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Abstract: In this paper, a new collocation method based on the Fibonacci polynomials is introduced to solve the high-order linear
Volterraintegro-differential equations under the conditions. Numerical examples are included to demonstrate the applicability and
validity of the proposed method and comparisons are made with the existing results. In addition, an error estimation based on the
residual functions is presented for this method. The approximate solutions are improved by using this error estimation.
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1 Introduction

In recent years, the integral and integro-differential equations have a major role in engineering, mechanics, physics,
chemistry, astronomy, biology, economics, potential theory, electrostatics, (Kadalbajoo & Sharma 2002, Elmer & Van
Vleck 2002, Maleknejad & Mahmoudi 2004, Cao & Wang 2004, Kadalbajoo & Sharma 2004). A physical event can be
modeled by these equations. Since few of these equations cannot be solved explicitly, it is necessary to resort to the
numerical techniques. Many authors have worked on numerical methods such as Adomian decomposition method
(Wazwaz 2010), the CAS wavelet method (Danfu & Xufeng, 2007), the Galerkin method (Brunner et al, 2009), the Tau
method (Pour-Mahmoud, 2005), the finite difference method (Zhao & Corless, 2006), the Haar function method

(Maleknejad & Mirzaee, 2006), the sine—cosine wavelet methods (Kajani et al, 2007) for solutions of these equations.

Since the beginning of 1994, for solving the linear and nonlinear Volterra integral and Volterraintegro-differential,
Fredholm-Volterraintegro-differential equation matrix methods have also been used by Sezer et al. (Sezer 1994,
Yalcinbas & Sezer 2000, Yalcinbas 2002, Sorkun & Yalcinbas 2010, Yuzbasi et al 2011) Also, the Fibonacci matrix
method has been used to find the approximate solutions of differential, integral and integro-differential equations,
differential- difference equations and Fredholmintegro differential-difference equations (Kurt 2012, Kurt et al 2013a,
2013b).

In this study, we consider the approximate solution of the mzh-order Volterraintegro differential equations,

i Pe(x)y® (x) = g(x) + A /K(x,t)y(t)dt,O <a<xt<b (1)
k=0 ,
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under the conditions
m—1

Y laiy®(a) + by (b)] = 4;,j = 1,2,3,....m @)
k=0

where P;(x), g(x), and K (x,) are functions defined on a < x,t < b; aji, bjx, A and A; are suitable constants. Our aim is to

obtain an approximate solution of (1) expressed in the truncated Fibonacci series form

N
y(x) =Y anFp(x) )
n=1

an,n=1,2,3,....N are the unknown Fibonacci coefficients. Here N is chosen any positive integer such that N > m and

F,(x),n=1,2,3,...,N are the Fibonacci polynomials defined by

[(n—1)/2] i )
=" (o,

j=0 J

(n—2)/2, neven

ln=1)/2) = { (n—1)/2, nodd.

2 Fundamental matrix relations

We first write the Fibonacci polynomials F,(x) in the matrix form as follows
FT(x)=cxT(x) & F(x) =X (x)CT “4)

where F(x) = [Fy (x)F>(x)...Fy(x)],

if N is even,

0 <n/z ) 0 ((n+2)/2> <n_1>
i (n—2)/2 (n—4)/2 O ) T
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if N is odd,

o
VR
O W
N———
o

<<n—1>/2> 0 <<”+1>/2> ...(n—l>
\n-1)2 (n—3)/2 Y Y

Let us show Eq.(1) in the form

P(x) = g(x) + Al(x) %)
where "
P(x)= Y Pu(x)y® (x). 6)
k=0

3 Matrix relations for the differential part P(X)

We consider the solution y(x) and its kzh derivatey(¥) (x) in the matrix form

y(x) =F(x)A,A= [al a - aN}T (7

y<k> (x) = F® (x)A. (8)

Then, from relations (4) and (7), we can obtain the following matrix form
y(x) = X (x)CTA. ©)
Similar to Eq. (8), from relations (4), (7) and (8), we can find y(k) (x) matrix form as
Y8 (x) = X0 (x)CcTA. (10)

To find the matrix X ®)(x) in terms of the matrix X (x), we can use the following relation

(© 2016 BISKA Bilisim Technology
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where

BT =
00 0--00N-1
00 0--00 0

By using the relations (9)-(11) we have the recurrence relations

¥ (x) = X (x) (BT )*CT A.

Subsequently, by substituting the matrix form (12) into Eq.(6), we obtain the matrix relations

P(x) = f P(x)X (x)(BT)*CT A.
k=0

4 Matrix relations for the integral part I(X)

(11)

(12)

(13)

Let us find the matrix relation for the Volterra integral part /(x) in Eq.(6). The kernel function K(x,) can be shown by the

truncated Fibonacci series,

and the truncated Taylor series,

where

N N

K(x,t) =Y, Y khnFu(x)F(r)

m=0n=0

N N
Kxt)=Y Y kx"t"
m=0n=0

1 9™t"K(0,0)
! 2 . — _
= T g ;mon=0,1,..N—1.

The expressions (14)-(15) can be put matrix forms as

and

From (16)-(17) we can obtain

K(x.1) = F)KpF" (1), K = [k,,]

K(x,t) =X(x)KX" (1),K, = [K,

mn] :

X()KXT(t) = Fx)KpF' (1) = X(x)K:XT () = X (x)CT KrCXT (2)

(14)

(15)

(16)

7)
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thus
K, =CTKpC = Kp = (CT)'K,C71. (18)

By substituting the matrix forms (7) and (17) into the integral part I(x) in (5). So we can have the matrix relation as

follows

1(x)] = / F(x)KrFT (1)F (t)Adt = F (x)KpQ(x)A (19)

so that

X

0(x)] = [ET(0)F(t)dt = [CXT ()X (1)CTdt = CH(x)CT

il _ it
hii(x) = ——i,j=1,2,...,N.
l](x) l+]+1 LJ 9Ly ey

If we subsitute the matrix relation (4) into (19), we have the matrix form
[I(x)] = X (x)MH (x)CTA (20)
where

M=CTKrC.

5 Matrix relations for the conditions

The corresponding matrix form for the conditions (2) can be shown, by means of (12), as

m—1

Z [ajeX (a) +bjkx(b)](BT)kCTA =1, j=12,...m. Q1)
k=0

6 Method of solution

We can construct the fundamental matrix equation corresponding for Eq.(1). For this aim, we substitute the matrix
relations (13) and (20) into Eq. (5). So we obtain the matrix equation

i Pe0)X (x)(BT)*CTA = g(x) + AX (x)MH (x)CT A. (22)
k=0

By using in Eq. (22) the collocation points x; defined by x; = a + (1{’,:‘;) (i—1),i=1,2,...,N. The system of the matrix

equations is obtained

i P(x)X (x)CT (BT)*A = g(x;) + AX (x;)MH (x;)CT A.
k=0

or shortly the fundamental matrix equation becomes

{ i PX(BTY'cT - /IXMHC} A=G (23)
k=0

where

(© 2016 BISKA Bilisim Technology
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P(x;) 0 - O g(xr) X(x1) Loy -t
0 Pk(XQ) 0 g(XQ) X()Cz) 1xp - xlzvil
b= . . , G=| . |, X= . =1. .. .|
. . .. 0 . . . . .. .
0 0 Pk(xN) g(xN) X()CN) 1 xy x%_l
X(xl) 0 0
_ 0 X(xz) 0
X = . )

MO--0 cr H,(x;) 0 - 0 ap
_ OM---0 _ cT _ 0 Hy(x)- 0 a
M = ... ]sC= , H= . , A= .
00.---M CT 0 0 "-HV(XN) an

Therefore, the fundamental matrix equation (23) corresponding for Eq. (1) can be written as
WA=G (24)

where "
w =Y PX(B")‘CT — AXMHC.
k=0
Eq. (24) corresponds to a system of N linear algebraic equations with unknown Fibonacci coefficients aj,as,...,ay.

Further, we can express the matrix form (21) conditions

where
£ T\k ~T
U= Y lapX(a)+byX(b)](B")CT = [ujl Ui s - u,w].
k=0

To obtain the solution of Eq. (1) under the conditions (2), by replacing the row matrices (25) by the last m rows of the

matrices (24) (or any m rows of the matrix (24)), we have the new augmented matrix,

wit wiz o owiy 5 glar)
wai wyn o oway 5 g(x)

WN—m)l WN-m)2 " WN-m)N 5 §(XN—m)

WG] = . (26)
ui1 upp - wy 5 A
uz1 up - Ny ;5 A
Ul Upy = UmN 3 Am

If rank W = rank[W;G] = N, then we can write

(© 2016 BISKA Bilisim Technology
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And so, the matrix A (thereby the coefficients aj,as, ...,ay) is uniquely determined. Therefore, Eq. (1) with conditions (2)
has a unique solution which is given by Fibonacci series solution (3). On the other hand, when |W’ = 0, that is if rank
W = rank[W; G] < N, we can find a particular solution. Otherwise if rankW # rank[W; G] < N, then there is no solution.

7 Residual function and error estimation

In this section, we will give an efficient error estimation for the Fibonacci polynomial approximation and also a technique
to obtain the corrected solution of the problem (1) and (2) by using the residual correction method (Oliveira 1980, Celik
2006) For our aim, we define the residual function for the present method as

Ry() = ¥ Ao )~ [ K@) g(0) @
k=0 °

where yy (x) is the approximate solution of the problem (1)-(2). Note that, yy (x) satisfies the following problem

X

% Pe(x)yn® (x) — A [ K (x,1)yn(t)dt = g(x) + Ry (x)
el “ (28)
Y [ajpon®(0) + by (b)) = 4;,j =1,2,3,....m.

In addition, the error function ey (x) can be defined as

en (x) =y (x) —yn (x) (29)

where y (x) is the exact solution of the problem (1) - (2). Substituting (29) into (1) and (2) and using (27) and (28), we
have the error differential equation with the homogenous conditions

f‘, Pk(x)eN<k) (x)—2A fK(x,t)eN(t)dt = —Ry (%)
k=0 a
1 (30)
) [ajkeN(k)(O) -‘r-bjkeN(k)(b)] =0,j=1,2,3,....m.
k=0

Solving the problem (30) in the same way as in Section 3, we get the approximation ey j (x) to ex (x), M > N which is
the error function based on the residual function.

Subsequently, by means of the Fibonacci polynomials yy (x) and ey a (x), we obtain the corrected solution
YN (%) = 3N (X) +enm (%)
Also, we construct the Fibonacci error function ey (x) =y (x) — yn (x), and the corrected Fibonacci error function

EN,M ()C) — €N (x) — eN,M (x) .

(© 2016 BISKA Bilisim Technology
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8 Numerical examples

In this section, several examples are given to illustrate the applicability of the Fibonacci matrix method and all of them
are performed on the computer. In examples, the terms |ey (x)| and |En p (x)] respectively, represent the absolute error

function and the absolute error function of corrected Fibonacci polynomial solution.

Example 1. (Kurt 2012) Let us consider the linear Volterraintegro-differential equation given by

X
(= 1) () + 20/ (x) = y(x) = —26* 4557 + 157 +3x =T+ 6 / (x—)y(1)dt (31)
0
¥(0)=—1,)(=1)=—=5,0<x,1 <2,

with the exact solution
y(x) =4x® +3x—1.

The approximate solution y(x) by the truncated Fibonacci series

N
y(x) = Z anFp(x)
n=1
where
N=4, po(x)=—1, p1(x) =2x, pr(x) =x> — 1, g(x) = —2x* +5° + 1582 + 3x - 7,4 = 6,K(x,1) = x — 1.
The collocation points for N = 3 are computed as

{xl ZO, Xy =

and from Eq.(22), the fundamental matrix equation of the problem is

W N

4
7X3=3,X4=2}

{POXCT +PXBTCT + Px (BTY €T — AXMHC}A ~G.

The augmented matrix for this fundamental matrix equations is

-1 0 -3 0 ;-7
7 10 _ 203 _256 . 223

] — 3027 81 405 > 81
WG] = 19 28 13 2493 . 2365
3 727 81 128 ° 8l

~13 -6 5 3L 67
From Eq. (24), the matrix form for the conditions are U;A = [A4;] or [U};A;]; j = 0,1 or clearly

[Uo;ﬁo]z{lOlO;—l}

[Ul;/ll]:[OI —25;—5].

(© 2016 BISKA Bilisim Technology
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From Eq. (25), we can obtain the new augmented matrix based on the condition as follows

-1 0 -3 0 ;-7
7 10 203 _ 256 . 223

[W'G} _ 3 727 8l 405 ° 81
’ 1 0 1 0 ;-1
o 1 -2 5 ;-5
When we solve this system, we find the Fibonacci coefficients matrix

A=[—5340}T

Hence, by substituting the Fibonacci coefficients matrix into Eq. (7), we have the approximate solution y(x) = 4x> +3x—1,

which is the exact solution.

Example 2. (Yalcinbas & Sezer 2000) Consider the linear Volterraintegro-differential equation
X
yx)=1 —/y(t)dt, 0<xt<1 (32)
0

with y(0) = 0 and the exact solution y(x) = sin(x). From Eq. (23), the fundamental matrix equation is
{PXB"C" —AXMHC}A=G
where N = 6,p;(x) = 1,g(x) = 1,A = —1,K(x,t) = 1. Thus, we obtain the solution of the problem for N = 6,

ye(x) = (0.762454157653902¢ — 2)x> + (0.815190187782200).x*
— (0.167011007897479)x> + (0.519273963677236¢ — 4)x> + x.

In order to estimate the errors for N = 6 we consider the following error problem of (30)

e6'(x) — 1+ OfeG(t)dz — R (x)

€6 (O) =0.

(33)

Here the residual function is

R(x) = eq/(x)— 1+ / e(1)d.
0

By solving the error problem (33) for M = 8 introduced in Section 4, the estimated error function approximation eg g(x)
is obtained

e65(x) = —(0.179550071001374¢ — 3)x” — (0.346191640591268¢ — 4)x5 + (0.736607283607877¢ — 3)x°
— (0.826804594556656¢ — 3)x* 4 (0.346824082083329¢ — 3)x* — (0.521485598362318¢ — 4)x>
+(0.299239799605999¢ — 14)x + (0.216840434497101e — 18).

Hence, we obtain the corrected exponential solution

e63(x) = ys(x) +ecg(x).

(© 2016 BISKA Bilisim Technology
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It is seen from Table 1, that the results obtained by the present method is very superior to that obtained by the Taylor
method (Yalcinbas & Sezer, 2000). We compare the absolute error |eg (x;)| with the corrected absolute error |Eg g (x;)| in
Table 2 which shows the numerical results of the absolute errors and the corrected absolute errors for N =8, M = 9. In
addition, Figure 1 illustrates a comparison of the absolute error with the corrected absolute error. It indicates the significant

decrease in the absolute error owing to the error correction by the residual function

Exact solution Taylor method [14 ] Present method
N=5 N=6M=7
Xi y(xi) = sin(x;) ¥ys(xi) Y6 (i) v6,8(Xi)
0.0 0.00000000 0.00000000 0.00000000 0.00000000
0.2 0.19866933 0.19866933 0.19866973 0.19866933
0.4 0.38941834 0.38941866 0.38941854 0 .38941834
0.6 0.56464247 0.56464800 0.56464284 0 .56464247
0.8 0.71735609 0.71739733 0.7173559 0.71735609

Table 1: Comparison of the solutions of Example 5.2.

x; Absolute error Corrected absolute error
les (xi)| |Es s (xi)]

0.0 0 0

0.2 4.02395202e-7 6.41420e-10

0.4 2.05743865e-7 5.98424e-10

0.6 3.75763114e-7 4.54363e-10

0.8 1.81724658e-7 1.45354e-10

1.0 9.66645529¢-6 2.45684e-08

Table 2: Numerical results of the error functions of Example 5.2 for N =8, M =9.

Example 3. (Hosseini & Shahmorad 2002) With exact solution y(x) = ¢’ consider the linear Volterraintegro-differential

equation

ﬂm+ﬂm:1+m+/ku+unﬂﬂmmogxggL (34)
0

y(0)=1.

From Eq. (23), the fundamental matrix equation of the problem is

{PXC" + P XB"C" —AXMHAC}A =G

where po(x) = 1,p1(x) = 1,g(x) = 1+ 2x,4 = 1,K(x,1) = x(1 + 2x)e! 1),

The absolute errors of the solutions obtained by the other methods (Hosseini & Shahmorad 2002, Makroglou 1980)are
compared with the absolute error of the solutions obtained by presented method for N = 11 in the Table 3. In Table 4 and
Figure 3, we compare the corrected absolute error |Ejjp (x;)| with the corrected absolute errors |Ejq.14(x;)| and

|E11.17 (x;)| . It reveals that the residual function will give more accurate results with the smaller corrected errors.

(© 2016 BISKA Bilisim Technology
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Fig. 1: Comparison of the absolute error with the corrected absolute error for Eq.(32).

Tau method Block-by-Block method Present method
X (Shahmorad 2005) (Hosseini & Shahmorad, 2002)
N=10 N =10 N=11,M=12
e1o(x;) e1o(x;) lerr (x)] [E11.12 (%)
0.0 0.000000 0.000000 0.000000 0.000000
0.2 5.721560e-12 3.630000e-8 2.766215e-8 7.344930e-9
0.4 2.384510e-8 1.600000e-7 2.505511e-8 6.86885e-9
0.6 1.049210e-4 4.450000e-7 2.342665¢-8 6.05788e-9
0.8 1.049210e-4 1.110000e-6 2.324619¢-8 3.58465¢-9
1.0 1.615160e-3 2.750000e-6 2.553052e-6 3.33466e-7
Table 3: Comparison of the absolute errors of Eq. (34).
X Corrected absolute error
|E11.12 (xi)] [E11.14 (x)] [E11.17 (xi)]
0 0 0 0
0.2 7.34493¢-9 9.1127e-10 2.8085e-10
04 6.86885¢e-9 9.9376e-10 7.151e-11
0.6 6.05788e-9 5.3919¢e-10 3.8486e-10
0.8 3.58465e-9 8.8155e-10 2.71137e-9
1.0 3.33466e-7 1.6776e-7 3.98625¢-9

Table 4: Numerical results of the error functions of Example 5.3 for N = 11, M = 12, 14, 17.

(© 2016 BISKA Bilisim Technology
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x 10°

Fig. 2: Comparison of the absolute error with the corrected absolute error for Eq.(34).

Fig. 3: Comparison of the corrected absolute errors for Eq.(34).

9 Conclusion

In this article, we have presented Fibonacci collocation method with a residual error function to solve high order linear
Volterra integro-differential equations. From the comparisons of the results obtained by this method is more effective than
some other methods. It is observed from discussed examples which have the exact solution, the error estimation algorithm

is very effective when the compared absolute errors of these examples. And also, if the exact solution of the problem is

(© 2016 BISKA Bilisim Technology
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unknown, the absolute errors can be computed with this error estimation algorithm. One of the considerable advantages
of this method is that the approximate solutions are found very easily by using the computer programs. As seen from this

study, the Fibonacci polynomial approach is a good approximation for solving these equations.
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