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Abstract: The evolution equations are derived for double isotropic inextensible flows of curves in the equiform geometry of the double

isotropic space I
(2)
3 .
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1 Introduction

The flow of a curve in R3 is called inextensible if, its arclength is preserved. Inextensible curve flows give rise to when
strain energy is not exist in motion [1]. Kwon and Park examine inextensible flow of curves and developable surfaces for
plane and space curves [1-2].

Inextensible curves has many applications in computer vision, snake-like, robots [3-4]. Chirikjian, Burdick, Mochiyama
research the shape control of hyper-redundant, snake-like, robots. They present new and efficient kinematic methods that
are suitable for nearly all hyper-redundant robot morphologies using motion of curves [5]. Hamilton, Gage and Grayson
study shrinking of closed plane curves to a circle via the heat equation [6-8].

Gurbuz investigated inextensible flow of non-null ve null curves in Minkowski 3-space [9]. Bektas and Kulahci studied
inextensible curves in E4

1 [10]. Yildiz, Tosun, Ozkaldi, Karakus derived inextensible flows of curves in En [11],[12].
Gurbuz studied inextensible flows of non-null curves on an pseudo-Euclidean hypersuface in pseudo-Euclidean space Rn

1

[13]. Yoon studied inelastic flows of curves according to equiform geometry in Galilean space [14].

In this work, the evolution equations are derived for double isotropic inextensible flows of curves in the equiform
geometry of the double isotropic space I

(2)
3 . Necessary and sufficient conditions are expressed for double isotropic

inextensible curve flows in the equiform geometry of the double isotropic space I
(2)

3 .

2 Preliminaries

The double isotropic geometry is one of the real Cayley-Klein geometries. The equiform differential geometry of the
double isotropic space I

(2)
3 has been investigated in detail [15],[16]. The scalar product of two vectors a = (a1,a2,a3)

and b = (b1,b2,b3) in I
(2)

3 is defined by
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⟨a,b⟩|
I

(2)
3

=

{
a1b1, a1 ̸= 0 or b1 ̸= 0
a2b2, a1 = b1 = a2 = b2 = 0

The equiform curvature and the equiform torsion of an admissible curve is defined by [17]

α : I ⊂ R → I
(2)
3

parametrized by the arc of length ds = dx, given by c(s) = (x,y(x),z(x)). The curvature κ(s) and the torsion is τ(s) are
defined by

κ(x) = y′′(x), τ(x) = (
z′′(x)
y′′(x)

)′.

The equiform curvature and the equiform torsion of an admissible curve are defined by

κ̂=
.
ρ, τ̂ = ρτ = τ

κ

where ρ is the radius of curvature of the curve α The associated trihedron is expressed

T̂= ρt, N̂= ρn, B̂= ρb

The formulas analogous to the Frenet’s frame in the equiform geometry of the double isotropic space I
(2)

3 have the
following form [16] :

dT̂
dσ

= κ̂T̂+N̂,

dN̂
dσ

= κ̂N̂+τ̂B̂,

dB̂
dσ

= κ̂B̂,

(1)

where σ is an equiform invariant parameter by σ =
∫ ds

ρ
.

3 Inextensible flows of curves in the equiform geometry of the double isometric space I
(2)

3

Let Ψ : [0, l]× [0, t)→ I
(2)

3 be a family of differentiable curves in the equiform geometry of the double isometric space

I
(2)

3 . Let w be the curve parametrization variable and the curve speed v =
∥∥∥ ∂Ψ

∂w

∥∥∥ ,the arclength of Ψ is defined by

s(w) =
∫

vdw.

For the orthonormal frame
{

T̂ , N̂, B̂
}

in the equiform geometry of a curve β in double isotropic space I
(2)

3 .

Any flow of Ψ is given by

∂Ψ
∂ t

= λ T̂ + γN̂ +ηB̂.

Here λ ,γ,η are differentiable functions.

In the equiform geometry of double isotropic I
(2)

3 , a curve evolution Ψ(ω, t) and its flow ∂Ψ
∂ t is called to be double
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isotropic inextensible if
∂
∂ t

√⟨
∂Ψ
∂ω , ∂Ψ

∂ω

⟩∣∣∣
I

(2)
3

= 0. (2)

Theorem 1.
∂v
∂ t

=
∂λ
∂ω

+ vλκ̂ (3)

Proof.

v2 =

⟨
∂Ψ
∂ω

,
∂Ψ
∂ω

⟩∣∣∣∣
I

(2)
3

.

It can be written

2v
∂v
∂ t

=
∂
∂ t

⟨
∂Ψ
∂ω

,
∂Ψ
∂ω

⟩∣∣∣∣
I

(2)
3

= 2
⟨

∂Ψ
∂ω

,
∂

∂ω
(λ T̂ + γN̂ +ηB̂)

⟩∣∣∣∣
I

(2)
3

=2

⟨
vT̂ ,( ∂λ

∂ω + vλκ̂)T̂ +(λv+ ∂γ
∂ω + γvκ̂)N̂

+(vγτ̂ + ∂η
∂ω +ηvκ̂)B̂

⟩∣∣∣∣∣
I

(2)
3

=2v(
∂λ
∂ω

+ vλκ̂). (4)

From the Theorem (1), it is obtained
∂v
∂ t

=
∂λ
∂ω

+ vλκ̂ (5)

Theorem 2. Let ∂Ψ
∂ t = λ T̂ + γN̂ +ηB̂ be a differentiable flow in the equiform geometry of double isotropic space I

(2)
3 .

The curve flow is double isotropic inextensible if and only

∂λ
∂ s

=−λκ̂. (6)

Proof. From the Theorem (1) and (5), it can be obtained

∂
∂ t

s(w, t) =
∫ ∂v

∂ t
du =

∫
(

∂λ
∂ω

+ vλκ̂)dw = 0. (7)

With aid (7), we obtain (6).

Corollary 1. A curve flow is independent of components normal γ and binormal η in the equiform geometry of the double
isotropic space I

(2)
3 .

Theorem 3. Let
{

T̂ , N̂, B̂
}

be the Frenet frame in the equiform geometry of double isotropic space. Then

∂ T̂
∂ t

=(λ +
∂γ
∂ s

+ γκ̂)N̂ +(γτ̂ +
∂η
∂ s

+ηκ̂)B̂

∂ N̂
∂ t

=− (λ +
∂γ
∂ s

+ γκ̂)T̂ +Ω B̂,

∂ B̂
∂ t

=− (γτ̂ +
∂η
∂ s

+ηκ̂)T̂ −Ω N̂.
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Proof.

∂ T̂
∂ t

=
∂
∂ t

∂Ψ
∂ s

=
∂
∂ s

∂Ψ
∂ t

=
∂
∂ s

(λ T̂ + γN̂ +ηB̂) (8)

=(
∂λ
∂ s

+λκ̂)T̂+(λ+
∂γ
∂ s

+ γκ̂)N̂+(γτ̂ +
∂η
∂ s

+ηκ̂)B̂.

From Theorem (3.1), (6), (8) we obtain

∂ T̂
∂ t

= (λ+
∂γ
∂ s

+ γκ̂)N̂+(γτ̂ +
∂η
∂ s

+ηκ̂)B̂. (9)

Using the Frenet frame in the equiform geometry of double isotropic space, we have

∂
∂ t

⟨
T̂ , N̂

⟩∣∣∣
I

(2)
3

=

⟨
∂ T̂
∂ t

, N̂

⟩∣∣∣∣∣
I

(2)
3

+

⟨
∂ N̂
∂ t

, T̂

⟩∣∣∣∣∣
I

(2)
3

=λκ̂ +
∂γ
∂ s

+ητ̂ +

⟨
∂ N̂
∂ t

, T̂

⟩∣∣∣∣∣
I

(2)
3

= 0 (10)

∂
∂ t

⟨
T̂ , B̂

⟩∣∣∣
I

(2)
3

=

⟨
∂ T̂
∂ t

, B̂

⟩∣∣∣∣∣
I
(2)
3

+

⟨
T̂ ,

∂ B̂
∂ t

⟩∣∣∣∣∣
I

(2)
3

=(γτ̂ +
∂η
∂ s

+ηκ̂)+

⟨
∂ B̂
∂ t

, T̂

⟩∣∣∣∣∣
I
(2)
3

= 0 (11)

∂
∂ t

⟨
N̂, B̂

⟩∣∣∣
I

(2)
3

=

⟨
∂ N̂
∂ t

,B

⟩∣∣∣∣∣
I

(2)
3

+

⟨
∂ B̂
∂ t

, N̂

⟩∣∣∣∣∣
I

(2)
3

=Ω +

⟨
∂ B̂
∂ t

, N̂

⟩∣∣∣∣∣
I

(2)
3

= 0 (12)

Using (9), (10), (11), (12), we obtain

∂ N̂
∂ t

=− (λκ̂ +
∂γ
∂ s

+ητ̂)T̂ +Ω B̂, (13)

∂ B̂
∂ t

=− (γτ̂ +
∂η
∂ s

+ηκ̂)T̂ −Ω N̂. (14)

We give main theorem. This theorem gives necessary and sufficient conditions for a double inextensible curve flow

Theorem 4. Assume the curve flow
∂Ψ
∂ t

= λ T̂ + γN̂+ηB̂ is double isotropic inextensible in the equiform geometry of the
double isotropic space. Evolution of double isotropic curvature and torsion are expressed as a system of partial differential
equations:

∂ κ̂
∂ t

=−(
∂ 2η
∂ s2 +3τ̂

∂ γ
∂ s

+
∂ κ̂
∂ s

+ τ̂λ + κ̂λ τ̂)τ̂,

∂ τ̂
∂ t

=
∂Ω
∂ s

,
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Ω =
∂ 2η
∂ s2 +3τ̂

∂ γ
∂ s

+
∂ κ̂
∂ s

+ τ̂λ + κ̂λ τ̂. (15)

Proof. Using (9) and the formulas analogous to the Frenet’s frame in the equiform geometry of the double isotropic space

∂
∂ s

∂ T̂
∂ t

=
∂
∂ s

(λ+
∂γ
∂ s

+ γκ̂)N̂+(γτ̂ +
∂η
∂ s

+ηκ̂)B̂

=(
∂ 2η
∂ s2 +2κ̂

∂ γ
∂ s

+ γ
∂ κ̂
∂ s

+ γκ̂2)N̂+

(2τ̂
∂ γ
∂ s

+2γκ̂τ̂ +
∂ 2η
∂ s2 + τ̂

∂ γ
∂ s

+
∂ 2η
∂ s2 +

∂ κ̂
∂ s

+λ τ̂ +
∂η
∂ s

κ̂ +ηκ̂2)B̂,

and

∂
∂ t

∂ T̂
∂ s

=
∂
∂ t

(κ̂T̂+N̂) = (
∂ κ̂
∂ t

− (λ +
∂γ
∂ s

+ γκ̂))T̂+(λκ̂ + κ̂
∂ γ
∂ s

+ γκ̂2)N̂

+(γκ̂τ̂ + κ̂
∂η
∂ s

+ηκ̂2 +Ω)B̂.

Hence we have
∂
∂ s

∂ T̂
∂ t

=
∂
∂ s

∂ T̂
∂ t

, (16)

∂
∂ s

∂ B̂
∂ t

=−(
∂
∂ s

(γτ̂)+ κ̂γτ̂ +
∂ 2η
∂ s2 + κ̂

∂η
∂ s

+
∂
∂ s

(ηκ̂)+ηκ̂2)T̂ (17)

− (γτ̂ +
∂η
∂ s

+
∂Ω
∂ s

+Ωκ̂ +ηκ̂)N̂ −Ωτ̂B̂,

and
∂
∂ t

∂ B̂
∂ s

=
∂
∂ t

(κ̂B̂) =
∂ κ̂
∂ t

B̂− (γκ̂τ̂ + κ̂
∂η
∂ s

+ηκ̂2)T̂ −Ωκ̂N̂. (18)

We get
∂
∂ s

∂ B̂
∂ t

=
∂
∂ s

∂ B̂
∂ t

. (19)

Using (17) and (18) in (19), we have evolution of equiform curvature in double isotropic space

∂ κ̂
∂ t

=−Ωτ̂ =−(
∂ 2η
∂ s2 +3τ̂

∂ γ
∂ s

+
∂ κ̂
∂ s

+ τ̂λ + κ̂λ τ̂)τ̂.

Using (13)

∂
∂ s

∂ N̂
∂ t

=(−(λκ̂ + κ̂
∂ γ
∂ s

+ κ̂2γ)− ∂
∂ s

(λ+
∂γ
∂ s

+ γκ̂))N̂ +(
∂Ω
∂ s

+Ωκ̂)B̂ (20)

∂
∂ t

∂ N̂
∂ s

=
∂
∂ t

(κ̂N̂ + τ̂B̂) (21)

=(
∂ κ̂
∂ t

−Ωτ̂)N̂ − (κ̂λ + κ̂
∂ γ
∂ s

+ηκ̂2 +ητ̂2 + τ̂
∂η
∂ s

+ηκ̂τ̂)T̂ +(
∂ τ̂
∂ t

+Ωκ̂)B̂.
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From
∂
∂ s

∂ N̂
∂ t

=
∂
∂ s

∂ N̂
∂ t

(22)

(21) and (22), it can be derived

∂ τ̂
∂ t

=
∂Ω
∂ s

.

4 Conclusion

Double isotropic space have important application fields like soliton theory. In this work, we present that double
inextensible flows in the equiform geometry of double isotropic space I

(2)
3 . We obtain necessary and sufficient

conditions for an double inextensible curve flow. We give characterizations for evolution of first equiform curvature and
second equiform curvature in the equiform geometry of double isotropic space.
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