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Abstract: In this article we introduce some new multi ordered difference operator on sequence spaces of fuzzy real numbers by using
modulus function and study their some algebraic and topological properties. Also we study some statistical convergent sequence space
of fuzzy real numbers defined by modulus function.
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1 Introduction

The concept of fuzzy sets and fuzzy set operations was first introduced by Zadeh [15] and subsequently several authors
have studied various aspects of the theory and applications of fuzzy sets. Bounded and convergent sequences of fuzzy
numbers were introduced by Matloka [7] where it was shown that every convergent sequence is bounded. Nanda [9]
studied the spaces of bounded and convergent sequence of fuzzy numbers and showed that they are complete metric
spaces. In [13] Savaş studied the space m(∆), which we call the space of ∆ -bounded sequence of fuzzy numbers and
showed that this is a complete metric space.

A modulus function f is a function from [0,∞) to [0,∞) such that

(i) f (x) = 0 iff x = 0,
(ii) f (x+ y)≤ f (x)+ f (y) for all xy ≥,

(iii) f is increasing,
(iv) f is continuous from the right at 0 .

It follows that f must be continous everywhere on [0,∞) and a modulus function may be bounded or unbounded.

Let X be a linear metric space. A function p : X → R is called paranorm if

(i) p(x)≥ 0 for all x ∈ X ,

(ii) p(−x) = p(x) for all x ∈ X ,

(iii) p(x+ y)≤ p(x)+ p(y),
(iv) If (λn) be a sequence of scalars such that λn → 0 as n → ∞ and (xn) be a sequence of vectors with p(xn − x)→ 0 as

n → ∞, then p(λnxn −λx)→ 0 as n → ∞.
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A paranorm p for which p(x) = 0 ⇒ x = 0 is called a total paranorm and the pair (X , p) is called a total paranormed
space.

Kizmaz [6] defined the difference Sequence spaces ℓ∞(∆),c(∆) and c0(∆) for crisp sets as follows

Z(∆) = X = (Xk) : (∆Xk) ∈ Z

where Z = ℓ∞,c and c0.

2 Definitions and background

Let D denote the set of all closed and bounded intervals X = [a1,b1] on the real line R. For X = [a1,b1],Y = [a2,b2] ∈ D
define d(X ,Y ) by

d(X ,Y ) = max(|a1 −b1|, |a2 −b2|)

It is known that (D,d) is a complete metric space.

A fuzzy real number X is a fuzzy set on R i.e. A mapping X : R → L(= [0,1]) associating each real number t with its
grade of membership X(t).

The α- level set [X ]α of a fuzzy real number X for 0 < α ≤ 1, defined as

Xα : {t ∈ R : X(t)≥ α}

A fuzzy real number X is called convex, if X(t)≥ X(s)∧X(r) = min(X(s),X(r)), where s < t < r.

If there exists t0 ∈ R such that X(t0) = 1, then the fuzzy real number X is called normal.

A fuzzy real number X is said to be upper-semi continuous if, for each ε > 0, X−1([0,a+ ε)) is open for all a ∈ I is open
in the usual topology of R.

The set of all upper-semi continuous, normal, convex fuzzy real numbers is denoted by L(R) and throughout the article,
by a fuzzy real number we mean that the number belongs to L(R).

The absolute value, |X | of X ∈ L(R) is defined by (see for instance Kaleva and Seikkala [2]),

|X |(t) =max{X(t),X(−t)}, if t ≥ 0,

=0, if t < 0.

Let d : L(R)×L(R)→ R be defined by

d(X ,Y ) = sup
0≤α≤1

d([X ]α , [Y ]α).

Then d defines a metric on L(R).
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A sequence (Xk) of fuzzy real numbers is said to be convergent to the fuzzy real number X0 if, for every ε > 0, there
exists k0 ∈ N such that d(Xk,X0)< ε , for all k ≥ k0. The set of convergent sequences is denoted by cF .

Recently Das and Sarma [18] discussed some properties of the operator ∆ s
(v,r) which is generalizes all previous studied

difference operators.

A sequence (Xk) of fuzzy real numbers is raid to be ∆ s
(v,r) convergent to the fuzzy real number X0, if for every ε > 0,

there exists k0 ∈ N such that d(∆ s
(v,r)Xk,X0)ε for all k ≥ k0, where r and s be two non-negative integers and v = (vk) be a

sequence of non-zero reals and (∆ s
(v,r)Xk) = (∆ s−1

(v,r)Xk −∆ s−1
(v,r)Xk+r) and ∆ 0

(v,r)Xk = vkXk for all k ∈ N, which is equivalent
to the following binomial representation

∆ s
(v,r)Xk =

s

∑
i=0

(−1)i

(
s
i

)
vk+riXk+ri

Let f be a modulus function. Let r and s be two non-negative integers and v = (vk) be a sequence of non-zero reals. Then

for a sequence p = (pk) of strictly positive real numbers, we define the classes of sequences as follows

wF
(

∆ s
(v,r), f , p

)
=

{
X ∈ wF : lim

n→∞

1
n

n

∑
k=1

[
f
(

d
(

∆ s
(v,r)Xk,X0

))]pk
= 0

}
for some X0 ∈ wF ,

wF
0

(
∆ s
(v,r), f , p

)
=

{
X ∈ wF : lim

n→∞

1
n

n

∑
k=1

[
f
(

d
(

∆ s
(v,r)Xk,0

))]pk
= 0

}
,

wF
∞

(
∆ s
(v,r), f , p

)
=

{
X ∈ wF : sup

n

1
n

n

∑
k=1

[
f
(

d
(

∆ s
(v,r)Xk,0

))]pk
< ∞

}
.

Lemma 1. Let (αk) and (βk) be sequences of real or complex numbers and (pk) be a bounded sequence of positive real
numbers, then

|αk +βk|pk ≤C (|αk|pk + |βk|pk)

and |λ |pk ≤ max
(
1, |λ |H

)
, where C = max

(
1, |λ |H−1

)
, H = sup pk, λ is any real or complex number.

Lemma 2. If d̄ is translation invariant then

(a) d̄
(

∆ s
(v,r)Xk +∆ s

(v,r)Yk,0
)
≤ d̄

(
∆ s
(v,r)Xk,0

)
+ d̄
(

∆ s
(v,r)Yk,0

)
(b) d̄

(
α∆ s

(v,r)Xk,0
)
≤ |α|d̄

(
∆ s
(v,r)Xk,0

)

3 Main results

Theorem 1. Let f be a modulus function and p = (pk) be a sequence of strictly positive real numbers, then the classes of
sequences wF

(
∆ s
(v,r), f , p

)
, wF

0

(
∆ s
(v,r), f , p

)
and wF

∞

(
∆ s
(v,r), f , p

)
are closed under addition and scalar multiplication of

fuzzy real numbers.

Proof. We shall give the proof for wF
0

(
∆ s
(v,r), f , p

)
and others are similar.

Let X = (Xk), Y = (Yk) ∈ wF
0

(
∆ s
(v,r), f , p

)
. For scalars a and b there exists integers Ma,Nb such that |a| < Ma and
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|b|< Nb. By properties of f we have,

1
n

n

∑
k=1

[
f
(

d
(

∆ s
(v,r)(aXk +bYk),0

))]pk
≤ 1

n

n

∑
k=1

[
f
(
|a|d

(
∆ s
(v,r)Xk,0

))
+ f

(
|b|d

(
∆ s
(v,r)Yk,0

))]pk

≤C (Ma)
H 1

n

n

∑
k=1

[
f
(

d
(

∆ s
(v,r)Xk,0

))]pk
+C (Nb)

H 1
n

n

∑
k=1

[
f
(

d
(

∆ s
(v,r)Yk,0

))]pk
, → 0 as n → ∞.

This completes the proof.

Theorem 2. The space wF
0

(
∆ s
(v,r), f , p

)
is a paranormed space w.r.to the paranorm defined by

g(X) = sup
n

{
1
n

n

∑
k=1

[
f
(

d(∆ s
(v,r)Xk,0

)]pk

} 1
M

,

where sup
k

pk < ∞ and M = max(1,H).

Proof. Obviously g(X) = g(−X) for all X ∈ wF
0

(
∆ s
(v,r), f , p

)
It is trivial that vkXk = 0̄ for Xk = 0̄. Since pk

M ≤ 1 and M ≥ 1 by using Minkowski’s inequality, we have,

{
1
n

n

∑
k=1

[
f
(

d(∆ s
(v,r)Xk +∆ s

(v,r)Yk,0
)]pk

} 1
M

≤

{
1
n

n

∑
k=1

[
f
(

d(∆ s
(v,r)Xk,0

)
+ f

(
d(∆ s

(v,r)Yk,0
)]pk

} 1
M

≤

{
1
n

n

∑
k=1

[
f
(

d(∆ s
(v,r)Xk,0

)]pk

} 1
M

+

{
1
n

n

∑
k=1

[
f
(

d(∆ s
(v,r)Yk,0

)]pk

} 1
M

.

It follows that g(X +Y )≤ g(X)+g(Y ).

Finally to check the continuity of scalar multiplication, let λ be any scaler, by definition we have,

g(λX) = sup
n

{
1
n

n

∑
k=1

[
f
(

d
(

λ∆ s
(v,r)Xk,0

))]pk

} 1
M

≤ K
H
M

λ g(X),

where kλ is an integer such that |λ |< Kλ .

Now let λ → 0 for fixed X with g(X) ̸= 0. By properties of f for |λ |< 1 we have,

1
n

n

∑
k=1

[
f
(

d
(

λ∆ s
(v,r)Xk,0

))]pk
< ε for n ≥ N (ε) . (1)

Also for 1 ≤ n ≤ N, taking λ small enough, f is continuous we have,

1
n

n

∑
k=1

[
f
(

d
(

λ∆ s
(v,r)Xk,0

))]pk
< ε. (2)

Eq (1) and (2) together follow that g(λX)→ 0 as λ → 0. This completes the proof.
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Theorem 3. If 0 < pk ≤ qk and qk
pk

is bounded, then wF
(

∆ s
(v,r), f ,q

)
⊆ wF

(
∆ s
(v,r), f , p

)
Proof. Let X = (Xk) ∈ wF

(
∆ s
(v,r), f ,q

)
. Define wk =

[
f
(

d
(

∆ s
(v,r)Xk,X0

))]qk
and λk = pk

qk
for all k ∈ N so that

0 < λ ≤ λk ≤ 1.

Consider the sequences (uk) and (vk) given by as follow.

For wk ≥ 1, let uk = wk, vk = 0 and wk < 1, let uk = 0, vk = wk. Then for all k ∈ N, we have, wk = uk + vk,
wλk

k = uλk
k + vλk

k , uλk
k ≤ uk ≤ wk and vλk

k ≤ vλ
k .

1
n

n

∑
k=1

wλk
k ≤ 1

n

n

∑
k=1

wk +

[
1
n

n

∑
k=1

vk

]λ

.

Hence
X = (Xk) ∈ wF

(
∆ s
(v,r), f , p

)
.

This completes the proof.

Theorem 4. The following results hold:

(i) wF
0

(
∆ s−1
(v,r), f , p

)
⊆ wF

0

(
∆ s
(v,r), f , p

)
,

(ii) wF
(

∆ s−1
(v,r), f , p

)
⊆ wF

(
∆ s
(v,r), f , p

)
,

(iii) wF
∞

(
∆ s−1
(v,r), f , p

)
⊆ wF

∞

(
∆ s
(v,r), f , p

)
.

Proof. We prove the first one, others are similar.

Let
X = (Xk) ∈ wF

0

(
∆ s−1
(v,r), f , p

)
.

Then we have,

lim
n→∞

1
n

n

∑
k=1

[
f
(

d
(

∆ s
(v,r)Xk,0

))]pk
= 0.

The result follows from the following inequality,

1
n

n

∑
k=1

[
f
(

d
(

∆ s
(v,r)Xk,0

))]pk
≤ 1

n

n

∑
k=1

[
f
(

d
(

∆ s−1
(v,r)Xk −∆ s−1

(v,r)Xk+1,0
))]pk

≤C

{
1
n

n

∑
k=1

[
f
(

d
(

∆ s−1
(v,r)Xk,0

))]pk
+

1
n

n

∑
k=1

[
f
(

d
(

∆ s−1
(v,r)Xk+1,0

))]pk

}
.

Corollary 1. Let f be a modulus function, then

(i) wF
0

(
∆ s
(v,r), p

)
⊆ wF

0

(
∆ s
(v,r), f , p

)
,

(ii) wF
(

∆ s
(v,r), p

)
⊆ wF

(
∆ s
(v,r), f , p

)
,

(iii) wF
∞

(
∆ s
(v,r), p

)
⊆ wF

∞

(
∆ s
(v,r), f , p

)
.

Theorem 5. Let f be a modulus function and sup
k

pk = H < ∞. Then wF
(

∆ s
(v,r), f , p

)
⊂ SF

(
∆ s
(v,r)

)
.
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Proof. Let X = (Xk) ∈ wF
(

∆ s
(v,r), f , p

)
. and ε > 0. Then,

1
n

n

∑
k=1

[
f
(

d
(

∆ s
(v,r)Xk,X0

))]pk
=

1
n ∑

k ≤ n
∆ε

[
f
(

d
(

∆ s
(v,r)Xk,X0

))]pk
+

1
n ∑

k ≤ n
∆ε

[
f
(

d
(

∆ s
(v,r)Xk,X0

))]pk

≥ 1
n ∑

k ≤ n
∆ε

[
f
(

d
(

∆ s
(v,r)Xk,X0

))]pk
≥ 1

n ∑
k ≤ n
∆ε

[ f (ε)]pk ≥ 1
n ∑

k ≤ n
∆ε

min
(
[ f (ε)]h , [ f (ε)]H

)

=
1
n

card
{

k ≤ n : d
(

∆ s
(v,r)Xk,X0

)
≥ ε
}

min
(
[ f (ε)]h , [ f (ε)]H

)
where ∆ε = d

(
∆ s
(v,r)Xk,X0

)
≥ ε and h = inf pk. Hence X = (Xk) ∈ SF

(
∆ s
(v,r)

)
.

Theorem 6. Let f be bounded modulus function and 0 < h = inf pk ≤ pk ≤ sup
k

pk = H < ∞. Then

SF
(

∆ s
(v,r)

)
⊂ wF

(
∆ s
(v,r), f , p

)
.

Proof. Let X = (Xk) ∈ wF
(

∆ s
(v,r), f , p

)
and ε > 0. Since f is bounded therefore there exists an integer K such that

| f (x)| ≤ K. Then,

1
n

n

∑
k=1

[
f
(

d
(

∆ s
(v,r)Xk,X0

))]pk
≤ 1

n ∑
k ≤ n
∆ε

[
f
(

d
(

∆ s
(v,r)Xk,X0

))]pk
+

1
n ∑

k ≤ n
∆ε

[
f
(

d
(

∆ s
(v,r)Xk,X0

))]pk

≤ 1
n ∑

k ≤ n
∆ε

max
(

Kh,KH
)
+

1
n ∑

k ≤ n
∆ε

[ f (ε)]pk

≤ max
(

Kh,KH
) 1

n
card

{
k ≤ n : d

(
∆ s
(v,r)Xk,X0

)
≥ ε
}
+max

(
[ f (ε)]h , [ f (ε)]H

)
where ∆ε = d

(
∆ s
(v,r)Xk,X0

)
≥ ε. Hence X = (Xk) ∈ wF

(
∆ s
(v,r), f , p

)
.

Theorem 7. If f is bounded then wF
(

∆ s
(v,r), f , p

)
= SF

(
∆ s
(v,r)

)
.

Proof. If f is bounded then by Theorem 3.5 and Theorem 3.6 , we have wF
(

∆ s
(v,r), f , p

)
= SF

(
∆ s
(v,r)

)
.
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