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Abstract: Nil geometry is one of the eight geometries of Thurston’s conjecture. In this paper we study in Nil 3-space and the Nil
metric with respect to the standard coordinates (x,y,z) is gNil3 = (dx)2 +(dy)2 +(dz−xdy)2 in IR3. In [8] we have already find out the
explicit parametric equation of a general helix and Frenet vector fields, with first and second curvatures κ and τ, respectively, in Nil
3-Space. Here we find out the parametric equations of the Darboux ruled surface of the general helix in Nil Space Nil3.
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1 Introduction and preliminaries

In mathematics, Thurston’s conjecture proposed a complete characterization of geometric structures on
three-dimensional manifolds. The conjecture was proposed by William Thurston (1982), and implies several other
conjectures, such as the Poincaré conjecture and Thurston’s elliptization conjecture. Thurston’s geometrization
conjecture states that certain three-dimensional topological spaces each have a unique geometric structure that can be
associated with them. It is an analogue of the uniformization theorem for two-dimensional surfaces, which states that
every simply-connected Riemann surface can be given one of three geometries (Euclidean, spherical, or hyperbolic).

In three dimensions, it is not always possible to assign a single geometry to a whole topological space. Instead, the
geometrization conjecture states that every closed 3-manifold can be decomposed in a canonical way into pieces that
each have one of eight types of geometric structure. Thurston’s conjecture is that, after you split a three-manifold into its
connected sum and the Jaco-Shalen-Johannson torus decomposition, the remaining components each admit exactly one
of the following geometries:

(1) Euclidean geometry,
(2) Hyperbolic geometry,
(3) Spherical geometry,
(4) The geometry of S2 ×R,
(5) The geometry of H2 ×R,
(6) The geometry of the universal cover SL 2R˜ of the Lie group SL 2R,
(7) Nil geometry,
(8) Sol geometry.

For more detail see [15].
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Nilmanifolds are important geometric objects. A nilmanifold is a differentiable manifold which has a transitive nilpotent
group of diffeomorphisms acting on it. In the Riemannian category, there is also a good notion of a nilmanifold. A
Riemannian manifold is called a homogeneous nilmanifold if there exist a nilpotent group of isometries acting
transitively on it. The requirement that the transitive nilpotent group acts by isometries leads to the following rigid
characterization: every homogeneous nilmanifold is isometric to a nilpotent Lie group with left-invariant metric (see
[16]).

The two-parameter family of metrics first appeared in the works of Bianchi, Cartan and Vranceanu, these spaces are
often referred to as Bianchi-Cartan-Vranceanu spaces, or BCV − spaces for short. Some well-known examples of
BCV − spaces are the Riemannian product spaces S2 ×R, H2 ×R and the 3-dimensional Heisenberg group [4].

Definition 1. Let κ and τ be real numbers, with τ ≥ 0. The Bianchi-Cartan-Vranceanu spaces, (BCV − spaces) M3 (κ,τ)
is defined as the set {

(x,y,z) ∈ R3 : 1+
κ
4
(
x2 + y2)> 0

}
equipped with metric

ds2 =
dx2 +dy2(

1+ κ
4 (x

2 + y2)
)2 +

(
dz+ τ

ydx− xdy
1+ κ

4 (x
2 + y2)

)2

.

(i) if κ = τ = 0, then M3 (κ,τ) ∼= IE3

(ii) if κ = 0 and τ ̸= 0, then M3 (κ,τ) ∼= Nil3.

More details can be found in [4] and [17].

In [4] it is restricted to the 3-dimensional Heisenberg group coming from R2 with the canonical symplectic form
ψ((x,y),(x1,y1)) = xy1 − x1y, i.e., they consider R3 with the group operation

(x,y,z)∗ (x1,y1,z1) =
(

x+ x1,y+ y1,z+ z1 +
xy1

2
− x1y

2

)
For every non-zero number τ the following Riemannian metric on

(
R3,∗

)
is left invariant:

ds2 = dx2 +dy2 +4τ2(dz+
ydx− xdy

2
)2.

After the change of coordinates (x,y,2τz)→ (x,y,z) , this metric is expressed as

ds2 = dx2 +dy2 +(dz+ τ (ydx− xdy))2.

By some authors the notation Nil3 is only used if τ = 1
2 .

1.1 Riemannian structure of Nil space Nil3

The Riemannian Structure of Sol, Nil and Heisenberg Spaces are examined in [11]. Linear biharmonic maps into Sol, Nil
and Heisenberg Spaces are examined with three metric too. It is well known that Nil space is isometric to Heisenberg
space. The geometry of Nil is the three dimensional Lie group of all real 3 triangular matrices of the form1 x z

0 1 y
0 0 1

 .
c⃝ 2016 BISKA Bilisim Technology
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Let (R3,gNil3) denote Nil space, where the metric with respect to the standard coordinates (x,y,z) in R3 can be written (
[11] ) as

gNil3 = (dx)2 +(dy)2 +(dz− xdy)2.

Hence we get the symetric tensor field gNil3 on Nil3 by components

gi j =

1 0 0
0 1+ x2 −x
0 −x 1

 .
Note that the Nil metric can also be written as: ds2 = ∑3

i=1 ωi⊗ωi, where ω1 = dx, ω2 = dy, ω3 = dz− xdy, and the

orthonormal basis dual to the 1-forms is E1 =
∂
∂x , E2 =

∂
∂y + x ∂

∂ z E3 =
∂
∂ z . With respect to this orthonormal basis, the

Levi-Civita connection and the Liebrackets can be easily computed as:

∇E1 E1 =0, ∇E1E2 =
1
2

E3, ∇E1E3 =
−1
2

E2

∇E2 E1 =
−1
2

E3, ∇E2E2 = 0, ∇E2E3 =
1
2

E1

∇E3 E1 =
−1
2

E2, ∇E3E2 =
1
2

E1, ∇E3 E3 = 0.

[E1,E2] = E3, [E2, E3] = 0, [E1,E3] = 0.

Hence

∇ =

∇E1E1 ∇E1E2 ∇E1E3

∇E2 E1 ∇E2 E2 ∇E2E3

∇E3 E1 ∇E3 E2 ∇E3E3

=

 0 1
2 E3

−1
2 E2

−1
2 E3 0 1

2 E1
−1
2 E2

1
2 E1 0


is the matrix with (i, j)− element in the table equals ∇Ei Ei for the basis {E1,E2,E3}.

2 The parametric equation of general helix in Nil space Nil3

Helix is one of the fascinating curve in science and nature. In this section, we study on the general helices in Nil3. We
characterize the general helices in terms of their curvature and torsion. A curve of constant slope or general helix is
defined by the property that the tangent makes a constant angle with a fixed straight line (the axis of the helix). A
classical result stated by M. A. Lancret in 1802 and first proved by B. de Saint Venant in 1845 (see [13]. for details) is: A
necessary and sufficient condition that a curve be a helix is that the ratio of curvature to torsion be constant. Helices are
examined in [2], [10].

It is well-known that, if a curve is differentiable in an open interval, at each point, a set of mutually orthogonal unit
vectors can be constructed. And these vectors are called Frenet frame or moving frame vectors. The rates of these frame
vectors along the curve define curvatures of the curves. The set, whose elements are frame vectors and curvatures of a
curve α , is called Frenet-Serret apparatus of the curves. Let Frenet vector fields be T,N,B of the curve α and let the first
and second curvatures of the curve α be κ and τ, respectively. The quantities {T,N,B, D̃,κ,τ} are collectively
Frenet-Serret apparatus of the curves. Also the Darboux vector provides a concise way of interpreting curvature κ and
torsion τ geometrically; curvature is the measure of the rotation of the Frenet frame about the binormal unit vector, and
torsion is the measure of the rotation of the Frenet frame about the tangent unit vector. For any unit speed curve α ,in
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terms of the Frenet-Serret apparatus, the Darboux vector D can be expressed as D(s) = τ(s)T (s)+κ(s)B(s) .Let a vector
field be D̃(s) = τ

κ (s)T (s) +B(s) along α(s) under the condition that κ(s) ̸= 0 and it is called the modified Darboux
vector field of α (see [6]).Let α be a helix that lies on the cylinder. A helix which lies on the cylinder is called cylindrical
helix or general helix. Assume that {T,N,B, D̃,κ,τ} be the Frenet apparatus along the curve α . It has been known that
the curve α is a cylindrical helix if and only if

(κ
τ
)

is constant, then
(κ

τ
)′
= 0 where κ and τ are the curvatures of α. If

the curve is a general helix, the ratio of the first curvature of the curve to the torsion of the curve must be constant. We
call a curve a circular helix if both τ ̸= 0 and κ are constant. Then, the Frenet frame satisfies the following Frenet–Serret
equations

∇T T =κN,

∇T N =−κT + τB,

∇T B =− τN.

With respect to the orthonormal basis {E1,E2,E3}, we can write

T =T1E1 +T2E2 +T3E3,

N =N1E1 +N2E2 +N3E3,

B =T ×N = B1E1 +B2E2 +B3E3.

Parametric equations of general helices in the sol space Sol3 are examined in [14]. From the Riemannian Structure of Nil
space 3, parametric equations of general helices in in Nil Space are examined in the following theorem.

Theorem 1. Let α : I → Nil3 be a unit speed non-geodesic general helix.Then, the equation of a unit speed non-geodesic
general helix α, with respect to the orthonormal basis {E1,E2,E3}

α (s) =
(

sinβ
C1

sinD+C3

)
E1 +

(
−sinβ

C1
cosD+C4

)
E2

+

(
sin2 β
4C2

1
sin2D− C4 sinβ

C1
sinD+

(
sin2 β
2C1

+ cosβ
)

s−C3C4 +C5

)
E3,

where we take D =C1s+C2 and C1,C2 ∈ IR.

Proof. Assume that α : I → Nil3 be a unit speed non-geodesic general helix. So,without loss of generality, we take its axis
as parallel to the vectore E3. Then, gnil3(T,E3) = T3 = cosβ , where β is constant angle. On the other hand the tangent
vector T is an unit vector, so the following condition is satisfied T 2

1 +T 2
2 = 1− cos2 β .Since cos2 β + sin2 β = 1,we have

the general solution of T 2
1 +T 2

2 = sin2 β can be written in the following form

T1 = sinβ cosD,T2 = sinβ sinD,T3 = cosβ

Also, without loss of generality, where we take D =C1s+C2, C1,C2 ∈ IR. So, substituting the components T1,T2 and T3

in the equation, we have the following equation

T = sinβ cosDE1 + sinβ sinDE2 + cosβE3. (1)

c⃝ 2016 BISKA Bilisim Technology
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Using E1 =
∂
∂x , E2 =

∂
∂y + x ∂

∂ z , and E3 =
∂
∂ z in (1), we obtain

T =sinβ cos(C1s+C2)
∂
∂x

+ sinβ sin(C1s+C2)

[
∂
∂y

+ x
∂
∂ z

]
+ cosβ

∂
∂ z

=

(
sinβ cosD, sinβ sinD,

sin2 β
C1

sin2 D+C3 sinβ sinD+ cosβ
)
.

From the definition of tangent vector field T of the curve α, we get the following equations;

dx
ds

=sinβ cos(C1s+C2)

dy
ds

=sinβ sin(C1s+C2)

dz
ds

=x(s)sinβ sin(C1s+C2)+ cosβ

Integrating both sides, we have

=⇒ x(s) =
sinβ
C1

sin(C1s+C2)+C3

=⇒ y(s) =
−sinβ

C1
cos(C1s+C2)+C4

=⇒ z(s) =
(
− sin2 β

4C2
1

sin2D− C3 sinβ
C1

cosD+

(
sin2 β
2C1

cosβ
)

s
)
+C5

where C3, C4, C5 are constant of integration. By substituting all them

α (s) =
(

sinβ
C1

sin(C1s+C2)+C3

)
∂
∂x

+

(
−sinβ

C1
cos(C1s+C2)+C4

)
∂
∂y

+

(
−sin2 β

4C2
1

sin2D+

(
sin2 β
2C1

+ cosβ
)

s− sinβ
C1

cosDC3 +C5

)
∂
∂ z

.

Using of equalities E1 =
∂
∂x , E2 =

∂
∂y + x ∂

∂ z , and E3 =
∂
∂ z proves our assertion.

2.1 Frenet apparatus of general helices in Nil space Nil3

First, to calculate the normal vector field of the general helix we need to know the curvature ( first curvature ) of the
general helix in Nil Space Nil3. It can be given by the following theorem.

Theorem 2. The curvature ( first curvature) of the general helix in Nil Space Nil3 is

κ = sinβ (cosβ −C1) ; (cosβ −C1)> 0. (2)

Proof. Assume that α : I → Nil3 be a unit speed non-geodesic general helix with tangent vector field

T = sinβ cosDE1 + sinβ sinDE2 + cosβE3.
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The Levi-Civita connection and Lie brackets can be easily computed as:

∇TT =
(
Ṫ1 +T2T3

)
E1 +

(
Ṫ2 −T1T3

)
E2 +

(
Ṫ3
)

E3

=(cosβ −C1)(sinβ sinDE1 − sinβ cosDE2) .

By the use of Frenet formula ∇TT = κN and from the equation, gnil3 (κN,κN) = κ2gnil3 (N,N) it is achieved the curvature
κ = sinβ (cosβ −C1) ; (cosβ −C1)> 0.

Theorem 3. Let α : I → Nil3 be a unit speed non-geodesic general helix. Then, the tangent vector field of the general
helix in terms of E1,E2,E3 is T = sinβ cosDE1 + sinβ sinDE2 + cosβE3.

Theorem 4. Let α : I → Nil3 be a unit speed non-geodesic general helix. Then, the normal vector field of the general helix
is N = sinDE1 − cosDE2. Where we take D =C1s+C2 and C1,C2 ∈ IR.

Proof. By the use of Frenet formulae ∇TT = κN and from the above equation, it is achieved the normal vector field
N = (sinD,−cosD,0) .

Theorem 5. The torsion ( second curvature) of the general helix in Nil Space Nil3 is

τ =

√
C2

1 −C1 cosβ +
1
4

(3)

Proof. With the Levi-Civita connection and Lie brackets can be easily computed as:

∇T N =

(
Ṅ1 +

1
2

N2T3 +
1
2

N3T2

)
E1 +

(
Ṅ2 +

−1
2

N1T3 +
−1
2

N3T1

)
E2 +

(
Ṅ3 +

1
2

N2T1 +
−1
2

N1T2

)
E3

∇T N =

(
C1 −

cosβ
2

)
cosDE1 +

(
C1 −

cosβ
2

)
sinDE2 −

1
2

sinβE3.

Also for N=sinDE1 − cosDE2 we know that

N1 = sinD; Ṅ1 =C1 cosD N2 =−cosD; Ṅ2 =C1 sinD, N3 = 0, Ṅ3 = 0.

Now it is easy to say that for ∇T N = 1
2 ((2C1 − cosβ )cosDE1 +(2C1 − cosβ )sinDE2 − sinβE3). It is well known that

τ = gNil3 ⟨∇TN,B⟩ , hence τ =
√

C2
1 −C1 cosβ + 1

4 or τ = 1
2

√
(2C1 − cosβ )2 + sin2 β .

Theorem 6. Let α : I → Nil3 be a unit speed non-geodesic general helix. Then, the binormal vector field of the general
helix is

B =
1
τ


(
C1 − 1

2 cosβ + sin2 β cosβ − sin2 βC1
)

cosDE1

+
(
C1 − 1

2 cosβ + sin2 β cosβ − sin2 βC1
)

sinDE2

+
(
cos2 β − cosβC1 − 1

2

)
sinβE3

 (4)

where we take D =C1s+C2 and τ = 1
2

√
(2C1 − cosβ )2 + sin2 β , for C1,C2 ∈ IR.

Proof. By using the Frenet-Serret equation ∇TN =−κT+ τB, we have

B =
1
τ
(∇TN+κT)

=
1
τ

(((
C1 − 1

2 cosβ
)

cosD,
(
C1 − 1

2 cosβ
)

sinD, −1
2 sinβ

)
+κ (sinβ cosD,sinβ sinD,cosβ )

)
.

This proves our assertion. Thus, the proof of theorem is completed.
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3 Darboux ruled surface of the general helix in Nil space Nil3

3.1 Ruled surface and Frenet ruled surfaces

A ruled surface can always be described (at least locally) as the set of points swept by a moving straight line. A ruled
surface is one which can be generated by the motion of a straight line in Euclidean 3− space. Choosing a directrix on the
surface, i.e. a smooth unit speed curve α (s) orthogonal to the straight lines, and then choosing v(s) to be unit vectors along
the curve in the direction of the lines, the velocity vector α ′

and v satisfy
⟨

α ′
,v
⟩
= 0. To illustrate the current situation,

we bring here the famous example of L. K. Graves , so called the B− scroll. The special ruled surfaces B− scroll over
null curves with null rulings in 3-dimensional Lorentzian space form has been introduced by L. K. Graves in [5]. In the
paper [6] the following special two ruled surfaces associated to a space curve α with k1 ̸= 0 which are respectively related
to cylindrical helices and Bertrand curves has been considered.

Definition 2. The ruled surface φ (s,u) = α (s)+uN(s) is called the normal surface of α.

Definition 3. The ruled surface φ (s,u) = α (s) + uB(s) is called the binormal ruled surface of α . The ruled surface
φ (s,u) = α (s)+ uD̃(s)is the parametrization of the ruled surface which is called rectifying developable surface of the
curve α in [6]. Here, it is referred to as D̃− scroll cause of generator (directrix) vector is modified Darboux vector field.

The parametrization of the ruled surface which is called involutive B − scroll (binormal scroll) of the curve α [7].
Before, we find out the explicit parametric equation of helix with curvatures in the Nil3 (see [8]). Also ruled surface with
Bishop Frame is studied in [9]. Frenet ruled surface is one which can be generated by the motion of a Frenet vector of
any curve in Euclidean 3 − space. Tangent, Normal, Binormal,Darboux ruled surfaces of any curve are collectively
named Frenet ruled surfaces. In the paper [6], the following special ruled surfaces associated to a space curve α with
k1 ̸= 0 which are respectively related to cylindrical helix and Bertrant curves has been considered.

We have already examined the parametric equation of normal and binormal ruled surface of general helix by the
following way in Nil3.

Theorem 7. Let α : I → Nil3 be a unit speed non-geodesic general helix and N be its normal vector field. Then, the
parametric equation of normal ruled surface, in terms of E1,E2,E3, is given by

φ (s,u) =
(

sinβ
C1

sinD+usinD+C3

)
E1 +

(
−sinβ

C1
cosD−ucosD+C4

)
E2

+

(
sin2 β
4C2

1
sin2D− C4 sinβ

C1
sinD+

(
sin2 β
2C1

+ cosβ
)

s−C3C4 +C5

)
E3

where we take D =C1s+C2 where C1,C2 ∈ IR.

Theorem 8. Let α : I →Nil3 be a unit speed non-geodesic general helix and B its binormal. Then, the parametric equation
of binormal ruled surface, in terms of E1,E2,E3 is given by

φ (s,u) =
[(

sinβ
C1

sinD+C3

)
+

u
τ

(
C1 −

1
2

cosβ + sin2 β cosβ − sin2 βC1

)
cosD

]
E1

+

[(
−sinβ

C1
cosD+C4

)
+

u
τ

(
C1 −

1
2

cosβ + sin2 β cosβ − sin2 βC1

)
sinD

]
E2

+

( sin2 β
4C2

1
sin2D− C4 sinβ

C1
sinD+

(
sin2 β
2C1

+ cosβ
)

s−C3C4 +C5

)
+ u

τ
(
cos2 β − cosβC1 − 1

2

)
sinβ

E3.
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4 Darboux ruled surface along general helix in Nil space Nil3

In this section Darboux ruled surfaces of a general helix is examined. The ruled surface

φ (s,u) = α (s)+uD̃(s)

is the parametrization of the ruled surface which is called rectifying developable surface of the curve α in [6]. It is referred
to as D̃− scroll cause of generator vector is modified Darboux vector field D̃ in [12].

Theorem 9. Let α : I →Nil3 be a unit speed non-geodesic general helix and B its binormal. Then, the parametric equation
of Darboux ruled surface, in terms of E1,E2,E3 is given by

φ (s,u) =



asinD+u a2bC1−b+ 2
b+C1−1√

1−4bC1
cosD+C3

−acosD+u a2bC1−b+ 2
b+C1−1√

1−4bC1
sinD+C4

a2 sin2D
4 −aC4 sinD+

( a
2 +b+C1

)
s+u (

a2bC1−1+ 2
b )cotβ−aC1√

1−4C1b + e


Proof. Since φ (s,u) = α (s)+ uD̃(s) we have the parametrization φ (s,u) = α (s)+ u

(
τ2+κ2

κτ

)
T+ u 1

τ ∇TN. Substituing
sinβ
C1

= a; and −C3C4 +C5 = e in T = sinβ cosDE1 + sinβ sinDE2 + cosβE3,

∇T N =
1
2
((2C1 − cosβ )cosDE1 +(2C1 − cosβ )sinDE2 − sinβE3) ,

and α (s) , we have T = aC1 cosDE1 +aC1 sinDE2 + cosβE3,

∇T N =

(
1
2
(C1 −b)cosD,

1
2
(C1 −b)sinD,−1

2
sinβ ,

)
and

α (s) =(asinD+C3)E1 +(−acosD+C4)E2

+

(
a2 sin2D

4
−aC4 sinD+

(a
2
+ cosβ

)
s+ e

)
E3.

Also we can find curvatures as

τ =

√
C2

1 −C1 cosβ +
1
4
=

1
2

√
1−4bC1

κ =sinβ (cosβ −C1) = abC1.

Also
τ2 +κ2

κτ
=

2ab2 sinβ −2b+ 1
2C1

ab
√

1−4C1b
.
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Hence

φ (s,u) =


(asinD+C3)

(−acosD+C4)(
a2 sin2D

4 −aC4 sinD+
( a

2 + cosβ
)

s+ e
)
+u

2ab2 sinβ −2b+ 1
2C1

ab
√

1−4C1b

aC1 cosD
aC1 sinD

cosβ



+u
1

1
2

√
1−4bC1


1
2 (C1 −b)cosD
1
2 (C1 −b)sinD

−1
2 sinβ



φ (s,u) =

 asinD+C3

−acosD+C4
a2 sin2D

4 −aC4 sinD+
( a

2 + cosβ
)

s+ e



+
u√

1−4C1b

ab2 sinβ −b+2
C1ab

aC1 cosD
aC1 sinD

cosβ

+
 (C1 −b)cosD
(C1 −b)sinD

−sinβ




φ (s,u) =

 asinD+C3

−acosD+C4
a2 sin2D

4 −aC4 sinD+
( a

2 + cosβ
)

s+ e



+
u

b
√

1−4C1b



(
a2b2C1 −b+2

)
cosD+b(C1 −b)cosD(

a2b2C1 −b+2
)

sinD+b(C1 −b)sinD(
a2b2C1 −b+2

)
cotβ −abC1




=

 asinD+C3

−acosD+C4
a2 sin2D

4 −aC4 sinD+
( a

2 + cosβ
)

s+ e



+
u

b
√

1−4C1b



[(

a2b2C1 −b+2
)
+b(C1 −b)

]
cosD[(

a2b2C1 −b+2
)
+b(C1 −b)

]
sinD(

a2b2C1 −b+2
)

cotβ −abC1




=


asinD+u [

a2b2C1−b2+2+bC1−b]
b
√

1−4C1b cosD+C3

−acosD+u [
a2b2C1−b2+2+bC1−b]

b
√

1−4C1b sinD+C4

a2 sin2D
4 −aC4 sinD+

( a
2 + cosβ

)
s+

u(a2b2C1−b+2)cotβ−abC1
b
√

1−4C1b + e



Corollary 1. Darboux ruled surface, cant be defined.under the condition cosβ =
1+4C2

1
4C1
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Proof. It is trivial since √
1−4C1b =0,

4C1 (cosβ −C1) =1.
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