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Abstract: The paper aims to introduce some partial differential equations on Twistorial generalized Kähler manifolds, with an
emphasis on Euler-Lagrange equations. Twistor spaces are certain complex 3-manifolds which are associated with special conformal
Riemannian geometries on 4-manifolds. Also, classical mechanic is one of the major subfields for mechanics system. A mechanical
system has a state determined by a collection of real numbers, or more generally by a set of points in an appropriate state space.
Euler-Lagrange equations are an efficient use of classical mechanics to solve problems using mathematical modeling. In this study,
showing motion modeling partial differential equations have been obtained for movement of objects in space and solutions of these
equations have been generated by using the Maple software. Additionally, of the implicit solution of the equations to be drawn the
graph.
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1 Introduction

Dynamic systems are a recent theoretical and applied approach to the study of development. In its contemporary
formulation, the theory grows directly from advances in understanding complex and nonlinear systems in mathematical
physics and differential geometry. A dynamical system is a smooth action of the real or the integers on another object
that it named usually a manifold. At any given time of a dynamical system has a state given by a set of a vector that can
be represented by a point in an appropriate state space. Also, dynamical systems theory attempts to encompass all the
possible factors that may be in operation at any given developmental moment; it considers development from many
levels and time scales. Classical mechanics has provided effective solution methods using Euler-Lagrange equations for
dynamic systems. Euler-Lagrange equation is one of these methods and it is a model that shows the movement over time
of dynamic systems of quantum mechanics. Twisted geometries are discrete geometries that plays a role in loop quantum
gravity and spin foam models, where they appear in the semiclassical limit of spin networks and a spin network is a type
of diagram which can be used to represent states and interactions between particles and fields in quantum mechanics.
Twistor theory was created by Penrose [1]. Penrose created the twistor theory to solve problems in mathematical physics
[2]. Freidela and Speziale showed that the phase space of loop quantum gravity on a fixed graph can be parametrized in
terms of twisted geometries, quantities describing the intrinsic and extrinsic discrete geometry [3]. Speziale introduced
that loop quantum gravity and twisted geometries [4]. Santa-Cruz presented the hyperkähler geometry of complex
adjoint orbits from the point of view of twistor theory [5]. Albuquerque used twistor theory to describe virtually new
constructions of Hermitian and quaternionic Kähler structures on tangent bundles [6]. Davidov and Mushkarov
introduced that the twistor construction is applied for obtaining examples of generalized complex structures [7]. Loubeau
and Pantilie examined that Weyl spaces provide a natural context for harmonic morphism [8]. Pantilie shown that a
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natural class of twistorial maps gives a pattern for apparently different geometric maps, such as, (1,1)-geodesic
immersions from (1,2)-symplectic almost Hermitian manifolds and pseudo horizontally conformal submersions with
totally geodesic fibres for which the associated almost CR-structure is integrable [9]. Ianus et al introduced a natural
notion of quaternionic map between almost quaternionic manifolds [10]. Dunajski examined an elementary and
self–contained review of twistor theory as a geometric tool for solving non-linear differential equations.[11].
Marchiafava obtained that an alternative proof of a characterization of twistorial maps between quaternionic projective
spaces [12]. Kasap found Weyl-Euler-Lagrange equations of motion on flat manifold [13]. Tekkoyun revealed
Euler-Lagrange and Hamiltonian equations on R2n

n which is a model of para-Kählerian manifolds of constant J-sectional
curvature [14]. Cecotti et al defined twistorial topological strings by considering tt∗ geometry of the 4d N=2
supersymmetry theories on the Nekrasov-Shatashvili 1

2 Ω background [15].

2 Preliminaries

Definition 1. A Hermitian form on a vector space V over the complex field C is a function f : V ×V → C such that
for all u,v,w in V and all a,b in R, 1. f (au+ bv,w) = a f (u,w)+ b f (v,w). 2. f (u,v) = f̄ (v,u). Here, the bar indicates
the complex conjugate. It follows that f (u,av+ bw) = ā f (u,v)+ b̄ f (u,w), which can be expressed by saying that f is
antilinear on the second coordinate.

Definition 2. Let
−→
X = (xi), Y = (yi) ∈ R3 be any two vectors. As follows

<,>: R3 ×R3 → R1, <
−→
X ,Y >L=−x1y1 + x2y2 + x3y3 (1)

in the form of a function. This function are bilinear and symmetric. This the inner product function < X ,Y >L along with
R3 is called Minkowski space or the Lorenz space and it is been shown R3

1.

Theorem 1. Let X ∈ R3
1 be any one vector.

(1) If <
−→
X ,

−→
X >L> 0 or

−→
X =

−→
0 ,

−→
X is spacelike,

(2) If <
−→
X ,

−→
X >L< 0,

−→
X is timelike,

(3) If <
−→
X ,

−→
X >L< 0,

−→
X is lightlike (isotropic, null).

Definition 3. Minkowski space is a four-dimensional space possessing a Minkowski metric a metric tensor having the
form

dτ2 =−(dx0)2 +(dx1)2 +(dx2)2 +(dx3)2. (2)

In equation (2) above, the metric signature (1,3) is assumed; under this assumption, Minkowski space is typically written
R(1,3). One may also express equation (2) with respect to the metric signature (3,1) by reversing the order of the positive
and negative squared terms therein, in which case Minkowski space is denoted R(1,3).

Definition 4. Suppose that ξ is a vector field: that is, a vector-valued function with Cartesian coordinates (ξ1, ...,ξn); and
x(t) a parametric curve with Cartesian coordinates (x1(t), ...,xn(t)). Then x(t) is an integral curve of ξ if it is a solution
of the following autonomous system of ordinary differential equations: dx1

dt = ξ1(x1, ...,xn), ...,
dxn
dt = ξn(x1, ...,xn). Such a

system may be written as a single vector equation

ξ (x(t)) = x′(t) =
∂
∂ t

(x(t)) . (3)

c⃝ 2016 BISKA Bilisim Technology



NTMSCI 4, No. 1, 193-202 (2016) / www.ntmsci.com 195

2.1 J-Holomorphic curve

Definition 5. Let be V a vector space over R. Let M be a differentiable manifold of dimension 2n, and suppose J is a
differentiable vector bundle isomorphism Jx : TxM → TxM.

(1) A (almost) complex structure on M for J2d =−Id.
(2) A (almost) paracomplex structure on M for J2d = Id.
(3) A tangent (exact) structure on M for J2d = 0.

Where J2 = J ◦ J, and I is the identity (unit) operator on V by the map J : V →V and V = Rn ⊕Rn.

Definition 6. A tangent structure J on M assigns to each p ∈ M a linear map Jp : TpM → TpM that is smooth in p and
satisfies J2

pd = 0 for all p. The pair (M,J) is called a tangent manifold.

Theorem 2. Any complex manifold M is also an almost complex manifold.

Lemma 1. Let M be a smooth manifold. If M admits a complex structure A, then M admits an almost complex structure J.
Let dimCM = m and (z,U) be any holomorphic chart inducing a coordinate frame ∂x1,∂y1, ...,∂xm,∂ym. Then J is given
locally as

Jp (∂xi p) = ∂yi p , Jp (∂yi p) =−∂xi p, (4)

where 1 ≤ i ≤ m and p ∈U [16].

J-holomorphic curve is a smooth map from a Riemann surface into an almost complex manifold that satisfies the Cauchy–
Riemann equation.

Definition 7. Let (M,ω) be a symplectic manifold of dimension 2n, and let J ∈ J(M,ω) be an ω-compatible almost
complex structure. Let gJ(·,·)≡ ω(·,J·) be the corresponding Hermitian metric on M.

Definition 8. Let (∑, j) be a Riemann surface with complex structurej. A smooth map u : ∑ → M is called a (J, j)-
holomorphic map (or simply a J-holomorphic map) if du◦ j = J ◦du, or equivalently,

∂̄J(u) =
1
2
(du+ J ◦du◦ j) = 0. (5)

The equation ∂̄J(u) = 0 is a first order, non-linear equation of Cauchy-Riemann type.

3 Twistor theory

Twisted geometries are discrete geometries that plays a role in loop quantum gravity, where they appear in the
semiclassical limit of spin networks and it maps the geometric objects of conventional 3+ 1 space-time (Minkowski
space) into geometric objects in a 4-dimensional space endowed with a Hermitian form of signature (2,2). This space is
called twistor space, and its complex valued coordinates are called twistors.

Definition 9. (Twistor space) If (M,g) is an oriented Riemannian 2n-manifold then: Z is the bundle of g-orthogonal
positive complex structures on the tangent spaces of M and τ : Z→ M is the bundle projection. The fibre F = τ−1(x) is
the space of J ∈ End(TxM) such that (a) J2 =−id, (b) g(Jv,Jw) = g(v,w) for all v,w ∈ TxM.

Theorem 3. (Eells-Salamon 1985, Twistor correspondence) Let M be a Riemannian 2n-manifold. There is an almost
complex n(n+1)-manifold (Z,J), the twistor space of M,and a map τ : Z→ M such that (a) J-holomorphic curves in Z
project (via τ) to minimal surfaces in M, (b) moreover any minimal surface arises this way.
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3.1 Generalized Kähler structures

Definition 10. Let (M,J,g) be a 2n-dimensional almost complex manifold and g is a metric, i.e. J is an almost complex
structure such that J2X =−X , g(JX ,JY ) =−g(X ,Y ), for all vector fields X, Y on M and g is a metric.

Definition 11. Let M be a complex manifold with complex structure J and compatible Riemannian metric g =< ., . > as in
< JX ,JY >=< X ,Y >. The alternating 2-form ω(X ,Y ) := g(JX ,Y ) is called the associated Kähler form. We can retrieve
g from ω , g(X ,Y ) = ω(X ,JY ). We can say that g is a Kähler metric and that M is a Kähler manifold if ω is closed and
(M,g) is displayed in the form.

Definition 12. Let M be a complex manifold. A Riemannian metric on M is called Hermitian if it is compatible with the
complex structure J of M, < JX ,JY >=< X ,Y >. Then the associated differential two-form ω defined by ω(X ,Y ) =<

JX ,Y > is called the Kähler form. It turns out that ω is closed if and only if J is parallel. Then M is called a Kähler
manifold and the metric on M a Kähler metric. Kähler manifolds are modelled on complex Euclidean space [17].

Definition 13. Let V be a 2n-dimensional real vector space and let { ∂
∂xi

+ ∂
∂yi

}, i = 1, ...,4n, be an orthonormal basis of
the space V ⊗V ∗ endowed with the neutral metric (6). Then ∂

∂x1
,..., ∂

∂x2n
is a basis of V and ∂

∂y1
,..., ∂

∂y2n
is a basis of V ∗.

Definition 14. Let V ⊗V ∗ be a n-dimensional real vector space and g a metric of signature (p,q) on it, p+ q = n. We

shall say that an orthogonal basis { ∂
∂x1

, ..., ∂
∂xn

} of V ⊗V ∗ is orthonormal if
∥∥∥ ∂

∂x1

∥∥∥2
=···=

∥∥∥ ∂
∂xp+q

∥∥∥2
= −1. If n = 2m is

an even number and p = q = m, the metric g is usually called neutral. Recall that a complex structure J on V ⊗V ∗ is
called compatible with the metric g, if the endomorphism J is g-skew-symmetric. Suppose that p = 2k and q = 2l, and
let J be a compatible complex structure on V ⊗V ∗. Then it is easy to see by induction that there is an orthonormal basis
{ ∂

∂x1
, ..., ∂

∂xn
} of V ⊗V ∗ such that J ∂

∂x2i−1
= ∂

∂x2i
, i = 1, ...,k+ l.

Definition 15. Let V be a 2n-dimensional real vector space and V ∗ its dual space. Then the vector space V ⊕V ∗ admits a
natural neutral metric defined by

⟨X +ξ ,Y +η⟩= 1
2
(ξ (Y )+η(X)) , X ,Y ∈V and ξ ,η ∈V ∗. (6)

Let V be a 2-dimensional real vector space and let
{

Qi =
∂

∂xi
+ ∂

∂ yi

}
,1 ≤ i ≤ 4, be an orthonormal basis of the space

V ⊕V ∗ endowed with its natural neutral metric (6). Then

∂
∂x3

= a11

∂
∂x1

+a12

∂
∂x2

,
∂

∂x4
= a21

∂
∂x1

+a22

∂
∂x2

(7)

where A = [ai j] is an orthogonal matrix. If detA = 1, the basis {Qi} yields the canonical orientation of V ⊕V ∗ and if
detA =−1 it yields the opposite one (proof see [7]).

Theorem 4. Let V be a 2-dimensional real vector space. Take a basis { ∂
∂x1

, ∂
∂x2

} of V and let { ∂
∂y1

, ∂
∂y2

} of V ∗ be its dual
basis. Then { Q1 =

∂
∂x1

+ ∂
∂y1

, Q2 =
∂

∂x2
+ ∂

∂y2
, Q3 =

∂
∂x3

− ∂
∂y3

, Q4 =
∂

∂x4
− ∂

∂y4
} is an orthonormal basis of V ⊗V ∗ with

respect to the natural neutral metric (2) and is positively oriented with respect to the canonical orientation of V ⊗V ∗.
Set εk = ∥Qk∥2, k = 1, ...,4, and define skew-symmetric endomorphisms of V ⊗V ∗ setting Si jQk = εk(δikQ j − δikQ),
1 ≤ i, j,k ≤ 4. Then the endomorphisms

I1 = S12 −S34, J1 = S12 +S34,

I2 = S13 −S24, J2 = S13 +S24,

I3 = S14 +S23, J3 = S14 −S23,

(8)
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constitute a basis of the space of skew-symmetric endomorphisms of V ⊗V ∗ subject to the following relations:

I2
1 = I2

2 = Id, I2
3 = 0,

J2
1 = J2

2 = Id, J2
3 = 0

IrIs =−IsIr, JrJs =−JsJr, 1 6 r ̸= s 6 3
IrJs = JsIr, 1 6 r,s 6 3.

(9)

Let Ψ be a complex structure on V ⊗V ∗ compatible with the metric and let us set Ψ = ∑3
r=1 (xrIr + yrJr) . Then we

have Ψ 2 = Id if and only if either I = ∑r xrIr with x2
1 + x2

2 = 1 and y1 = y2 = y3 = 0, J = ∑s ysJs with y2
1 + y2

2 = 1 and
x1 = x2 = x3 = 0. It follows that

I ∂
∂x1

= x1
∂

∂x1
+(x2 +1) ∂

∂x2
, J ∂

∂x1
= y1

∂
∂x1

+(y2 −1) ∂
∂y2

,

I ∂
∂x2

= (x2 −1) ∂
∂x1

− x1
∂

∂x2
, J ∂

∂x2
= y1

∂
∂x2

+(y2 −1) ∂
∂y1

,

I ∂
∂y1

=−x1
∂

∂y1
− (x2 −1) ∂

∂y2
, J ∂

∂y1
= (y2 +1) ∂

∂x2
− y1

∂
∂y1

I ∂
∂y2

=−(x2 +1) ∂
∂ y1

+ x1
∂

∂y2
, J ∂

∂ y2
= (y2 +1) ∂

∂x1
− y1

∂
∂y2

.

(10)

This shows that the restriction of I to V is a complex structure on V inducing the generalized complex structure I. In
contrast, the generalized complex structure J is not induced by a complex structure or a symplectic form on V .

Proof. Let us set Ψ = ∑3
r=1 (xrIr + yrJr) . Let’s we have account Ψ 2 using Definition 5 :

Ψ 2 = ∑3
r=1 (xrIr + yrJr)

2

= x2
1I2

1 + x2
2I2

2 + x2
3I2

3 + y2
1J2

1 + J2
2 y2

2 + J2
3 y2

3 +2∑3
r,s=1 (xrysIrJs) .

= x2
1 + x2

2 + y2
1 + y2

2 +2∑3
r,s=1 (xrysIrJs) .

(11)

We see that x2
1 +x2

2 +y2
1 +y2

2 = 1, xrys = 0, r,s = 1,2,3. Therefore Ψ 2 = Id if and only if either x2
1 +x2

2 = 1 for y1 = y2 =

y3 = 0 and y2
1 + y2

2 = 1 for x1 = x2 = x3 = 0 [7].

Theorem 5. If α and β are 1-forms, then α ∧β is a 2-forms.

Definition 16. In three dimensions, the vector from the origin to the point with Cartesian coordinates (x,y,z) can be
written as [18]:

r = xi+ yj+ zk = x
(

∂
∂x

)
+ y

(
∂
∂y

)
+ z

(
∂
∂ z

)
. (12)

Proposition 1. Let
−→
X , Y ∈ R3

1 be any two vector that are.
−→
X = (x,y+ 1,0), Y = (y− 1,−x,0). Let this curve expressed

as vectors:

r1 = x
(

∂
∂x

)
+(y+1)

(
∂
∂y

)
, r2 = (y−1)

(
∂
∂x

)
− x

(
∂
∂y

)
. (13)

Example 1. Let us consider the structure (10) using the holomorphic property at (13). We can define the following
holomorphic structures with:

(1) J ∂
∂x = x ∂

∂x +(y+1) ∂
∂y ,

(2) J ∂
∂y = (y−1) ∂

∂x − x ∂
∂y .

(14)

Now, we denote the structure (14) of the holomorphic property:

(1) J2 ∂
∂x = x

(
x ∂

∂x +(y+1) ∂
∂y

)
+(y+1)

(
(y−1) ∂

∂x − x ∂
∂y

)
= (x2 + y2 −1) ∂

∂x .

(2) J2 ∂
∂y = (y−1)

(
x ∂

∂x +(y+1) ∂
∂y

)
− x

(
(y−1) ∂

∂x − x ∂
∂y

)
= (x2 + y2 −1) ∂

∂y .
(15)
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As shown above, the structures (15) are tangent (Defintion5) and x2 +y2 = 1 for J2 = 0. This is a cone and the graph is as
follows:

4 (Euler)-Lagrange dynamics equations

Lemma 2. The closed 2-form on a vector field and 1−form reduction function on the phase space defined of a mechanical
system is equal to the differential of the energy function 1-form of the Lagrangian and the Hamiltonian mechanical systems
[19,20].

Definition 17. Let M be an n-dimensional manifold and T M its tangent bundle with canonical projection τM : T M → M.
T M is called the phase space of velocities of the base manifold M. Let L : T M → R be a differentiable function on T M
called the Lagrangian function. Here, L = T −V such that T is the kinetic energy and V is the potential energy of a
mechanical system. In the problem of a mass on the end of a spring, T = mẋ2/2 and V = kx2/2.

Definition 18. We consider the closed 2-form and base space (J) on T M given by ΦL =−d(dJL) =−d (J(d)). Consider
the equation

iξ ΦL = dEL. (16)

Where iξ is reduction function and iξ ΦL = ΦL(ξ ) is defined in the form. Then ξ is a vector field, we shall see that (16)
under a certain condition on ξ is the intrinsical expression of the Euler-Lagrange equations of motion. This equation (16)
is named as Lagrange dynamical equation [21,22].

Definition 19. We shall see that for motion in a potential, EL =V L−L is an energy function and V = Jξ a Liouville vector
field. Here dEL denotes the differential of E. The triple (T M,ΦL,ξ ) is known as Lagrangian system on the tangent bundle
T M. If it is continued the operations on (16) for any coordinate system then infinite dimension Lagrange’s equation is
obtained the form below. The equations of motion in Lagrangian mechanics are the Lagrange equations of the second
kind, also known as the Euler–Lagrange equations;

∂
∂ t

(
∂L
∂ ẋ

)
= ∂L

∂x . (17)
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5 Euler-Lagrangian mechanical equations

Let’s get, using (16), Euler-Lagrange equations on twistorial generalized Kähler manifolds and its shown that by
(T M,g,J).

Proposition 2. Let ξ be the vector field determined by

ξ = X
∂
∂x

+Y
∂
∂y

, X = ẋ, Y = ẏ, (18)

on (T M,g,J).

Then the vector field defined by

V = J(ξ ) = J
(

X
∂
∂x

+Y
∂
∂y

)
, (19)

is thought to be Liouville vector field on twistorial generalized Kähler manifolds (T M,g,J). ΦL =−d(dJL), d = ∂
∂x dx+

∂
∂y dy is the closed 2-form given by (16) such that

d = ∂
∂x dx+ ∂

∂y dy, dJ : F(M)→∧1M,

dJ = J( ∂
∂x dx+ ∂

∂y dy),
(20)

and dJ = iJd−diJ . Also, the vertical differentiation dJ is given by d is the usual exterior derivation. Then there is the
following result. Here, we can be account Euler-Lagrange equations for classical and analytical mechanics on twistorial
generalized Kähler manifolds (T M,g,J). We get the equations given by

dJL =

[
x

∂L
∂x

+(y+1)
∂L
∂y

]
dx+

[
(y−1)

∂L
∂x

− x
∂L
∂y

]
dy. (21)

Let we account ΦL :

ΦL =−d (dJL) =−d
([

x
∂L
∂x

+(y+1)
∂L
∂y

]
dx+

[
(y−1)

∂L
∂x

− x
∂L
∂y

]
dy
)

(22)

=

[
∂L
∂x

+ x
∂ 2L

∂x∂x
+(y+1)

∂ 2L
∂x∂y

]
dx∧dx+

[
(y−1)

∂ 2L
∂x∂x

− ∂L
∂y

− x
∂ 2L

∂x∂y

]
dy∧dx

+

[
x

∂ 2L
∂y∂x

+
∂L
∂y

+(y+1)
∂ 2L

∂y∂y

]
dx∧dy+

[
∂L
∂x

+(y−1)
∂ 2L

∂y∂x
− x

∂ 2L
∂y∂y

]
dy∧dy.

Then we find using ( f ∧g)(v) = f (v)g− g(v) f , (dxi ∧dx j)(
∂

∂xk
) = dxi

∂
∂xk

dx j − dx j
∂

∂xk
dxi =

∂xi
∂xk

dx j −
∂x j
∂xk

dxi, ∂xi
∂xk

= 0,
∂xi
∂xi

= 1,

ΦL(ξ ) = X
[

∂L
∂x + x ∂ 2L

∂x∂x +(y+1) ∂ 2L
∂x∂y

][
dx ∂

∂ x dx−dx ∂
∂x dx

]
+X

[
(y−1) ∂ 2L

∂x∂x −
∂L
∂y − x ∂ 2L

∂x∂y

][
dy ∂

∂x dx−dx ∂
∂x dy

]
+X

[
x ∂ 2L

∂y∂x +
∂L
∂y +(y+1) ∂ 2L

∂y∂y

][
dx ∂

∂x dy−dy ∂
∂x dx

]
+X

[
∂L
∂x +(y−1) ∂ 2L

∂y∂x − x ∂ 2L
∂y∂y

][
dy ∂

∂x dy−dy ∂
∂x dy

]
+Y

[
∂L
∂x + x ∂ 2L

∂x∂x +(y+1) ∂ 2L
∂x∂y

][
dx ∂

∂y dx−dx ∂
∂y dx

]
+Y

[
(y−1) ∂ 2L

∂x∂x −
∂L
∂y − x ∂ 2L

∂x∂y

][
dy ∂

∂y dx−dx ∂
∂y dy

]
+Y

[
x ∂ 2L

∂y∂x +
∂L
∂y +(y+1) ∂ 2L

∂y∂y

][
dx ∂

∂y dy−dy ∂
∂y dx

]
+Y

[
∂L
∂x +(y−1) ∂ 2L

∂y∂x − x ∂ 2L
∂y∂y

][
dy ∂

∂y dy−dy ∂
∂y dy

]
.

(23)
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from here
ΦL(ξ ) = X

[
∂L
∂x + x ∂ 2L

∂x∂x +(y+1) ∂ 2L
∂x∂y

]
dx−X

[
∂L
∂x + x ∂ 2L

∂x∂x +(y+1) ∂ 2L
∂x∂y

]
dx

−X
[
(y−1) ∂ 2L

∂x∂x −
∂L
∂y − x ∂ 2L

∂x∂y

]
dy+X

[
x ∂ 2L

∂y∂x +
∂L
∂y +(y+1) ∂ 2L

∂y∂y

]
dy

+Y
[
(y−1) ∂ 2L

∂x∂x −
∂L
∂y − x ∂ 2L

∂x∂y

]
dx−Y

[
x ∂ 2L

∂y∂x +
∂L
∂y +(y+1) ∂ 2L

∂y∂y

]
dx

+Y
[

∂L
∂x +(y−1) ∂ 2L

∂y∂x − x ∂ 2L
∂y∂y

]
dy−Y

[
∂L
∂x +(y−1) ∂ 2L

∂y∂x − x ∂ 2L
∂y∂y

]
dy.

(24)

Also, the energy function of system is

EL =V L−L = J
(

X
∂L
∂x

+Y
∂L
∂y

)
−L = X

[
x

∂L
∂x

+(y+1)
∂L
∂y

]
+Y

[
(y−1)

∂L
∂x

− x
∂L
∂y

]
−L (25)

and the differential of EL is

dEL = d
(

X
[
x ∂L

∂x +(y+1) ∂L
∂y

]
+Y

[
(y−1) ∂L

∂x − x ∂
∂y L

]
−L

)
= X

(
∂L
∂x dx+ x ∂ 2L

∂x∂x dx+(y+1) ∂ 2L
∂x∂y dx

)
+Y

(
(y−1) ∂ 2L

∂x∂x dx− ∂L
∂y dx− x ∂ 2L

∂x∂y dx
)
− ∂L

∂x dx

+X
(

x ∂ 2L
∂y∂x dy+ ∂L

∂y dy+(y+1) ∂ 2L
∂y∂y dy

)
+Y

(
∂L
∂x dy+(y−1) ∂ 2L

∂y∂x dy− x ∂ 2L
∂y∂y dy

)
− ∂L

∂y dy.

(26)

Using (4), we find the following equations:

−X
[

∂L
∂x + x ∂ 2L

∂x∂x +(y+1) ∂ 2L
∂x∂y

]
dx−Y

[
x ∂ 2L

∂y∂x +
∂L
∂y +(y+1) ∂ 2L

∂y∂y

]
dx+ ∂L

∂x dx = 0,

−X
[
(y−1) ∂ 2L

∂x∂x −
∂L
∂y − x ∂ 2L

∂x∂y

]
dy−Y

[
∂L
∂x +(y−1) ∂ 2L

∂y∂x − x ∂ 2L
∂y∂y

]
dy+ ∂L

∂y dy = 0,
(27)

or
−x

[
X ∂

∂x +Y ∂
∂y

]
∂L
∂x − (y+1)

[
X ∂

∂x +Y ∂
∂y

]
∂L
∂y +

∂L
∂x = 0

−(y−1)
[
X ∂

∂x +Y ∂
∂y

]
∂L
∂x + x

[
X ∂

∂x +Y ∂
∂y

]
∂L
∂y +

∂L
∂y = 0

(28)

The above equation (28), using Definition 8, arranged on the result below:

di f 1. −x ∂
∂ t

(
∂L
∂x

)
− (y+1) ∂

∂ t

(
∂L
∂y

)
+ ∂L

∂x = 0,

di f 2. −(y−1) ∂
∂ t

(
∂L
∂x

)
+ x ∂

∂ t

(
∂L
∂y

)
+ ∂L

∂y = 0,
(29)

such that the differential equations (29) are named Euler-Lagrange mechanical equations on twistorial generalized
Kähler manifolds such that this is shown in the form of (T M,g,J). Additionally, therefore the triple (T M,ΦL,ξ ) is called
a Euler-Lagrangian mechanical system on (T M,g,J).

6 Equations solving with computer

Set out in this study (29) equations are partial differential equations on twistorial generalized Kähler manifolds such that
its solved with Maple computation program.

Example 2. Implicit solution (29) is L(x,y, t) = F1(t).
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Fig. 1: Special values of F1(t) = t3.

7 Discussion

It is well-known that a classical field theory explain the study of how one or more physical fields interact with matter
which is used quantum and classical mechanics of physics branches. How the movement of objects in electrical,
magnetically and gravitational fields force is very important. Because, the classical theory of electromagnetism deals
with electric and magnetic fields and their interaction with each other and with charges and currents. An electromagnetic
field is a physical field produced by electrically charged objects and their locations over time.

It is well-known that the motivation and one of the initial aims of twistor theory is to provide an adequate formalism for
the union of quantum theory and general relativity. Twistor theory can also be used to solve non-linear differential
equations which are related to the self-duality equations that describe instantaneous in R4. In this study, the
Euler-Lagrange mechanical equations (29) derived on twistorial generalized Kähler manifolds may be suggested to deal
with problems in electrical, magnetically and gravitational fields for the path of movement (Fig 1.) of defined space
moving objects [23,24].
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