim and Kim introduced the notion of *BG*-algebra which is a generalization of *B*-algebra. The notion of fuzzy subset of a set is introduced by Zadeh [25] in 1965, after that researcher are trying to fuzzify almost every concept of Mathemtics. Fuzzification of subalgebras of *BG*-algebras was done by Ahn and Lee in [1] and fuzzy *BG*-ideals of *BG*-algebras were studied in [15] by Muthuraj et al. Bhakat and Das [2,3] used the relation of "belongs to" and "quasi coincident with" between fuzzy point and fuzzy set to introduce the concept of $(\in, \in \lor q)$ -fuzzy subgroup, $(\in, \in \lor q)$ -fuzzy subring and $(\in, \in \lor q)$ -level subset. Jun introduced (α, β) -fuzzy ideals of *BCK/BCI*-algebras[23]. In [4] Dhanani and Pawar discussed $(\in, \in \lor q)$ -fuzzy ideals of lattice. Further in [11] Larimi generalised $(\in, \in \lor q)$ -fuzzy ideals to $(\in, \in \lor q_k)$ -fuzzy ideals. Using the concept of t-norm, Kim discussed imaginable T-fuzzy closed ideals in *BCH*-algebras. In [18] Senapati et al. studied triangular norm based fuzzy *BG*-algebras. Now in present paper using the concept of t-norm and $(\in, \in \lor q)$ -fuzzy ideals, we introduced the concept of $(\in, \in \lor q)$ -fuzzy ideals of *BG*-algebra with respect to t-norm and obtained some interesting result.

2 Preliminaries

Definition 1. [1] *A BG-algebra is a non-empty set X with a constant* 0 *and a binary operation* * *satisfying the following axioms:*

- (*i*) x * x = 0,
- (*ii*) x * 0 = x,
- (iii) $(x*y)*(0*y) = x, \forall x, y \in X$. For simplicity, we also call X a BG-algebra. We can define a partial ordering " \leq " on X by $x \leq y$ iff x*y = 0.

Definition 2. [1] A non-empty subset S of a BG-algebra X is called a subalgebra of X if $x * y \in S$ for all $x, y \in S$.

Definition 3. A triangular norm(t-norm) is a function $T : [0 1] \times [0 1] \rightarrow [0 1]$ satisfying the following conditions:

- (T1) T(x,1) = x, T(0,x) = 0; (boundary conditions)
- (T2) T(x,y) = T(y,x); (commutativity)
- (T3) T(x,T(y,z)) = T(T(x,y),z); (associativity)
- (T4) $T(x,y) \leq T(z,w)$; if $x \leq z, y \leq w$ for all $x, y, z \in [0,1]$ (monotonicity)

Every t-norm T satisfies $T(x,y) \le min(x,y) \quad \forall x, y \in [0,1].$

Example 1. The four basic t-norms are:

- (i) The minimum is given by $T_M(x,y) = min(x,y)$.
- (ii) The product is given by $T_P(x, y) = xy$.
- (iii) The Lukasiewicz is given by $T_L(x, y) = max(x+y-1, 0)$.
- (iv) The Weakest t-norm (drastic product) is given by

$$T_D(x,y) = \begin{cases} \min(x,y), & \text{if } \max(x,y) = 1\\ 0, & \text{otherwise.} \end{cases}$$

Definition 4. A *s*-norm *S* is a function $S : [0 1] \times [0 1] \rightarrow [0 1]$ satisfying the following conditions:

- (S2) S(x,y) = S(y,x); (commutativity)
- (S3) S(x, S(y,z)) = S(S(x,y),z); (associativity)
- (S4) $S(x,y) \leq S(z,w)$; if $x \leq z,y \leq w$ for all $x,y,z \in [0, 1]$ (monotonicity) Every s-norm S satisfies $S(x,y) \geq max(x,y) \quad \forall x, y \in [0, 1].$

198

Example 2. The four basic t-conorm are:

- (i) Maximum given by $S_M(x, y) = max(x, y)$.
- (ii) Probabilistic sum given by $S_P(x, y) = x + y xy$.
- (iii) The Lukasiewicz is given by $S_L(x,y) = min(x+y,1)$.
- (iv) Strongest t-conorm given by

$$S_D(x,y) = \begin{cases} max(x,y), & \text{if } max(x,y) = 1\\ 1, & \text{otherwise.} \end{cases}$$

Definition 5. Let T be a t-norm. Denote by δ_p the set of elements $x \in [0, 1]$ such that T(x, x) = x, that is $\Delta_T = \{x \in [0, 1] : T(x, x) = x\}$

A fuzzy set μ in X is said to satisfy imaginable property with respect to T if $Im(\mu) \subseteq \Delta_T$.

Definition 6. If for two t-norms T_1 and T_2 the inequality $T_1(x, y) \le T_2(x, y)$ holds for all $(x, y) \in [0 \ 1] \times [0 \ 1]$ then T_1 is said to be weaker than T_2 , and we write in this case $T_1 \le T_2$. We write $T_1 < T_2$, whenever $T_1 \le T_2$ and $T_1 \ne T_2$.

Remark. It is not hard to see that T_D is the weakest t-norm and T_M is the strongest t-norm, that is, for all t-norm T

$$T_D \leq T \leq T_M$$

We get the following ordering of the four basic t-norms:

$$T_D < T_L < T_P < T_M$$

Lemma 1. Let *T* be a *t*-norm. Then T(T(x, y) T(z, t)) = T(T(x, z) T(y, t)) for all *x*, *y*, *z* and $t \in [0, 1]$.

Definition 7. A nonempty subset I of a BG-algebra X is called a BG-ideal of X if

(i) $0 \in I$, (ii) $x * y \in I$, $y \in I \Rightarrow x \in I \forall x, y \in X$.

Definition 8. [15] A fuzzy set μ in X is called a fuzzy BG-ideal of X if it satisfies the following conditions:

- (i) $\mu(0) \ge \mu(x)$,
- (ii) $\mu(x) \ge \min \{\mu(x * y), \mu(y)\} \forall x, y \in X.$

Definition 9. A fuzzy set μ in X is called a T-fuzzy BG-ideal of X if it satisfies the following conditions:

(i) $\mu(0) \ge \mu(x)$, (ii) $\mu(x) \ge T\{\mu(x*y), \mu(y)\} \forall x, y \in X$.

Example 3. Consider a *BG*-algebra $X = \{0, 1, 2\}$ with the following cayley table:

^{© 2015} BISKA Bilisim Technology

 Table 1: Example of fuzzy BG-ideal.

*	0	1	2
0	0	1	2
1	1	0	1
2	2	2	0

Let $T_L: [0\,1] \times [0\,1] \to [0\,1]$ be functions defined by $T_L(x,y) = max(x+y-1,0) \quad \forall x, y \in [0,\,1]$. Then T_L is a t-norm. Define a fuzzy set $\mu: X \to [0,1]$ by $\mu(0) = 0.9, \mu(1) = 0.6, \mu(2) = 0.3$. Then it is easy to verify that μ satisfies $\mu(0) \ge \mu(x)$, and $\mu(x) \ge T\{\mu(x*y), \mu(y)\} = max\{\mu(x*y) + \mu(y) - 1, 0\} \forall x, y \in X$. Therefore μ is a T-fuzzy *BG*-ideal of *X*.

Example 4. Consider a BG-algebra X as defined in Example 3 and fuzzy set μ defined by $\mu(0) = 0.9, \mu(1) = 0.6, \mu(2) = 0.3$. Then it is easy to verify that μ is a fuzzy *BG*-ideal of *X*.

Remark. Every fuzzy BG-ideal of X is a T-fuzzy BG-ideal of X, But the converse is not true as shown in Example below.

Example 5. Consider a *BG*-algebra X as defined in Example 3 and fuzzy set μ defined on X by $\mu(0) = 0.5, \mu(1) = 0.7, \mu(2) = 0.4$. Then it is easy to verify that μ is a *T_L*-fuzzy ideal of X, but not a fuzzy ideal of X. Since $\mu(0) = 0.5 \ge \min\{\mu(0*1), \mu(1)\} = \mu(1) = 0.7$.

Example 6. Consider *BG*-algebra X as defined in Example 3, fuzzy set μ defined on X by $\mu(0) = 0.5, \mu(1) = 0.7, \mu(2) = 0.4$. and t-norm $T_P : [0 \ 1] \times [0 \ 1] \rightarrow [0 \ 1]$ be functions defined by $T_P(x, y) = xy \quad \forall x, y \in [0, 1]$. Then it is easy to verify that μ is a T_P -fuzzy ideal of X. But not a fuzzy ideal of X, since $\mu(0) = 0.5 \not\geq min\{\mu(0 * 1), \mu(1)\} = \mu(1) = 0.7$.

Theorem 1. Every T_1 -fuzzy ideal of X is a T_2 -fuzzy ideal of X, where T_1 is stronger than T_2 . But the converse is not true as shown in above Examples.

Proof. Proof is straightforward.

3 $(\in, \in \lor q)$ -T-fuzzy ideals of *BG*-algebra

In what follows, let X denote a BG-algebra unless otherwise stated.

Definition 10. [2,3,14] *A fuzzy set* μ *of the form*

$$\mu(y) = \begin{cases} t & \text{if } y = x, t \in (0,1] \\ 0 & \text{if } y \neq x \end{cases}$$

is called a fuzzy point with support x and value t and it is denoted by x_t .

Definition 11. [2,3] A fuzzy point x_t is said to belong to (respectively be quasi coincident with) a fuzzy set μ written as $x_t \in \mu$ (respectively $x_t q \mu$) if $\mu(x) \ge t$ (respectively $\mu(x) + t > 1$). If $x_t \in \mu$ or $x_t q \mu$, then we write $x_t \in \lor q \mu$. (Note $\overline{\in \lor q}$ means $\in \lor q$ does not hold).

Definition 12. A fuzzy subset μ of a BG-algebra X is said to be an $(\in, \in \lor q)$ -fuzzy ideal of X if

- (*i*) $x_t \in \mu \Rightarrow 0_t \in \lor q\mu$
- (*ii*) $(x * y)_t, y_s \in \mu \Rightarrow x_{m(t,s)} \in \lor q\mu \ \forall x, y \in X, \forall s, t \in [0, 1].$

Definition 13. [2,3] A fuzzy point x_t is said to belong to (respectively be quasi coincident with) a fuzzy set μ with respect to t-norm T written as $x_t \in \mu$ (respectively $x_tq\mu$) if $\mu(x) \ge t$ (respectively $\mu(x) + t > 2T(1, \frac{1}{2})$. If $x_t \in \mu$ or $x_tq\mu$, then we write $x_t \in \lor q\mu$. (Note $\overline{\in \lor q}$ means $\in \lor q$ does not hold).

Definition 14. A fuzzy subset μ of a BG-algebra X is said to be an $(\in, \in \lor q)$ -T-fuzzy ideal of X if

- (*i*) $x_t \in \mu \Rightarrow 0_t \in \lor q\mu$
- (*ii*) $(x * y)_t, y_s \in \mu \Rightarrow x_{T(t,s)} \in \lor q\mu, \forall x, y \in X, \forall s, t \in [0, 1].$

Example 7. Consider a *BG*-algebra $X = \{0, 1, 2, 3\}$ with the following cayley table:

Table 2: Example of $(\in, \in \lor q)$ -T-fuzzy ideal.

*	0	1	2	3
0	0	1	2	3
1	1	0	3	2
2	2	3	0	1
3	3	2	1	1

- (i) Consider a fuzzy set μ_1 defined on X by $\mu_1(0) = \mu_1(1) = \mu_1(2) = 0.8, \mu_1(3) = 0.6$. Then it is easy to verify that μ_1 is an $(\in, \in \forall q)$ -fuzzy ideal of X. But it is not a fuzzy BG-ideal of X. Since $\mu_1(3) = 0.6 \geq min\{\mu_1(3*1), \mu_1(2)\} = \mu_1(2) = 0.8$.
- (ii) Again consider a fuzzy set µ₂ defined on X by µ₂(0) = µ₂(1) = µ₂(2) = 0.4, µ₂(3) = 0.3. Then it is easy to verify that µ₂ is an (∈, ∈ ∨q)-T-fuzzy ideal of X with respect to t-norm T_L. Since for all x ∈ X it satisfies x_t ∈ µ₂ ⇒ 0_t ∈ ∨qµ₂ and (x * y)_t, y_s ∈ µ ⇒ x_{max(t+s-1,0)} ∈ ∨qµ₂. But it is not an (∈, ∈ ∨q)-fuzzy ideal of X. Since (3 * 1)_{0.4}, 2_{0.4} ∈ µ₂, but 3_{0.4}(∈, ∈ ∨q)µ₂.
- (iii) Again consider a fuzzy set µ₃ defined on X by µ₃(0) = µ₃(1) = µ₃(2) = 0.9, µ₃(3) = 0.6. Then it is easy to verify that µ₃ is an (∈, ∈ ∨q)-T-fuzzy ideal of X with respect to t-norm T_P. Since for all x ∈ X it satisfies x_t ∈ µ₃ ⇒ 0_t ∈ ∨qµ₃ and (x * y)_t, y_s ∈ µ₃ ⇒ x_{t.s} ∈ ∨qµ₃.
- (iv) Again consider a fuzzy set μ_4 defined on X by $\mu_4(0) = \mu_4(1) = \mu_4(2) = 0.9, \mu_4(3) = 0.4$. Then it is easy to verify that μ_3 is an $(\in, \in \lor q)$ -T-fuzzy ideal of X with respect to t-norm T_L . But it is not an $(\in, \in \lor q)$ -T-fuzzy ideal of X with respect to t-norm T_P . Since $\mu_4(3) = 0.3 \ge T_P\{\mu_4(3*1).\mu_4(2), 0.5\} = \frac{\mu_4(3*1).\mu_4(2)}{2} = 0.405$.

Theorem 2. If a fuzzy subset μ of a BG-algebra X is an $(\in, \in \lor q)$ -T-fuzzy ideal of X iff

- (*i*) $\mu(0) \ge T\{\mu(x), T(1, \frac{1}{2})\}$
- (*ii*) $\mu(x) \ge T\{T(\mu(x*y), \mu(y)), T(1, \frac{1}{2})\}.$

^{© 2015} BISKA Bilisim Technology

Proof. (i) Suppose μ is an $(\in, \in \lor q)$ -T-fuzzy ideal of X. Assume that (i) is not valid, then there exists some $x \in X$ such that $\mu(0) < T\{\mu(x), T(1, \frac{1}{2})\}$, Choose a real number t such that

$$\mu(0) < t < T\{\mu(x), T(1, \frac{1}{2})\}.$$

$$\Rightarrow \mu(x) > t$$

$$\Rightarrow x_t \in \mu$$

$$\Rightarrow 0_t \in \forall q\mu \text{ [Since } \mu \text{ is an } (\in, \in \forall q) - T - \text{fuzzy ideal of } X.\text{]}$$

$$\Rightarrow 0_t \in \mu \text{ or } 0_t q\mu$$

$$\Rightarrow \mu(0) \ge t \text{ or } \mu(0) + t > 2T(1, \frac{1}{2})$$

$$\Rightarrow \mu(0) \ge t \text{ or } 2T(1, \frac{1}{2}) < \mu(0) + t < t + t = 2t \text{ by } (1)$$

$$\Rightarrow \mu(0) \ge t \text{ or } T(1, \frac{1}{2}) < t \text{ which contradicts } (1).$$
(2)

Hence (i) is valid.

(ii) Assume that (ii) is not valid, then there exists some $x, y \in X$ such that $\mu(x) < T\{T(\mu(x*y), \mu(y)), T(1, \frac{1}{2})\}$ Choose a real number t such that

$$\mu(x) < t < T\{T(\mu(x*y),\mu(y)),T(1,\frac{1}{2})\}$$

$$\Rightarrow \mu(x) < t < T\{T(\mu(x*y),\mu(y)),T(1,\frac{1}{2})\} \le \min\{\min(\mu(x*y),\mu(y)),\min(1,\frac{1}{2})\}.$$
(3)
$$\Rightarrow \mu(y) > t \text{ and } \mu(x*y) > t$$

$$\Rightarrow (x*y)_t, y_t \in \mu$$

$$\Rightarrow x_t \in \lor q\mu \text{ [Since } \mu \text{ is } an (\in, \in \lor q) - T - \text{ fuzzy ideal of } X.\text{]}$$

$$\Rightarrow x_t \in \mu \text{ or } x_t q\mu$$

$$\Rightarrow \mu(x) \ge t \text{ or } \mu(x) + t > 2T(1,\frac{1}{2})$$

$$\Rightarrow \mu(x) \ge t \text{ or } 2T(1,\frac{1}{2}) < \mu(x) + t < t + t = 2t \text{ by } (3)$$

$$\Rightarrow \mu(x) \ge t \text{ or } T(1,\frac{1}{2}) < t \text{ which contradicts } (3).$$

Hence (ii) is valid.

Theorem 3. A fuzzy subset μ of a BG-algebra X is a T-fuzzy ideal of X iff μ is an (\in, \in) -T-fuzzy ideal of X.

Proof. Let μ be a T-fuzzy ideal of X. Then

$$\mu(0) \ge \mu(x) \tag{4}$$

$$\mu(x) \ge T\{\mu(x*y), \mu(y)\}\tag{5}$$

to prove that μ is an (\in, \in) -T-fuzzy ideal of X. Let $x \in X$ such that $x_t \in \mu$, where $t \in (0, 1)$. Then $\mu(x) \ge t$. Now (4) $\Rightarrow \mu(0) \ge \mu(x) \ge t \Rightarrow 0_t \in \mu$, Let $x, y \in X$ such that $(x * y)_t, y_s \in \mu$, where $t, s \in (0, 1)$. Then $\mu(x * y) \ge t, \mu(y) \ge s$. Now

 $(5) \Rightarrow \mu(x) \ge T\{\mu(x*y), \mu(y)\} \ge T\{t, s\} = T(t, s) \Rightarrow x_{T(t, s)} \in \mu, \text{ Therefore, } \mu \text{ is an } (\in, \in)\text{-T-fuzzy ideal of } X.$

Conversely, let μ be an (\in, \in) -T-fuzzy ideal of X. To prove that μ is a T-fuzzy ideal of X. Let $x \in X$ and $t = \mu(x)$. Then $\mu(x) \ge t \Rightarrow x_t \in \mu \Rightarrow 0_t \in \mu$ [since μ is an (\in, \in) -T-fuzzy ideal of X]

$$\Rightarrow \mu(0) \ge t = \mu(x). \tag{6}$$

Again let $x, y \in X$ and $t = \mu(x * y), s = \mu(y)$. Then $\mu(x * y) \ge t, \mu(y) \ge s \Rightarrow (x * y)_t \in \mu, y_s \in \mu$ $\Rightarrow x_{T(t,s)} \in \mu$ [since μ is an (\in, \in) -T-fuzzy ideal of X] $\Rightarrow \mu(x) \ge T(t,s)$

$$\Rightarrow \mu(x) \ge T\{\mu(x*y), \mu(y)\}.$$
(7)

Hence (6) and (7) implies μ is a T-fuzzy ideal of *X*.

Definition 15. Let I be an ideal of X and let μ be a fuzzy set of X such that (i) $\mu(x) = 0$ for all $x \in X \setminus I$, (ii) $\mu(x) \ge T(1, \frac{1}{2})$ for all $x \in I$. Then μ is a $(q, \in \lor q)$ -T-fuzzy ideal of X.

Proof. Let $x \in X$ and $t \in (0, 1]$ be such that $x_t q \mu$. Then we get $\mu(x) + t > 2T(1, \frac{1}{2})$. Since I is an ideal therefore $0 \in I$, i. e., $\mu(0) \ge T(1, \frac{1}{2})$ Now if $T(1, \frac{1}{2}) \ge t$ then $\mu(0) \ge T(1, \frac{1}{2}) \ge t$ which implies $0_t \in \mu$. If $t > T(1, \frac{1}{2})$ then $\mu(0) + t > 2T(1, \frac{1}{2})$ and so $0_t q \mu$. Hence $0_t \in \forall q \mu$. Again let $x, y \in X$ and $t, s \in (01]$ be such that $(x * y)_t q \mu$ and $x_s q \mu$. Then we get that $\mu(x * y) + t > 2T(1, \frac{1}{2})$ and $\mu(y) + s > 2T(1, \frac{1}{2})$. We can conclude that $x \in X$, since in otherwise $x \in X \setminus I$, and therefore $t > 2T(1, \frac{1}{2})$ or $s > 2T(1, \frac{1}{2})$ which is a contradiction. If $T(t, s) > T(1, \frac{1}{2})$, then $\mu(x) + T(t, s) > 2T(1, \frac{1}{2})$ and so $x_{T(t,s)}q\mu$. If $T(t,s) \le T(1, \frac{1}{2})$, then $\mu(x) \ge T(t,s)$ and thus $x_{T(t,s)} \in \mu$.. Hence $x_{T(t,s)} \in \lor q\mu$.

Definition 16. Let λ and μ be two fuzzy sets in X, then their intersection $'\cap'$ and union $'\cup'$ with respect to t-norm T and s-norm S is defined by $\lambda \cap \mu(x) = T\{\lambda(x), \mu(x)\}$ and $\lambda \cup \mu(x) = S\{\lambda(x), \mu(x)\}$.

Theorem 4. If λ and μ be two $(\in, \in \lor q)$ -*T*-fuzzy ideals of *X*, then $\lambda \cap \mu$ is also an $(\in, \in \lor q)$ -*T*-fuzzy ideal of *X*.

Proof. Here λ, μ both are $(\in, \in \lor q)$ -T-fuzzy ideals of X. Therefore

$$\lambda(0) \ge T\{\lambda(x), T(1, \frac{1}{2})\}\tag{8}$$

$$\lambda(x) \ge T\{T(\lambda(x*y), \lambda(y)), T(1, \frac{1}{2})\}$$
(9)

$$\mu(0) \ge T\{\mu(x), T(1, \frac{1}{2})\}$$
(10)

$$\mu(x) \ge T\{T(\mu(x*y), \mu(y)), T(1, \frac{1}{2})\}.$$
(11)

Now

203

$$\begin{split} \lambda \cap \mu(0) &= T\{\lambda(0), \mu(0)\} \\ &\geq T\{T\{\lambda(x), T(1, \frac{1}{2})\}, T\{\mu(x), T(1, \frac{1}{2})\}\} \quad \text{by}(8), (10) \\ &= T\{T(\lambda(x), \mu(x))T(1, \frac{1}{2})\} \quad \text{By Lemma 1} \\ &= T\{\lambda \cap \mu(x), T(1, \frac{1}{2})\} \end{split}$$

$$\begin{split} \lambda \cap \mu(x) &= T\{\lambda(x), \mu(x)\} \\ &\geq T\{T\{T(\lambda(x*y), \lambda(y)), T(1, \frac{1}{2})\}, T\{T(\mu(x*y), \mu(y)), T(1, \frac{1}{2})\}\} \quad \text{by}(9), (11) \\ &= T\{T\{T(\lambda(x*y), \mu(x*y)), T(\lambda(y), \mu(y))\}, T(1, \frac{1}{2})\} \quad \text{By Lemma 1} \\ &= T\{T\{\lambda \cap \mu(x*y), \lambda \cap \mu(y)\}, T(1, \frac{1}{2})\}. \end{split}$$

Theorem 5. If $\{\mu_i | i \in \land\}$ be a family of $(\in, \in \lor q)$ -*T*-fuzzy ideals of *X*, then $\cap_{i \in \land} \mu_i$ is an $(\in, \in \lor q)$ -*T*-fuzzy ideal of *X*.

Proof. Here by Theorem 2 we have, for all $i \in \land$

$$\mu_i(0) \ge T\{\mu_i(x), T(1, \frac{1}{2})\}$$

$$\mu_i(x) \ge T\{T(\mu_i(x * y), \mu_i(y)), T(1, \frac{1}{2})\}.$$

Therefore taking infimum with respect to t-norm we get.

$$\mu(0) = \inf_{i \in \wedge} \mu_i(0) \ge \inf_{i \in \wedge} T\{\mu_i(x), T(1, \frac{1}{2})\}$$

$$\ge T\{\inf_{i \in \wedge} \mu_i(x), T(1, \frac{1}{2})\}$$

$$\ge T\{\mu(x), T(1, \frac{1}{2})\},$$

and

$$\begin{split} \mu(0) &= \inf_{i \in \wedge} \mu_i(x) \geq \inf_{i \in \wedge} T\{T(\mu_i(x * y), \mu_i(y)), T(1, \frac{1}{2})\} \\ &\geq \inf_{i \in \wedge} T\{T(\mu_i(x * y), \mu_i(y)), T(1, \frac{1}{2})\} \\ &\geq T\{T(\inf_{i \in \wedge} \mu_i(x * y), \inf_{i \in \wedge} \mu_i(y)), T(1, \frac{1}{2})\} \\ &\geq T\{T(\mu(x * y), \mu(y)), T(1, \frac{1}{2})\}. \end{split}$$

Hence by Theorem 2 $\cap_{i \in \Lambda} \mu_i$ is an $(\in, \in \lor q)$ -T-fuzzy ideal of X.

Theorem 6. Union of two $(\in, \in \lor q)$ -*T*-fuzzy ideals of *X*, may not be an $(\in, \in \lor q)$ -*T*-fuzzy ideal of *X*.

Proof. Consider BG-algebra X as defined in Example 7. Now consider two fuzzy sets λ and μ defined by $\lambda(0) = \lambda(1) = \lambda(2) = 0.4, \lambda(3) = 0.3$. and $\mu(0) = \mu(1) = \mu(2) = 0.5, \mu(3) = 0.3$. Then it is easy to verify that both λ and μ are $(\in, \in \lor q)$ -T-fuzzy ideal of X with respect to t-norm T_L . But the dual (t-conorm) of t norm T_L is S_L where $S_L(a,b) = 1 - T_L(1-a, 1-b) = 1 - max(1-a+1-b-1, 0) = min(a+b, 1)$ Now $\lambda \cup \mu(0) = \lambda \cup \mu(1) = \lambda \cup \mu(2) = S_L(0.4, 0.5) = 0.9, \lambda \cup \mu(3) = S_L(0.3, 0.3) = 0.6$. Now $(3 * 1)_{0.9}, 1_{0.9} \in (\lambda \cup \mu)$ But $3_{T_L(0.9, 0.9)} = 3_{0.8} \notin (\lambda \cup \mu)$. Hence $(\lambda \cup \mu)$ is not an $(\in, \in \lor q)$ -T-fuzzy ideal of X.

Theorem 7. If μ is a (q,q)-*T*-fuzzy ideal of *X* then it is also an (\in, \in) -*T*-fuzzy ideal of *X*.

Proof. Let μ be a (q,q)-T-fuzzy ideal of X. Let $x \in X$ such that $x_t \in \mu$ then $\mu(x) \ge t$

$$\begin{aligned} &\Rightarrow \mu(x) + \delta > t \\ &\Rightarrow \mu(x) + \delta - t + 2T(1, \frac{1}{2}) > 2T(1, \frac{1}{2}) \\ &\Rightarrow (x)_{\delta - t + 2T(1, \frac{1}{2})} q\mu \\ &\Rightarrow (0)_{\delta - t + 2T(1, \frac{1}{2})} q\mu \text{ [Since } \mu \text{ be a } (q, q) - T - \text{fuzzy ideal of X.]} \\ &\Rightarrow \mu(0) + \delta - t + 2T(1, \frac{1}{2}) > 2T(1, \frac{1}{2}) \\ &\Rightarrow \mu(0) + \delta > t \\ &\Rightarrow \mu(0) \ge t \\ &\Rightarrow 0_t \in \mu. \end{aligned}$$

Therefore $x_t \in \mu \Rightarrow 0_t \in \mu$. Again let $x, y \in X$ such that $(x * y)_t, y_s \in \mu$.

$$\begin{split} &\Rightarrow \mu(x*y) \ge t, \mu(y) \ge s \\ &\Rightarrow \mu(x*y) + \delta > t, \mu(y) + \delta > s \\ &\Rightarrow \mu(x*y) + \delta - t + 2T(1, \frac{1}{2}) > 2T(1, \frac{1}{2}), \mu(y) + \delta - s + 2T(1, \frac{1}{2}) > 2T(1, \frac{1}{2}) \\ &\Rightarrow (x*y)_{\delta - t + 2T(1, \frac{1}{2})} q\mu \text{ and } (y)_{\delta - s + 2T(1, \frac{1}{2})} q\mu \\ &\Rightarrow (x)_{T(\delta - t + 2T(1, \frac{1}{2}), \delta - s + 2T(1, \frac{1}{2}))} q\mu \\ &\Rightarrow \mu(x) + T\{\delta - t + 2T(1, \frac{1}{2}), \delta - s + 2T(1, \frac{1}{2})\} > 2T(1, \frac{1}{2}) \\ &\Rightarrow \mu(x) + T\{\delta - t + 2T(1, \frac{1}{2}), \delta - s + 2T(1, \frac{1}{2})\} > \mu(x) + \delta - S\{t, s\} + 2T(1, \frac{1}{2}) > 2T(1, \frac{1}{2}) \\ &\Rightarrow \mu(x) + \delta - S\{t, s\} + 2T(1, \frac{1}{2}) > 2T(1, \frac{1}{2}) \\ &\Rightarrow \mu(x) + \delta - S\{t, s\} + 2T(1, \frac{1}{2}) > 2T(1, \frac{1}{2}) \\ &\Rightarrow \mu(x) + \delta > S\{t, s\} \\ &\Rightarrow \mu(x) \ge T\{t, s\} \\ &\Rightarrow x_{T\{t, s\}} \in \mu, \\ i.e., (x*y)_t, y_s \in \mu, \Rightarrow x_{T\{t, s\}} \in \mu. \end{split}$$

© 2015 BISKA Bilisim Technology

Hence μ is an (\in, \in) -T-fuzzy ideal of X.

205

Theorem 8. A fuzzy subset μ of BG- algebra X is an $(\in, \in \lor q)$ -T-fuzzy ideal of X and $\mu(x) < T(1, \frac{1}{2}) \forall x \in X$ then μ is also an (\in, \in) -T-fuzzy ideal of X.

Proof. Let μ be an $(\in, \in \lor q)$ -T-fuzzy ideal of X and $\mu(x) < T(1, \frac{1}{2}) \forall x \in X$. Let $x_t \in \mu \Rightarrow \mu(x) \ge t$ $\Rightarrow t \le \mu(x) < T(1, \frac{1}{2})$ and also $\mu(0) < T(1, \frac{1}{2})$ $\mu(0) + t < T(1, \frac{1}{2}) + T(1, \frac{1}{2}) = 2T(1, \frac{1}{2}) \Rightarrow \mu(0) + t < 2T(1, \frac{1}{2}) \Rightarrow \mu(0) + t \ne 2T(1, \frac{1}{2}) \Rightarrow 0_t \overline{q} \mu$. Therefore $x_t \in \mu \Rightarrow 0_t \overline{q} \mu$ Since μ be an $(\in, \in \lor q)$ -T-fuzzy ideal of X, therefore we must have $x_t \in \mu \Rightarrow 0_t \in \mu$. Again let $(x * y)_t, y_s \in \mu$, $\Rightarrow t \le \mu(x * y) < T(1, \frac{1}{2})$ and $s \le \mu(y) < T(1, \frac{1}{2})$ $\Rightarrow T(t, s) < T(1, \frac{1}{2})$ and also $\mu(x) + T(t, s) < T(1, \frac{1}{2}) + T(1, \frac{1}{2}) = 2T(1, \frac{1}{2})$. Since μ is an $(\in, \in \lor q)$ -T-fuzzy ideal of X i.e., $\mu(x) \ge T(t, s)$ or $\mu(x) + T(t, s) > 2T(1, \frac{1}{2})$. So we must have $\mu(x) \ge T(t, s)$ i.e., $x_{T(t,s)} \in \mu$. Hence μ is an (\in, \in) -T-fuzzy ideal of X.

Theorem 9. A fuzzy set μ in X is an $(\in, \in \lor q)$ -T-fuzzy ideal of X if and only if the level set $\mu_t = \{x \in X | \mu(x) \ge t\}$ is a ideal of X for all $t \in (0, T(1, \frac{1}{2}))$, and $\mu_t \neq \phi$.

Proof. Assume that μ be an $(\in, \in \lor q)$ -T-fuzzy ideal of X and $t \in (0, T(1, \frac{1}{2})]$. Let $x \in X$ such that $x \in \mu_t$. Therefore $\mu(x) \ge t$. Now by the Theorem 2,

$$\mu(0) \ge T\{\mu(x), T(1, \frac{1}{2})\} \ge T\{t, T(1, \frac{1}{2})\} = t$$
$$\Rightarrow \mu(0) \ge t$$
$$\Rightarrow 0 \in \mu_t.$$

Again let $x, y \in X$ such that $x * y, y \in \mu_t$. Therefore $\mu(x * y) \ge t$, $\mu(y) \ge t$. Again by the Theorem 2,

$$\mu(x) \ge T\{\mu(x*y), \mu(y), T(1, \frac{1}{2})\} \ge T\{t, t, T(1, \frac{1}{2})\} = t$$

$$\Rightarrow \mu(x) \ge t \Rightarrow x \in \mu_t.$$

Therefore $x * y, y \in \mu_t \Rightarrow x \in \mu_t$. Hence μ_t is a ideal of X.

Conversely, Suppose that μ be a fuzzy set in X and $\mu_t = \{x \in X | \mu(x) \ge t\}$ is an ideal of X for all $t \in (0, T(1, \frac{1}{2})]$ To prove μ is an $(\in, \in \lor q)$ -T-fuzzy ideal of X. Suppose μ is not an $(\in, \in \lor q)$ -T-fuzzy ideal of X. The there exists some $x, y \in X$ such that at least one of $\mu(0) < T\{\mu(x), T(1, \frac{1}{2})\}$ and $\mu(x) < T\{\mu(x * y), \mu(y), T(1, \frac{1}{2})\}$ hold. Suppose $\mu(0) < T\{\mu(x), T(1, \frac{1}{2})\}$ holds. Let

$$t = \frac{\mu(0) + T\{\mu(x), T(1, \frac{1}{2})\}}{2},$$

then $t \in (0, T(1, \frac{1}{2}))$ and

$$\mu(0) < t < T\{\mu(x), T(1, \frac{1}{2})\}.$$
(12)

Since μ_t is an ideal, therefore $0 \in \mu_t$ i.e., $\mu(0) > t$ which contradicts (12) Again if $\mu(x) < T\{T(\mu(x*y), \mu(y)), T(1, \frac{1}{2})\}$ holds. Let

$$t = \frac{\mu(x) + T\{T(\mu(x*y), \mu(y)), T(1, \frac{1}{2})\}}{2}$$

then $t \in (0, T(1, \frac{1}{2}))$ and

$$\mu(x) < t < T\{T(\mu(x*y), \mu(y)), T(1, \frac{1}{2})\}\} < \min\{\min(\mu(x*y), \mu(y)), \min(1, \frac{1}{2})\}.$$
(13)

$$\Rightarrow \mu(x * y), \mu(y) > t$$

$$\Rightarrow (x * y), y \in \mu_t$$

$$\Rightarrow x \in \mu_t$$

$$\Rightarrow \mu(x) > t \text{ which contradicts(13).}$$

Therefore we must have $\mu(x) \ge T\{\mu(x*y), \mu(y), T(1, \frac{1}{2})\}$ consequently μ is an $(\in, \in \lor q)$ -T-fuzzy ideal of X.

Theorem 10. Let A be a subset of BG-algebra X. Consider the fuzzy set μ_A in X defined by

$$\mu_A(x) = \begin{cases} 1, & \text{if } x \in A \\ 0, & \text{otherwise} \end{cases}$$

Then A is an ideal of X iff μ_A *is an* $(\in, \in \lor q)$ *-T-fuzzy ideal of X.*

Proof. Let A be an ideal of X. Now $(\mu_A)_t = x \in X | \mu_A(x) \ge t = A$, which is an ideal. Hence by above Theorem μ_A is an $(\in, \in \lor q)$ -T-fuzzy ideal of X.

Conversely, assume that μ_A is an $(\in, \in \lor q)$ -T-fuzzy ideal of X, to prove A is an ideal of X. Let $x \in A$. Then

$$\mu_A(0) \ge T(\mu_A(x), T(1, \frac{1}{2})) = T(1, T(1, \frac{1}{2})) = T(1, \frac{1}{2}) \Rightarrow \mu_A(0) \ge T(1, \frac{1}{2}) \Rightarrow \mu_A(0) = 1 \Rightarrow 0 \in A.$$

Again let $x * y, y \in A$. Then $\mu_A(x) \ge T(T(\mu_A(x * y), \mu_A(y)), T(1, \frac{1}{2})) = T(T(1, 1), T(1, \frac{1}{2})) = T(1, \frac{1}{2}) \Rightarrow \mu_A(x) \ge T(1, \frac{1}$

Theorem 11. Let A be an ideal of X, then for every $t \in (0, T(1, \frac{1}{2})]$ there exists an $(\in, \in \lor q)$ -T-fuzzy ideal μ of X, such that $\mu_t = A$.

Proof. Let μ be a fuzzy set in X defined by

$$\mu(x) = \begin{cases} 1, & \text{if } x \in A \\ s, & \text{otherwise} \end{cases},$$

where $s < t \in (0, T(1, \frac{1}{2})]$ Therefore $\mu_t = x \in X | \mu(x) \ge t = A$ and hence μ_t is an ideal. Now if μ is not an $(\in, \in \lor q)$ -T-fuzzy ideal of X then there exist some $a, b \in X$ such that at least one of $\mu(0) < T(\mu(a), T(1, \frac{1}{2}))$ and $\mu(a) < T(T(\mu(a * b), \mu(b)), T(1, \frac{1}{2}))$ hold. Suppose $\mu(0) < T(\mu(a), T(1, \frac{1}{2}))$ holds. Then choose a real number $t \in (0, T(1, \frac{1}{2})]$ such that

$$\mu(0) < t < T(\mu(a), T(1, \frac{1}{2})).$$
(14)

^{© 2015} BISKA Bilisim Technology

But $0 \in \mu_t = A$ [since μ_t is ideal] Therefore $\mu(0) = 1 > t$, which contradicts (14) Hence we must have $\mu(0) < T(\mu(x), T(1, \frac{1}{2}))$. Again if $\mu(a) < T(T(\mu(a * b), \mu(b)), T(1, \frac{1}{2}))$ holds then choose a real number $t \in (0, T(1, \frac{1}{2})]$,

$$\mu(a) < t < T(T(\mu(a*b), \mu(b)), T(1, \frac{1}{2})),$$
(15)

i.e., $\mu(a*b) > t, \mu(b) > t \Rightarrow a*b \in b \in \mu_t \Rightarrow a \in \mu_t = A$ [since μ_t is ideal]. Therefore $\mu(a) = 1 > t$, which contradicts (15). Hence we must have $\mu(x) \ge T(T(\mu(x*y), \mu(y)), T(1, \frac{1}{2}))$. Thus μ_A is an $(\in, \in \lor q)$ -T-fuzzy ideal of X.

4 Cartesian product of BG-algebras and their $(\in, \in \lor q)$ -T-fuzzy ideals

Theorem 12. Let X, Y be two BG-algebras. Then their cartesian product $X \times Y = \{(x,y) \mid x \in X, y \in Y\}$ is also a BG-algebra under the binary operation * defined in $X \times Y$ by (x,y) * (p,q) = (x * p, y * q) for all $(x,y), (p,q) \in X \times Y$.

Proof. Straightforward.

Definition 17. Let λ and μ be two $(\in, \in \lor q)$ -*T*-fuzzy ideals of BG-algebra X. Then their cartesian product $\lambda \times \mu$ is defined by $(\lambda \times \mu)(x, y) = T\{\lambda(x), \mu(x)\}$ Where $(\lambda \times \mu) : X \times X \to [0, 1] \quad \forall x, y \in X$

Theorem 13. Let λ and μ be two $(\in, \in \lor q)$ -*T*-fuzzy ideals of a BG-algebra X. Then $\lambda \times \mu$ is also an $(\in, \in \lor q)$ -*T*-fuzzy ideal of $X \times X$.

Proof. Similar to Theorem 4.

5 Homomorphism of *BG*-algebras and $(\in, \in \lor q)$ -T-fuzzy ideals

Definition 18. Let X and X' be two BG-algebras, then a mapping $f : X \to X'$ is said to be homomorphism if $f(x * y) = f(x) * f(y) \forall x, y \in X$.

Theorem 14. Let X and X' be two BG-algebras and $f: X \to X'$ be a homomorphism. Then f(0) = 0'.

Proof. We have f(0) = f(x * x) = f(x) * f(x) = 0'.

Theorem 15.Let X and X' be two BG-algebras and $f: X \to X'$ be a homomorphism. If μ be an $(\in, \in \lor q)$ -T-fuzzy ideal of X', then $f^{-1}(\mu)$ is an $(\in, \in \lor q)$ -T-fuzzy ideal of X.

Proof. $f^{-1}(\mu)$ is defined as $f^{-1}(\mu)(x) = \mu(f(x)) \forall x \in X$. Let μ be an $(\in, \in \lor q)$ -T-fuzzy ideal of X' and $x \in X$ such that $x_t \in f^{-1}(\mu)$, then $f^{-1}(\mu)(x) \ge t$.

208

$$\Rightarrow \mu f(x) \ge t \Rightarrow (f(x)_t \in \mu \Rightarrow 0'_t \in \lor q\mu \text{ [Since } \mu \text{ be } an(\in, \in \lor q) - T - fuzzy \text{ ideal of } X'] \Rightarrow 0'_t \in \mu \text{ or } 0'_t q\mu \Rightarrow \mu(0') \ge t \text{ or } \mu(0') + t \ge 2T(1, \frac{1}{2}) \Rightarrow \mu(f(0)) \ge t \text{ or } \mu(f(0)) + t \ge 2T(1, \frac{1}{2}) \Rightarrow f^{-1}(\mu)(0) \ge t \text{ or } f^{-1}(\mu)(0) + t \ge 2T(1, \frac{1}{2}) \Rightarrow 0_t \in f^{-1}(\mu) \text{ or } 0_t q f^{-1}(\mu) \Rightarrow 0_t \in \lor q f^{-1}(\mu).$$

Therefore $x_t \in f^{-1}(\mu) \Rightarrow 0_t \in \forall q f^{-1}(\mu)$. Again let $x, y \in X$ such that $(x * y)_t, y_s \in f^{-1}(\mu)$, then $f^{-1}(\mu)(x * y) \ge t$ and $f^{-1}(\mu)(y) \ge s$,

$$\Rightarrow \mu f(x * y) \ge t \text{ and } \mu f(y) \ge s$$

$$\Rightarrow [f(x * y)]_t \in \mu \text{ and } [f(y]_s \in \mu$$

$$\Rightarrow [f(x) * f(y)]_t \in \mu \text{ and } [f(y)]_s \in \mu$$

$$\Rightarrow [f(x)]_{T(t,s)} \in \forall q\mu$$

$$\Rightarrow [f(x)]_{T(t,s)} \in \mu \text{ or } [f(x)]_{T(t,s)}q\mu$$

$$\Rightarrow \mu(f(x)) \ge T(t,s) \text{ or } \mu(f(x)) + T(t,s) \ge 2T(1,\frac{1}{2})$$

$$\Rightarrow f^{-1}(\mu)(x) \ge T(t,s) \text{ or } f^{-1}(\mu)(x) + T(t,s) \ge 2T(1,\frac{1}{2})$$

$$\Rightarrow x_{T(t,s)} \in f^{-1}(\mu) \text{ or } x_{T(t,s)}qf^{-1}(\mu)$$

$$\Rightarrow x_{T(t,s)} \in \lor qf^{-1}(\mu).$$

Therefore $(x * y)_t, y_s \in f^{-1}(\mu) \Rightarrow x_{T(t,s)} \in \lor qf^{-1}(\mu).$

Theorem 16. Let X and X' be two BG-algebras and $f: X \to X'$ be an onto homomorphism. If μ be a fuzzy subset of X' such that $f^{-1}(\mu)$ is an $(\in, \in \lor q)$ -T-fuzzy ideal of X, then μ is also an $(\in, \in \lor q)$ -T-fuzzy ideal of X'.

Proof. Let $x' \in X'$ such that $x'_t \in \mu$ where $t \in [01]$, then $\mu(x') \ge t$ since f is onto so there exists $x \in X$ such that f(x) = x'. Now $\mu(x') \ge t \Rightarrow \mu(f(x)) \ge t$.

$$\Rightarrow f^{-1}(\mu)(x) \ge t$$

$$\Rightarrow x_t \in f^{-1}(\mu)$$

$$\Rightarrow 0_t \in \lor qf^{-1}(\mu) \text{ [since } f^{-1}(\mu) \text{ is an } (\in, \in \lor q) - T - \text{fuzzy ideal of } X],$$

^{© 2015} BISKA Bilisim Technology

$$\Rightarrow 0_t \in f^{-1}(\mu) \text{ or } 0_t q f^{-1}(\mu),$$

$$\Rightarrow f^{-1}(\mu)(0) \ge t \text{ or } f^{-1}(\mu)(0) + t > 2T(1, \frac{1}{2})$$

$$\Rightarrow \mu(f(0)) \ge t \text{ or } \mu(f(0)) + t > 2T(1, \frac{1}{2})$$

$$\Rightarrow \mu(0') \ge t \text{ or } \mu(0') + t > 2T(1, \frac{1}{2})$$

$$\Rightarrow 0'_t \in \mu \text{ or } 0'_t q \mu$$

$$\Rightarrow 0'_t \in \lor q \mu.$$

Therefore $x'_t \in \mu \Rightarrow 0'_t \in \forall q\mu$. Again let $x', y' \in X'$ such that $(x' * y')_t, y'_s \in \mu$ where $t, s \in [01]$, then $\mu(x' * y') \ge t, \mu(y') \ge t$ since f is onto so there exists $x, y \in X$, such that f(x) = x', f(y) = y' also f is homomorphism so f(x * y) = f(x) * f(y) = x' * y'. Now $\mu(x' * y') \ge t$ and $\mu(y') \ge s$,

$$\Rightarrow \mu(f(x) * f(y)) \ge t \text{ and } \mu(f(y)) \ge s$$

$$\Rightarrow \mu(f(x * y)) \ge t \text{ and } \mu(f(y)) \ge s \text{ [Since } f \text{ is homomorphism]}$$

$$\Rightarrow f^{-1}(\mu)(x * y) \ge t \text{ and } f^{-1}(\mu)(y) \ge s$$

$$\Rightarrow (x * y)_t \in f^{-1}(\mu) \text{ and } y_s \in f^{-1}(\mu),$$

$$\Rightarrow x_{T(t,s)} \in \lor qf^{-1}(\mu) \text{ [Since } f^{-1}(\mu) \text{ is } an(\in, \in \lor q) - T - fuzzy \text{ ideal of } X],$$

$$\Rightarrow f^{-1}(\mu)(x) \ge T(t,s) \text{ or } f^{-1}(\mu)(x) + T(t,s) > 2T(1, \frac{1}{2})$$

$$\Rightarrow \mu(f(x)) \ge T(t,s) \text{ or } \mu(f(x)) + T(t,s) > 2T(1, \frac{1}{2})$$

$$\Rightarrow \mu(x') \ge T(t,s) \text{ or } \mu(x') + T(t,s) > 2T(1, \frac{1}{2})$$

$$\Rightarrow x'_{T(t,s)} \in \mu \text{ or } x'_{T(t,s)} q\mu$$

$$\Rightarrow x'_{T(t,s)} \in \lor q\mu.$$

Therefore $(x' * y')_t, y'_s \in \mu \Rightarrow x'_t \in \forall q\mu$. Hence μ is an $(\in, \in \forall q)$ -T-fuzzy ideal of X'.

6 Conclusions

In this paper, we have studied $(\in, \in \lor q)$ -T-fuzzy ideal of *BG*-algebra and obtained some interesting results. Choosing different t-norm T we can obtain different types of fuzzy ideals in BG-algebra. We can consider $(\in, \in \lor q)$ -T-fuzzy ideal is the generalised form of fuzzy ideal. By using same idea, we can define $(\in, \in \lor q)$ -T-fuzzy ideal in other algebric systems also.

References

- [1] S. S. Ahn and H. D. Lee, Fuzzy subalgebras of BG-algebras, Commun Korean Math.Soc, 19(2) (2004) 243-251.
- [2] S. K. Bhakat and P. Das, $(\in, \in \lor q)$ -fuzzy subgroup, Fuzzy sets and Systems, **80** (1996), 359-368.
- [3] S. K. Bhakat and P. Das, $(\in \lor q)$ -level subset, Fuzzy sets and Systems, **103(3)** (1999), 529-533.
- [4] S. H. Dhanani and Y. S. Pawar, $(\in, \in \lor q)$ -Fuzzy Ideals of Lattice, International Journal of Algebra, 4(26) (2010), 1277-1288.

- [5] Y. Imai and K. Iseki, On Axiom systems of Propositional calculi XIV, Proc, Japan Academy, 42 (1966)19-22.
- [6] K. Iseki, On some ideals in BCK-algebras, Math.Seminar Notes, 3 (1975) 65-70.
- [7] C. B. Kim and H. S. Kim, on BG-algebras, Demonstratio Mathematica, 41(3) 497-505.
- [8] K. H. Kim, On Imaginable T-Fuzzy Ideals of Γ -Rings, International Mathematics Forum, 26(5) 497-505.
- [9] E.P. Klement, R. Mesiar and E. Pap, Triangular Norms, Kluwer Academic Publishers, Dordrecht, 2000.
- [10] E.P. Klement, R. Mesiar and E. Pap, *Triangular norms. Position paper I: basic analytical and algebraic properties*, Fuzzy Sets and Systems, 143 (2004), 5-26.
- [11] M. A. Larimi, $On (\in, \in \lor q_k)$ -Intuitionistic Fuzzy Ideals of Hemirings, World Applied Sciences Journal **21** (special issue of Applied Math), 54-67,2013.
- [12] C. H. Ling, Representation of associative functions and statistical triangle inequalities., Publ. Math. Debrecen, 128 (1965), 189-212.
- [13] K. Menger, Statistical metrics, Proc. Nat. Acad. Sci. USA 8 (1942), 535-537.
- [14] V. Murali, Fuzzy points of equivalent fuzzy subsets, inform Sci, 158 (2004) 277-288.
- [15] R. Muthuraj, M. Sridharan, P. M. Sitharselvam, *Fuzzy BG-ideals in BG-Algebra*, International Journal of Computer Applications 2(1) (2010), 26-30.
- [16] J. Neggers and H. S. Kim, on B-algebras, Math. Vensik 54 (2002) 21-29.
- [17] E. Pap, Null-Additive Set Functions, Kluwer and Ister Science, (1955)
- [18] T. Senapati, M. Bhowmik and M. Pal, Triangular norm based fuzzy BG-algebras, Afr. Mat. (In press)
- [19] B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math., 10 (1960), 313-334.
- [20] B. Schweizer and A. Sklar, Associative functions and statistical triange inequalities, Publ. Math. Debrecen, 8 (1961), 169-186.
- [21] B. Schweizer and A. Sklar, Espaces metriques aleatories, Acad. Sci. Paris, 247 (1958), 2092-2094.
- [22] B. Schweizer and A. Sklar, Probabilistic Metric Spaces, North Holland, 247 (1983), 2092-2094.
- [23] Y. B. Yun, On (α,β) -Fuzzy ideals of BCK/BCI-Algebras Scientiae Mathematicae Japonicae, online, e-2004, 101-105.
- [24] Y. B. Yun, S. S. Hong On Imaginable T-Fuzzy subalgebras and Imaginable T-Fuzzy closed ideals in BCH-Algebras, IJMSSA 27(5) (2000), 269-287.
- [25] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353.