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Abstract: In this study, for solving linear differential equation system characterizing curve pair of constant breadth according to Bishop
frame in Euclidean 3-space, a new collocation method based on Lucas polynomials is introduced and hence the curve pair of constant
breadth is determined. Furthermore, an error analysis based on residual error function is given for the method. To demonstrate the
accuracy and effciency of the method, an example is given with the help of computer programmes Maple and Matlab.
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1 Introduction

The curves of constant breadth were introduced by Euler in 1778 [1]. He investigated these curves in the plane. After
him, many mathematicians were interested in these curves [2-11]. Mağden and Köse studied the curves of constant
breadth in E4-space in [12]. Then, the concepts related to constant breadth space curve were extended to En-space in
[13]. Sezer established the differential equations characterizing curves of constant breadth and gave a criterion for these
curves in [14]. Furthermore, Önder et al gave the differential equations characterizing the constant breadth timelike and
spacelike curves in Minkowski 3-space E3

1 in [15]. Also Kocayiğit and Önder showed that in E3
1 spacelike and timelike

curves of constant breadth are related to normal curves, spherical curves and helices in some special cases [16]. In [17],
Kocayiğit and Çetin investigated the constant breadth space curves according to Bishop frame in Euclidean 3-space.
Then, Çetin et al used a collocation method based on Taylor polynomials for the approximate solutions of the linear
differential equation system characterizing constant breadth curves in Euclidean 3-space E3. So, curve pair of constant
breadth is determined [18].

In [19], the collocation method based on Taylor polynomials was given by Sezer et al in order to find the approximate
solutions of high-order systems of linear differential equations with variable coeffcients. In addition, Çetin et al
presented an approximation method based on Lucas polynomials for the solution of the system of high-order linear
differential equations with variable coeffcients under the mixed conditions [20].

In this study, we obtain the approximate solutions of the differential equation systems characterizing curve pair of
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constant breadth according to Bishop frame in Euclidean 3-space by using Lucas collocation method. Then, an example
is given to demonstrate the effciency of the method.

2 Preliminaries

Firstly, we give some basic concepts on classical differential geometry of space curves. Let α(s) be an unit speed space
curve and let

{−→
T (s),

−→
N (s),

−→
B (s)

}
be Frenet frame of this curve. The elements of the frame

−→
T ,

−→
N and

−→
B are called the

unit tangent vector, the unit principal normal vector and the unit binormal vector of the curve, respectively. Moreover,
κ(s) and τ(s) are called curvature and torsion of the curve α , respectively. The Frenet formulae are also well known as


−→
T ′
−→
N ′
−→
B ′

=

 0 κ 0
−κ 0 τ
0 −τ 0



−→
T
−→
N
−→
B


where

⟨−→
T ,

−→
T
⟩
=
⟨−→

N ,
−→
N
⟩
=
⟨−→

B ,
−→
B
⟩
= 1 and

⟨−→
T ,

−→
N
⟩
=
⟨−→

N ,
−→
B
⟩
=
⟨−→

T ,
−→
B
⟩
= 0. The parallel transport frame is

an alternative approach to defining a moving frame that is well-defined even when the curve has vanishing second
derivative. We can parallel transport an orthonormal frame along a curve simply by paralel transporting each component
of the frame [21].

Its mathematical properties derive from the observation that, while
−→
T (s) for a given curve model is unique, we may

choose any convenient arbitrary basis
(−→

N1(s),
−→
N2(s)

)
for the remainder of the frame, so long as it is in the normal plane

perpendicular to
−→
T (s) at each point. If the derivatives of

(−→
N1(s),

−→
N2(s)

)
depend only on

−→
T (s) and not each other, we can

make
−→
N1(s) and

−→
N2(s) vary smoothly throughout the path regardless of the curvature. We may therefore choose the

alternative frame equations 
−→
T ′
−→
N1

′
−→
N2

′

=

 0 k1 k2

−k1 0 0
−k2 0 0



−→
T
−→
N1
−→
N2

 (1)

where
⟨−→

T ,
−→
T
⟩
=
⟨−→

N1,
−→
N1

⟩
=
⟨−→

N2,
−→
N2

⟩
= 1 and

⟨−→
T ,

−→
N1

⟩
=
⟨−→

N1,
−→
N2

⟩
=
⟨−→

T ,
−→
N2

⟩
= 0 [22, 23].

One can show that [22]

κ(s) =
√

k2
1 + k2

2, θ(s) = arctan
(

k2
k1

)
, τ(s) = dθ(s)

ds

k1 = κ cos(θ), k2 = κ sin(θ),

and

−→
T =

−→
T ,

−→
N1(s) =

−→
N cos(θ)−−→

B sin(θ), −→N2(s) =
−→
N sin(θ)+−→

B cos(θ)

so that k1 and k2 effectively correspond to a Cartesian coordinate system for the polar coordinates κ,θ with
θ =

∫
τ(s)ds. A fundamental ambiguity in the parallel transport frame compared to the Frenet frame thus arise from the

arbitrary choice of an integration constant for θ0, which disappears τ from due to the differentiation [23].
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It is well-known that the curvature κ(s) of the curve (C) is defined by

lim
∆s→0

∆φ
∆s

=
dφ
ds

= κ (s)

where φ is the angle between the tangent
−→
T of the curve α and a given fixed direction at the point α(s).

3 Lucas Collocation Method for Linear Differential Equation System with Variable
Coefficients in Normal Form

Çetin et al presented a collocation method based on Lucas polynomials to find the approximate solutions of high-order
linear differential equation systems with variable coefficients in [20]. In this section, by means of the matrix relations
between Lucas polynomials and their derivatives, we give a new method for solving the linear differential equation system
in normal form as

L [yi(x)] = yi
′(x)−

m

∑
j=1

pi, j(x)y j(x) = gi(x) (i = 1,2, ...,m) (0 ≤ a ≤ x ≤ b) (2)

under the initial conditions
yi(a) = ci (3)

where yi(x) (i = 1,2, ...,m) are unknown functions, pi, j(x) and gi(x) are the known continuous functions defined on
interval [a,b], and ci (i = 1,2, ...,m) are the real constants. In this part, by means of Lucas collocation method with the
help of the residual error function [24-27], we obtain the approximate solutions of the system (2) expressed in the truncated
Lucas series

yi,N,M(x) = yi,N(x)+ ei,N,M(x) (i = 1,2, ...,m)

where

yi(x)∼= yi,N(x) =
N

∑
n=0

ai,nLn(x) (4)

is the Lucas polynomial solutions and

ei,N,M(x) =
M

∑
n=0

a∗i,nLn(x) (M > N)

is the estimated error function obtained with the help of the residual error function. Here ai,n and a∗i,n are the unknown
Lucas coefficients and Ln(x) (n = 0,1,2, ...,N) are the Lucas polynomials defined by [28,29],

L0(x) = 2; Ln(x) =
[[n/2]]
∑
k=0

n
n− k

(
n− k

k

)
xn−2k, (n ≥ 1),

[[
n
/

2
]]
=

{
n
/

2 , n even
(n−1)

/
2 , n odd

;

In order to find the solutions of the system (2) under the initial conditions (3), we can use the collocation points defined
by

xk = a+
b−a

N
k, k = 0,1, ...,N, 0 ≤ a ≤ x ≤ b. (5)
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On the other hand, we can write the approximate solutions yi,N(x) given by Eq.(4) in the matrix form

yi,N(x) = L(x)Ai, (i = 1,2, ...,m) (6)

where
L(x) =

[
L0(x) L1(x) L2(x) · · · LN(x)

]
and

Ai =
[

ai,0 ai,1 ai,2 · · · ai,N

]T
.

Here, the Lucas polynomials Ln(x) can be written in the matrix form as

L(x) = X(x)DT (7)

such that
X(x) =

[
1 x x2 · · · xN

]
and if N is odd,

D =



2 0 0 0 0 · · · 0

0 1
1

(
1

0

)
0 0 0 · · · 0

2
1

(
1

1

)
0 2

2

(
2

0

)
0 0 · · · 0

0 3
2

(
2

1

)
0 3

3

(
3

0

)
0 · · · 0

4
2

(
2

2

)
0 4

3

(
3

1

)
0 4

4

(
4

0

)
· · · 0

...
...

...
...

...
...

...

n−1
(n−1)/2

(
(n−1)

/
2

(n−1)
/

2

)
0 n−1

(n+1)/2

(
(n+1)

/
2

(n−3)
/

2

)
0 n−1

(n+3)/2

(
(n+3)

/
2

(n−5)
/

2

)
0

0 n
(n+1)/2

(
(n+1)

/
2

(n−1)
/

2

)
0 n

(n+3)/2

(
(n+3)

/
2

(n−3)
/

2

)
0 · · · n

n

(
n

0

)



.

If N is even,

D =



2 0 0 0 0 · · · 0

0 1
1

(
1

0

)
0 0 0 · · · 0

2
1

(
1

1

)
0 2

2

(
2

0

)
0 0 · · · 0

0 3
2

(
2

1

)
0 3

3

(
3

0

)
0 · · · 0

4
2

(
2

2

)
0 4

3

(
3

1

)
0 4

4

(
4

0

)
· · · 0

...
...

...
...

...
...

...

0 n−1
n/2

(
n
/

2

(n−2)
/

2

)
0 n−1

(n+2)/2

(
(n+2)

/
2

(n−4
/

2

)
0 · · · 0

n
n/2

(
n
/

2

n
/

2

)
0 n

(n+2)/2

(
(n+2)

/
2

(n−2)
/

2

)
0 n

(n+4)/2

(
(n+4)

/
2

(n−4)
/

2

)
· · · n

n

(
n

0

)



.
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From Eq.(6) and Eq.(7), we obtain the matrix relation

yi,N(x) = X(x)DT Ai, (i = 1,2, ...,m) . (8)

Therefore, the matrices yi,N(x), (i = 1,2, ...,m) can be expressed as

Y(x) = X(x)DA. (9)

where

Y(x) =


y1,N(x)

y2,N(x)
...

ym,N(x)

, X(x) =


X(x) 0 · · · 0

0 X(x) · · · 0
...

...
. . .

...
0 0 · · · X(x)

,

D =


DT 0 · · · 0
0 DT · · · 0
...

...
. . .

...
0 0 · · · DT

,A =


A1

A2
...

Am

.

Also, the relation between the matrix X(x) and its derivative X′(x) is

X′(x) = X(x)B (10)

where

B =



0 1 0 · · · 0
0 0 2 · · · 0
...

...
...

. . .
...

0 0 0 · · · N

0 0 0 · · · 0


.

By using the relations (8) and (10), we obtain the following matrix relation

y′i,N(x) = X(x)BDT Ai. (i = 1,2, ...,m) (11)

Hence, we can write the matrix relations as follow

Y′(x) = X(x)BDA (12)

where

Y′(x) =


y′1,N(x)

y′2,N(x)
...

y′m,N(x)

, B =


B 0 · · · 0

0 B · · · 0
...

...
. . .

...
0 0 · · · B

.
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4 Method for solution

We can write the system (2) in the matrix form

Y′(x) = P(x)Y(x)+G(x) (13)

where

P(x) =


p1,1(x) p1,2(x) · · · p1,m(x)

p2,1(x) p2,1(x) · · · p2,1(x)
...

...
. . .

...
pm,1(x) pm,2(x) · · · pm,m(x)

, G(x) =


g1(x)

g2(x)
...

gm(x)

.

By using the collocation points given by (5) into Eq.(13), we obtain the system of matrix equations

Y′(xk) = P(xk)Y(xk)+G(xk) , (k = 0,1, ...,N).

Briefly, the fundamental matrix equation is
Y′ = PY+G (14)

where

P =


P(x0) 0 · · · 0

0 P(x1) · · · 0
...

...
. . .

...
0 0 · · · P(xN)

, Y =


Y(x0)

Y(x1)
...

Y(xN)

, Y′ =


Y′(x0)

Y′(x1)
...

Y′(xN)

, G =


G(x0)

G(x1)
...

G(xN)

.

From the relations (9) and (12) and the collocation points given by (5), we obtain

Y(xk) = X(xk)DA and Y′(xk) = X(xk)BDA, (k = 0,1, ...,N)

or briefly
Y = XDA and Y′ = XBDA (15)

where

X =


X(x0)

X(x1)
...

X(xN)

, X(xk) =


X(xk) 0 · · · 0

0 X(xk) · · · 0
...

...
. . .

...
0 0 · · · X(xk)

.

By substituting the relations given by (15) into Eq.(14), we gain the fundamental matrix equation as

{
XBD−PXD

}
A = G. (16)

In Eq.(16) the full dimensions of the matrices P, X, B, D, A and G are m(N + 1)×m(N + 1), m(N + 1)×m(N + 1),
m(N +1)×m(N +1), m(N +1)×m(N +1), m(N +1)×1 and m(N +1)×1, respectively.

The fundamental matrix equation (16) corresponding to Eq.(2) can be written in the form

WA = G or [W;G] . (17)
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This is a linear system of m(N +1)algebraic equations in m(N +1) the unknown Lucas coefficients such that

W = XBD−PXD = [wp,q] , p,q = 1,2, ...,m(N +1).

By using the conditions given by (5) and the relations (9), the matrix form for the conditions is obtained as

X(a)DA = C (18)

where
C =

[
c1 c2 · · · cm

]T
.

Hence, the fundamental matrix form for conditions is

UA = C or [U;C] (19)

such that
U = X(a)D.

Consequently, we obtain the Lucas polynomial solution of the system (2) under the initial conditions (3) by replacing the
row matrices (19) by last rows of the matrix (17). Then, we obtain the new augmented matrix

W̃A = G̃ or
[
W̃; G̃

]
. (20)

If rank W̃ = rank
[
W̃; G̃

]
= N +1, then we can write

A =
(

W̃
)−1

G̃. (21)

By solving this linear system, the unknown Lucas coefficients matrix A is determined and ai,0,ai,1, ...,ai,N (i = 1,2, ...,m)

are substituted in Eq.(4). Thus, we find the Lucas polynomial solutions

yi,N(x) =
N

∑
n=0

ai,nLn(x), (i = 1,2, ...,m).

5 Residual correction and error estimation

In this section, we give an error estimation for the Lucas polynomial solutions (4) with the residual error function [24-27].
In addition, we develop the Lucas polynomial solutions (4) by means of the residual error function. Firstly, we can define
the residual error function for the Lucas collocation method as

Ri,N(x) = L [yi,N(x)]−gi(x), (i = 1,2, ...,m) . (22)

Here, yi,N(x) represent the Lucas polynomial solutions given by (4) of the problem (2) and (3). Hence, y j,N(x) satisfies the
problem  y′i,N(x)−

m
∑
j=1

pi, j(x)y j,N(x) = gi(x)+Ri,N(x), (i = 1,2, ...,m)

yi,N(a) = ci, (i = 1,2, ...,m).
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Also, the error function ei,N(x) can be defined as

ei,N(x) = yi(x)− yi,N(x) (23)

where yi(x) are the exact solutions of the problem (2) and (3). From Eqs.(2), (3), (22) and (23), we obtain a system of
error differential equations

L [ei,N(x)] = L [yi(x)]−L [yi,N(x)] =−Ri,N(x)

with the homogeneous initial conditions
ei,N(a) = 0, (i = 1,2, ...,m),

or openly, the error problem can be expressed as e′i,N(x)−
m
∑
j=1

pi, j(x)e j,N(x) =−Ri,N(x), (i = 1,2, ...,m)

ei,N(a) = 0, (i = 1,2, ...,m).
(24)

Here, the nonhomegeneous initial conditions

yi(a) = ci and yi,N(a) = ci

are reduced to homogeneous initial conditions
ei,N(a) = 0.

The error problem (24) can be solved by using the prosedure given in Section 3-4. Thus, we obtain the approximation

ei,N,M(x) =
M

∑
n=0

a∗i,nLn(x) , (M > N, i = 1,2, ...,m)

to ei,N(x). Consequently, the corrected Lucas polynomial solution yi,N,M(x) = yi,N(x)+ ei,N,M(x) is obtained by means of
the polynomials yi,N(x) and ei,N,M(x) . In addition, we construct the error function ei,N(x) = yi(x)− yi,N(x), the estimated
error function ei,N,M(x) and the corrected error functionEi,N,M(x) = yi(x)− yi,N,M(x).

6 Illustration

In this section, we give an example. In tables and figures, we calculate the values of the Lucas polynomial solutions
yi,N(x), the corrected Lucas polynomial solutions yi,N,M(x) = yi,N(x)+ei,N,M(x) and the estimated absolute error function
|ei,N,M(x)|.

Definition 1. A pair of space curves (C) and (C∗) in E3 for which the tangents at the corresponding points α(s) and

α∗(s∗) are parallel and in opposite directions, and the distance between these points is always constant are called space

curve pair of constant breadth [11].

Let (C) and (C∗) be a pair of unit-speed curves in Euclidean 3-space with non-zero Bishop curvatures and let those curves
have paralel tangents in opposite directions at the corresponding points α(s) and α∗(s∗), repectively. Hence, the position
vector of the curve (C∗) at the point α∗(s∗) can be written as

−→
α∗ (s∗) =−→α (s)+λ1 (s)

−→
T (s)+λ2 (s)

−→
N1(s)+λ3 (s)

−→
N2(s) (25)
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where λi(s) (i = 1,2,3) are differentiable functions of s which is arc lenght of (C). Denote by
{−→

T ,
−→
N1,

−→
N2

}
, k1 and k2 the

moving Bishop frame, Bishop curvatures along the curve (C), respectively. And denote by
{−→

T ∗,
−→
N∗

1 ,
−→
N∗

2

}
, k∗1 and k∗2 the

moving Bishop frame, Bishop curvatures along the curve (C∗), respectively.

Theorem 1. The general differential equations system characterizing space curve pair of constant breadth according to

Bishop frame in E3 is as follows [17]. 
dλ1
ds = k1λ2 + k2λ3

dλ2
ds =−k1λ1

dλ3
ds =−k2λ1

(26)

where k1 and k2 are Bishop curvatures defined by

k1 = κ(s)cos(θ) and k1 = κ(s)sin(θ), (θ =
∫

τ(s)ds).

The position vector of the curve (C∗) at the point α∗(s∗) in terms of α ′,α ′′,α ′′′ and k1,k2 by means of the Bishop formulae
as follows [18].

−→
α∗(s∗) =

(
k1λ3 − k2λ2

µ

)
−→α ′′′+

(
k2

′λ2 − k1
′λ3

µ

)
−→α ′′+

[(
k2

1 + k2
2
)
(k1λ3 − k2λ2)

µ
+λ1

]
−→α ′+−→α

such that

µ = k2
1

(
k2

k1

)′
.

Example 1. Let us consider the curve α : [0,2π]→ E3 given by

α(s) =

(
cos
( s

2

)
,sin

( s
2

)
,

√
3s
2

)
.

For the curve α curvature, torsion and Bishop elements are calculated as

κ = 1
4 , τ =

√
3

4 , θ =
√

3s
4

k1 =
1
4

cos

(√
3s
4

)
and k2 =

1
4

sin

(√
3s
4

)
. (27)

Substituting (27) in (26), we obtain 
λ1

′ = 1
4 cos

(√
3s
4

)
λ2 +

1
4 sin

(√
3s
4

)
λ3

λ2
′ =− 1

4 cos
(√

3s
4

)
λ1

λ3
′ =− 1

4 sin
(√

3s
4

)
λ1

(28)

We can find the approximate solutions of the problem (28) by using Lucas collocation method above mentioned. We
suppose that the initial conditions for λ1(s), λ2(s) and λ3(s) as follows

λ1(0) = 1, λ2(0) = 4, λ3(0) = 2.

The approximate solutions λ1,3(s), λ2,3(s) and λ3,3(s) by the truncated Lucas series for N = 3 are given by

λi,3(s) =
3

∑
n=0

ai,nsn, (i = 1,2,3) .
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The set of the collocation points for a = 0, b = 2π and N = 3 is calculated as{
s0 = 0, s1 =

2π
3
, s2 =

4π
3
, s3 = 2π

}
.

We can write the fundamental matrix equation of the problem (28) from Eq.(16) as

{
SBD−PSD

}
A = G.

By using the method in Section 3-4, the approximate solutions of the problem (28) for N = 3 are obtaied as

λ1,3 =1.0000000000000000278+0.9999999999999994904s+(0.230862972284423679e−1)s2

− (0.268502435025769032e−1)s3

λ2,3 =4.000000000000000318−0.2499999999999998461s−0.153376809980715401s2

+(0.332975802130747873e−1)s3

λ3,3 =2.000000000000000098+(0.36e−17)s−0.172375652146830871s2 +(0.107444813448467590e−1)s3.

In order to calculate the corrected Lucas polynomial solutions, let us consider the error problem
e′1,3(s)− 1

4 cos
(√

3s
4

)
e2,3(s)− 1

4 sin
(√

3s
4

)
e3,3(s) =−R1,3(s)

e′2,3(s)+ 1
4 cos

(√
3s
4

)
e1,3(s) =−R2,3(s)

e′3,3(s)+ 1
4 sin

(√
3s
4

)
e1,3(s) =−R3,3(s)

(29)

such that e1,3(0) = 0, e2,3(0) = 0, e3,3(0) = 0 and the residual functions are
R1,3(s) = λ ′

1,3(s)− 1
4 cos

(√
3s
4

)
λ2,3(s)− 1

4 sin
(√

3s
4

)
λ3,3(s)

R2,3(s) = λ ′
2,3(s)+ 1

4 cos
(√

3s
4

)
λ1,3(s)

R3,3(s) = λ ′
3,3(s)+ 1

4 sin
(√

3s
4

)
λ1,3(s).

By solving the error problem (29) for M = 4, the estimeted Lucas error function approximations e1,3,4(s), e2,3,4(s) and
e3,3,4(s) to e1,3(s), e2,3(s) and e3,3(s) are obtained as

e1,3,4(s) =− (0.156824e−14)+(0.11693e−14)s+(0.6879998068480421702e−1)s2

− (0.310172009517819015e−1)s3 +(0.358834023138630138e−2)s4

e2,3,4(s) =− (0.39300e−15)− (0.1874e−15)s− (0.5090722047025802480e−1)s2

+(0.259317019347674524e−1)s3 − (0.329254069115442410e−2)s4

e3,3,4(s) =− (0.2660e−16)+(0.4e−18)s+0.12141208040163570600s2

− (0.587889512477086652e−1)s3 +(0.694771346566892910e−2)s4.

Hence, we can calculate the corrected Lucas polynomial solutions for M = 4 as

λ1,3,4(s) =1+ s+(0.9188627791e−1)s2 − (0.5786744445e−1)s3 +(0.358834023138630138e−2)s4
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λ2,3,4(s) =4−0.25s−0.2042840305s2 +(0.5922928214e−1)s3 − (0.329254069115442410e−2)s4

λ3,3,4(s) =2+(0.40e−17)s− (0.509635717e−1)s2 − (0.4804446991e−1)s3

+(0.694771346566892910e−2)s4.

Similarly, we can calculate corrected Lucas polynomial solutions of the problem for different values of M as follows.

For M = 6, the approximate solutions are

λ1,3,6(s) =1+ s+(0.7722888773e−1)s2 − (0.4104315343e−1)s3 − (0.22724979443498158924e−2)s4

+(0.780946093192976150e−3)s5 − (0.328376246375317054e−4)s6

λ2,3,6(s) =4−0.25s−0.1103232354s2 − (0.1994160108e−1)s3 +(0.20829016919357967950e−1)s4

− (0.300128817280402279e−2)s5 +(0.121540192683128125e−3)s6

λ3,3,6(s) =2+(0.21200e−15)s− (0.506308036e−1)s2 − (0.3981039691e−1)s3

− (0.453694473233072774e−3)s4 +(0.205140773861414456e−2)s5

− (0.179925190950981802e−3)s6.

For M = 8, the approximate solutions are

λ1,3,8(s) =1+ s+(0.7692606583e−1)s2 − (0.4159234923e−1)s3 − (0.449362456550112302e−5)s7

+(0.139070836974095252e−6)s8 − (0.16320200368388819474e−2)s4

+(0.51987164532193863786e−3)s5 +(0.17566163126409611616e−4)s6

λ2,3,8(s) =4−0.25s−0.1263557000s2 +(0.440484041e−2)s3 +(0.702607695411888776e−4)s7

− (0.221094199053020487e−5)s8 +(0.55555395786277287546e−2)s4

+(0.19018036742970799332e−2)s5 − (0.71348969074471050696e−3)s6

λ3,3,8(s) =2− (0.10153678e−14)s− (0.547180547e−1)s2

− (0.3488333727e−1)s3 − (0.394613814952812954e−4)s7

+(0.262930012001328484e−5)s8 − (0.22358445035079499478e−2)s4

+(0.19778385702964519922e−2)s5 +(0.471203000543214462e−5)s6.

Table 1: Comparison of the approximate solutions λ1,N,M(s) for N = 3 and M = 4,6,8.

si λ1,3,4(si) λ1,3,6(si) λ1,3,8(si)
0 1 1 1

π
/

4 1.815408399 1.812513502 1.812237341
2π
/

4 2.595080941 2.595416426 2.594599540
3π
/

4 3.219959948 3.229119453 3.227980131
4π
/

4 3.603756833 3.617269033 3.615951406
5π
/

4 3.692952101 3.700880003 3.699449695
6π
/

4 3.466795343 3.466918839 3.465760519
7π
/

4 2.937305243 2.951337540 2.950470076
2π 2.149269576 2.236558148 2.231861391
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Table 2: Comparison of the approximate solutions λ2,N,M(s) for N = 3 and M = 4,6,8.

si λ2,3,4(si) λ2,3,6(si) λ2,3,8(si)
0 4 4 4

π
/

4 3.705079965 3.732993502 3.730369359
2π
/

4 3.312765003 3.357732448 3.355470705
3π
/

4 2.950123340 2.982434532 2.980565716
4π
/

4 2.714155384 2.734770119 2.732536442
5π
/

4 2.671793724 2.705579966 2.703910773
6π
/

4 2.859903133 2.913132538 2.910841823
7π
/

4 3.285280563 3.287920907 3.285146483
2π 3.924655149 3.677999237 3.707601606

Table 3: Comparison of the approximate solutions λ3,N,M(s) for N = 3 and M = 4,6,8.

si λ3,3,4(si) λ3,3,6(si) λ3,3,8(si)
0 2 2 2

π
/

4 1.947930489 1.949879504 1.949081651
2π
/

4 1.730340565 1.734929919 1.734327739
3π
/

4 1.302743559 1.302368008 1.302037820
4π
/

4 0.684100035 0.676520866 0.676111342
5π
/

4 -0.043182214 -0.043622926 -0.043278513
6π
/

4 -0.733248164 -0.717268464 -0.717296996
7π
/

4 -1.176795563 -1.225075999 -1.225287853
2π -1.101074493 -1.562828725 -1.508434184

It is seen from Table 1-3 that the approximate solutions are almost identical. We can write the distance function dN,M from
(25) as

dN,M =
√

λ 2
1,N,M +λ 2

2,N,M +λ 2
3,N,M = k, k ∈ .

Now, let us calculate the values of dN,M for N = 3 and M = 4,6,8. Hence,

d3,4 =(0.5e−9)[−(0.236741589992000e19)s2 +(0.180734423860000e19)s3 +287950928880522s8

− (0.844546189650672e17)s5 +(0.418460996545252e17)s6 − (0.589169688884716e16)s7

+(0.84e20)− (0.335799929391549e18)s4](1/2)

d3,6 =(0.1e−10)[(0.131848677860000e22)s2 − (0.191241309980000e22)s3 +(0.21e24)

− (0.159390765639094e19)s7 +(0.317809394084149e19)s8 − (0.118264691963043e19)s9

+(0.192015156647224e18)s10 − (0.151904297315817e17)s11 +482234023680346s12

+(0.108855850895550e22)s4 − (0.271104120918496e21)s5 +(0.201564518124391e20)s6](1/2)

d3,8 =(0.2e−12)[101536780000s− (0.334142178500000e24)s2 +(0.738766435e24)s3 +(0.525e27)

− (0.255765080554550e21)s9 +(0.957793165321548e20)s10 − (0.479903869336240e20)s11

+(0.242465055651551e18)s14 − (0.129861616448192e17)s15 +(0.144774173512770e20)s12

− (0.246636805567016e19)s13 +295520607607205s16 +(0.127687136841916e23)s7

+(0.138307097481750e21)s8 − (0.706819302174100e24)s4 +(0.360724721009030e24)s5

− (0.100231952403750e24)s6](1/2).
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Table 4: Numerical results of distance functions dN,M for N = 3 and M = 4,6,8.

si d3,4(si) d3,6(si) d3,8(si)
0 4.582575 4.582576 4.582576

π
/

4 4.562648 4.585027 4.582442
2π
/

4 4.550048 4.584816 4.582469
3π
/

4 4.557248 4.584571 4.582459
4π
/

4 4.563080 4.584897 4.582465
5π
/

4 4.558316 4.584602 4.582459
6π
/

4 4.553611 4.584795 4.582468
7π
/

4 4.561324 4.584935 4.582444
2π 4.608106 4.579553 4.582891

Now, let us draw the graphics of the distance functions dN,M for N = 3 and M = 4,6,8.
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Figure 1. Comparison of distance functions
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It is seen from Table 4 and Figure 1 that accuracy of the solution of system (28) increase when the value of M is
increased. In addition, dN,M is closing a constant value as the value of M is selected big. This value is breadth of the
curve pair of constant breadth. Hence, we can say that the present method is very effective.

Moreover, let us calculate and compare the estimated absolute error functions |ei,N,M(s)| for N = 3 and
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M = 4,6,8, (i = 1,2,3).

e1,3,4(s) =(0.6879998068e−1)s2 − (0.3101720095e−1)s3 +(0.358834023138630138e−2)s4

e1,3,6(s) =(0.5414259050e−1)s2 − (0.1419290993e−1)s3 +(0.780946093192976150e−3)s5

− (0.328376246375317054e−4)6 − (0.22724979443498158924e−2)s4

e1,3,8(s) =(0.5383976860e−1)s2 − (0.1474210573e−1)s3 − (0.449362456550112302e−5)s7

+(0.139070836974095252e−6)s8 − (0.16320200368388819474e−2)s4

+(0.51987164532193863786e−3)s5 +(0.17566163126409611616e−4)s6.

Table 5: Comparison of the estimated absolute error functions |e1,N,M(s)| for N = 3 and M = 4,6,8.

si |e1,3,4(si)|
∣∣e1,3,6(si)

∣∣ |e1,3,8(si)|
0 0 0 0

π
/

4 0.0288 0.0259 0.0256
2π
/

4 0.0714 0.0717 0.0709
3π
/

4 0.0868 0.0959 0.0948
4π
/

4 0.0668 0.0804 0.0790
5π
/

4 0.0360 0.0439 0.0425
6π
/

4 0.0515 0.0516 0.0505
7π
/

4 0.2035 0.2176 0.2167
2π 0.6149 0.7022 0.6975

e2,3,4(s) =(0.509072205e−1)s2 − (0.2593170193e−1)s3 +(0.329254069115442410e−2)s4

e2,3,6(s) =(0.430535746e−1)s2 − (0.5323918129e−1)s3 +(0.20829016919357967950e−1)s4

− (0.300128817280402279e−2)s5 +(0.121540192683128125e−3)s6

e2,3,8(s) =− (0.270211100e−1)s2 +(0.2889273980e−1)s3 − (0.702607695411888776e−4)s7

+(0.221094199053020487e−5)s8 − (0.55555395786277287546e−2)s4

− (0.19018036742970799332e−2)s5 +(0.71348969074471050696e−3)s6.

Table 6: Comparison of the estimated absolute error functions |e2,N,M(s)| for N = 3 and M = 4,6,8.

si |e2,3,4(si)|
∣∣e2,3,6(si)

∣∣ |e2,3,8(si)|
0 0 0 0

π
/

4 0.0201 0.0078 0.0052
2π
/

4 0.0452 0.0002 0.0024
3π
/

4 0.0449 0.0126 0.0144
4π
/

4 0.0191 0.0015 0.0007
5π
/

4 0.0023 0.0361 0.0344
6π
/

4 0.0405 0.0127 0.0105
7π
/

4 0.2376 0.2349 0.2377
2π 0.7089 0.9556 0.9260
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e3,3,4(s) =(0.4e−18)s+(0.1214120804)s2 − (0.5878895125e−1)s3 +(0.694771346566892910e−2)s4

e3,3,6(s) =− (0.20840e−15)s−0.1217448485s2 +(0.5055487825e−1)s3 +(0.453694473233072774e−3)s4

− (0.205140773861414456e−2)s5 +(0.179925190950981802e−3)s6

e3,3,8(s) =− (0.10189678e−14)s+0.1176575974s2 − (0.4562781861e−1)s3

− (0.394613814952812954e−4)s7 +(0.262930012001328484e−5)s8 − (0.22358445035079499478e−2)s4

+(0.19778385702964519922e−2)s5 +(0.471203000543214462e−5)s6.

Table 7: Comparison of the estimated absolute error functions |e3,N,M(s)| for N = 3 and M = 4,6,8.

si |e3,3,4(si)|
∣∣e3,3,6(si)

∣∣ |e3,3,8(si)|
0 0 0 0

π
/

4 0.0491 0.0510 0.0502
2π
/

4 0.1140 0.1186 0.1180
3π
/

4 0.1192 0.1188 0.1185
4π
/

4 0.0522 0.0447 0.0442
5π
/

4 0.0356 0.0361 0.0357
6π
/

4 0.0297 0.0138 0.0138
7π
/

4 0.2479 0.1996 0.1994
2π 1.0389 0.5771 0.6315

It is seen from Table 5-6-7 that the results are almost identical and close to zero. In addition, we say that the Lucas
collocation method is very effective for solving differential equations with variable coefficients. Because, It is very difficult
to find the analytical solutions of these differential equations systems.

7 Conclusions

In this study, we have developed a new collocation method based on Lucas polynomials for solving linear differential
equation system in normal form with the help of the residual error function. Then, we have given approximate solutions
of system of differential equations characterizing curve pair of constant breadth by using Lucas collocation method. We
have given an example to demonstrate efficiency and applicability of the present method.

In Figure 1, we have obtained the graphics of the distance function. Also, we have studied the residual error analysis. It is
seen from these comparisons that the approximate solutions are very close to absolute solutions when the values of N

and M are selected big. In addition, Lucas collacation method used for approximate solutions is very effective.
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