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Abstract: In this study, the differential equation characterizations of curves of constant breadth are given in Euclidean 4-space E*.
Furthermore, a criterion for a curve to be the curve of constant breadth in E is introduced. As an example, the obtained results are
applied to the case that the curvatures k1, kp, k3 and are discussed.
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1 Introduction

Euler introduced the constant breadth curves in 1778 [7]. He considered these special curves in the plane. Later, many
geometers have shown increased interest in the properties of plane convex curves. Struik published a brief review of the
most important publications on this subject [20]. Also, Ball [1], Barbier [2], Blaschke [3,4] and Mellish [14] investigated
the properties of plane curves of constant breadth. A space curve of constant breadth was obtained by Fujiwara by taking
a closed curve whose normal plane at a point P has only one more point Q in common with the curve, and for which the
distance d(P, Q) is constant [8].

He also defined and studied constant breadth surfaces. Later, Smakal studied the constant breadth space curves [19].
Furthermore, Blaschke considered the notion of curve of constant breadth on the sphere [4]. Moreover, Reuleaux studied
the curves of constant breadth and gave the method related to these curves for the kinematics of machinery [16]. Then,
constant breadth curves had an importance for engineering sciences and Tanaka used the constant breadth curves in the
kinematics design of Com follower systems [21].

Moreover, Kose has presented some concepts for space curves of constant breadth in Euclidean 3-space in [12] and Sezer
has obtained the differential equations characterizing space curves of constant breadth and introduced a criterion for
these curves [18]. Constant breadth curves in Euclidean 4-space were given by Magden and Kose [13]. Moreover,
constant breath curves have been studied in Minkowski space. Kazaz, Onder and Kocayigit have studied spacelike curves
of constant breadth in Minkowski 4-space [10]. Onder, Kocayigit and Candan have obtained and studied the differential
equations characterizing constant breadth curves in Minkowski 3-space [15]. Furthermore, Kocayigit and Onder have
showed that constant breadth curves are normal curves, helices, and spherical curves in some special cases [11].

In this paper, we study the differential equations characterizing curves of constant breadth in the Euclidean 4-space E*.
Moreover, we give a criterion characterizing these curves in E*.
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2 Differential equations characterizing curves of constant breadth in £*

Let (C) be a unit speed regular curve in E* with parametrization o (s) : I C R — E*. Denote by {T,N,B,E} the moving
Frenet frame along the curve (C) in E*. Then, the following Frenet formulate are given,

T 0 kk 0 07T
N| |-k 0 k O||N
B| | 0 -k 0 k3| |B
E/ 0 0 -k 0] |E

where ki, k» and k3 are the first, second and third curvatures of the curve (C), respectively [9].

Definition 1. Let (C) be a unit speed regular curve in E* with position vector a(s) . If (C) has parallel tangents T and T*
in opposite direction at the opposite points and of the curve and if the distance between these points is always constant
then is called a curve of constant breadth in E*. Moreover, a pair of curves (C) and (C*) for which the tangents at the
corresponding points are parallel and in opposite directions and the distance between these points is always constant is
called a curve pair of constant breadth in E*.

Let now (C) and (C*) be a pair of unit speed curves in E* with position vector a(s) and a*(s*), where s and s* are arc
length parameters of the curves, respectively. Let (C) and (C*) have parallel tangents in opposite directions at opposite
points. Then the curve (C*) may be represented by the equation

o*(s) = ot(s) +my(s)T(s) +ma(s)N(s) +m3(s)B(s) +ma(s)E(s) ()

where m;(s), 1 <i <4 are the differentiable functions of s which is the arc length of (C) . Differentiating this equation
with respect to s and using the Frenet formulate we obtain

* ds* d d d d
@ (s) =T - l+ﬂ—m2k1 T+ m1k1+ﬂ—m3k2 N+ m2k2+ﬂfm4k3 B+ m3k3+ﬂ E.
ds ds ds ds ds ds

Since T = —T* at the corresponding points of (C) and (C*), we have

dmy __ _ ds*
1+W*m2k1)— 75

dm
miky + <72 —mzky | =0,

2
moky + % —mgks | =0,

m3k3 + %) =0.

It is well known that the curvature of (C) is lim(A@/As) = (d@/ds) = ki (s), where @ = [j'k;(s)ds is the angle between
the tangent of the curve (C) and a given fixed direction at the point ¢(s). Then from (2) we have the following system

mll =my — f(9), mlz =m3pk,

my =mapks —mapka, my = —m3pks. 3)

Here and after we will use (') to show the differentiation with respectto ¢ . In (3), f(¢) =p+p* and, p = ﬁ and p* = ki*
1

denote the radius of curvatures at the points o and o*, respectively. From (3) eliminating my, m3 and my their derivatives
we have the following differential equation

d[d[ 1 [d®m )} kgdml} kg(dzml ) d [ 1 d ( 1 df) k> } ky df
— == +my ||+ =+ +m )+ —|———-= |+ f|+—--=-=0. ¢
do [dq» [pkz(dqﬂ Tk de | T \dgr T Yag phde \phde) Tl Tihag =0 @
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Then we can give the following theorem.

Theorem 1. The general differential equation characterizing space curves of constant breadth in E* is given by (4).

Let now consider the system (3) again. The distance d between the opposite points & and a* is the breadth of the curves
and is constant, that is,
d*=|d|]* = |a* — a||* = m} +m3 +m3 +mj = const. 5)

Then the system (3) may be written as follows:

my :f((P)7 m/2 = m3pk27 m/3 = Wl4pk3 —I’I12pk2,

mi; =—m3pks, m; =0. (6)
or
m/l =my, mlz = —mj +m3pky,
m/3 :m4pk3 —mzpkz, m:‘ = —m3pk3. 7)

which are the systems describing the curve (C).

Let us consider the system (7) with special chosen m; = const. . Here, eliminating first m|, my, m3 and their derivatives,
and then my, my, m4 and their derivatives, respectively, we obtain the following linear differential equations of second
order )

{ (pks)my — (pks) my+ (pks)’ ma =0, pks #0, ®

(pks)m} — (pks) i+ (pks)* m3 = 0, pks #0.

By changing the variable ¢ of the form & = [ p(¢)ks(t)dt , these equations can be transformed into the following
differential equations with constant coefficients,

dzl’n4 d2m3
T +my =0 and Ve +m3 =0, ©)

respectively [5]. Then, the general solutions of the differential equations (9) are

my =Acos | [ pksdt ) + Bsin <f0(p pk3dt) ,
(10)
my = Ccos jb(p pkadt | + Dsin (fO(P pk3dt> .

respectively, where A, B, C and D are real constants. Substituting (10) into (7), we obtain A = —D, B = C, and so, the set
of the solutions of the system (7), in the form

my = c¢ = const., my =0,
m3 = Acos [} pkadt + Bsin [} pksdt, (11)
my = Bcos fo(p pksdt — Asin fo(p pkadr.

Thus the equation (1) is described and since d* = ||a* — «t||?> = const., from (11) the breadth of the curve is
d* =+ A+ B

Now, let us return to the system (6) with m; = 0. By changing the variable ¢ of the form u = [ u(t)dt, u = pks and
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eliminating mj, my, my and their derivatives we have the linear differential equation

d*ms d ky
: =——(—mp). 12
a2 = g™ (12)
which has the following solution
¢ "¢ P
m3 =A; cos/ pksdt + By sin/ pkadt — / cos[u(@) —u(t)|pkaf(t)dr. (13)
0 Jo Jo

Then, the general solution of the system (6) is

nmyp = O7
my = f(), (14)
m3 = Ajcos fo(p pkadt + By sin fo(p phkadt — fo(p cos[u(@) — u(t)|pkaf(¢)dt,
my = By cos fo(p pkadr — Ay sin fo(p pksdt + fo(p sinfu(@) —u(t)|pky f(t)dt.
which determines the constant breadth curve in (1) where Aj, B; are real constants.
Furthermore, in this case, i.e., m; = 0, from (4) we have the following differential equation
d 1 d 1 d k ko d
{(f>+2f}+2f—o. (15)
do | pksde \ pkado ) k3 ks do
By changing the variable ¢ of the form w = [} pkod@, (15) becomes
d [ky (d*f ks df
Il R eV =22 0. 16
dw [k3 (dw2 +f>} ky dw (16)

which also determines the constant breadth curve in (1).

So far we have dealt with a pair of space curves having parallel tangent in opposite directions at corresponding points.
Now let us consider a simple closed unit speed space curve (C) in E* for which the normal plane of every point P on the
curve meets the curve of a single opposite point Q other than P. Then, we may give the following theorem concerning
the space curves of constant breadth in E*.

Theorem 2. Let (C) be a closed space curve in E* having parallel tangents in opposite directions at the opposite points of
the curve. If the chord joining the opposite points of (C) is a double-normal, then (C) has constant breadth, and conversely,

if (C) is a curve of constant breadth in E* then every normal of (C ) is a double-normal.

Proof. Let the vector d = o* — o = m; T + myN + m3B + m4E be a double-normal of (C) where m, my, m3 and my are the
functions of s , the arc length parameter of the curve. Then we get (d, T*) = —(d, T) = m; =0 . Thus from (2) we have

m
5 +m3—— +my—— =0. 17
It follows that m% + m% + mﬁ = constant , i.e., the breadth of (C) is constant.

Conversely, if ||d||?= m? -+m3 +m3 +m3 = constant then as shown, nm; = 0. This means that d is perpendicular to T and
T*. So, d is the double-normal of (C).

A simple closed curve having parallel tangents in opposite directions at opposite points may be represented by the
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system (14). In this case a pair of opposite points of the curve is (a*(¢), (¢)) for ¢ , where 0 < ¢ < 2. Since (C) is a
simple closed curve we get @*(0) = a*(2x). Hence from (14) we have

2
pksdt =2nm, (n€Z). (18)

Using the equality ds = pd @, this formula may be given as [ k3ds = 2nm,
(n € Z). This says that the integral third curvature of (C) is zero. So, we can give the following corollary.

Corollary 1. The total third curvature of a simple closed curve (C) of constant breadth is 2nw, n € 7.

Furthermore, if we take % = a = constant, then from (16) we have

&>f 4

. 1
dw3 dw 0 (19)

where K = 1+ a% . If we assume K # +1 , the general solution of (19) is

¢ ¢
£ = Aysin / Kpkadi + B cos / Kpkadi +C). (20)
0 0
where A,, By and C are real constants. Since (C) is a simple closed curve, i.e., a*(0) = a*(2x), from (20) it follows,
¢
/ Kpkadt = 207, (n€ 7). @1
0

Using the equality ds = pd ¢, this formula may be given as [-kds =2%m, (K,n € Z). This says that the integral second
curvature of (C) is 2gx, (K,n € Z). So, we can give the following corollary.

Corollary 2. The total second curvature of a simple closed curve (C) of constant breadth with a = ky/ks = constant is
2%77:, where n € Z and K = 1—1—;—2.

3 A criterion for curves of constant breadth in E4

Let us assume that (C) is a curve of constant breadth in E* and o(s) denotes the position vector of a generic point of the
curve. If (C) is a closed curve, the position vector o(s) must be a periodic function of period ® = 27, where © is the
total length of (C). Then the curvatures & (s), k2(s) and k3(s) are also periodic of the same period. However, periodicity
of the curvatures and closeness of the curve are not sufficient to guarantee that a space curve is a constant breadth curve
in E*. That is, if a curve is closed curve (periodic), it may be the curve of constant breadth or not. Therefore, to guarantee
that a curve is a constant breadth curve, we may use the system (7) characterizing a curve of constant breadth and follow
the similar way given in [6].

For this purpose, first let us consider the following Frenet formulas at a generic point on the curve (C),

dB dE
g = kN, E =—k|T+ kB, E = —k)N+k3E, E = —k3B. (22)

Writing the formulas (22) in terms of ¢ and allowing for i—s =k = % we have

dT _ dN

dB dE
% =N, =—-T+pkyB,— = —pkyN+ pksE, — = —pk3B. (23)

de de de
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Furthermore we can write the Frenet vectors T, N, B, E in the coordinate forms as follows

4 4 4 4
T=) tie;N=Y nie, B=) biei, E=) gie;. (24)
i=1 =1 =1 =1

Since {T,N,B,E} is the orthonormal base in Ef, putting (24) and their derivatives into (23), we have the systems of
linear differential equations

l;tql):nla thz,_”lb Z%_nm %ZM
dn' = —11 + pkaby, d"2 = —t) + pkaba, dn3 = —t3+ pkybs, %‘ = —t4+ pkoby (25)
dh' = pkse| — pkony, bz = pk3&; — pkana, 3 b3 = pks&s — pkons, h4 = pksey — pkony
‘2‘2 = —pksby, dgz = —pk3by, d& = —pk3bs, d£4 = —pk3bs.
From (25), we find that {t;,n1,b1, €1}, {t2,n2,b2,&}, {t3,n3,b3,€3} and
{t4,n4,b4, €4} are four independent solutions of the following system of differential equations:
aw ayn dys dys
=V, = Vi1 +pkys, —— = pk3ys — pkoyr, —— = —pk3y;. (26)
o do do do

If the curve (C) is the curve of constant breadth, then the systems (7) and (26) must be the same system. So, we observe
that Y1 = my, Y = my, W3 = m3, Yg = my. For brevity, we can write (7) or (26) in the form

dy

=A . 27
o (P)y (27)
where
my 0 1 0 0
| m |1 0 pkp O
my 0 0 —pk3 0

Obviously, (27) is a special case of the general linear differential equations abbreviated to the form

X =A@y,

my apy app -+ aiy

ny ay| ay - a (28)
o=| . |Aa0=| T | .@4<n.

my apl aAp2 ** Apn

where ;;(t) are assumed to be continuous and periodic of period @ (See [6,17]). Let the initial conditions be y;(0) = x;,
(i=1,2,...,n). Let us take x = [xl, X2, .o xn]T and

y(t,x) = [ml(t,x) my(t,x) ... mn(t,x)]T

Then the equation (28) may be written in the form d‘;’ =A(t)y, y(0) = x as is well known from [6], the solution y/(z,x)
of this equation is periodic of period w , if

| 4w naz —o

(© 2016 BISKA Bilisim Technology



NTMSCI 4, No. 1, 214-222 (2016) / www.ntmsci.com BISKA 20

and
y(t,x) ={E+M(t)}x, (E = unit matrix),

M(t) = IA(t) + IDA() + ... - TA@) + ..,

(29)
(1A)(0) = 1DA(1) = [yA(§)dE,
(IMA) (1) = [yAE) I DAY (E)dE, n> 1.
Furthermore, the following theorem is given in [6]:
Theorem 3. The equations %’ = A(t) W possess a non-vanishing periodic solution of period @ , if and only if det(M(®)) =

%’ = A(r) W possess linearly independent periodic solutions of period @ , the

necessary and sufficient condition is that M(®) be a zero matrix.

0. In particular, in order that the equations

Now, let us apply this theorem to the system (27). If M(®) = 0, there exist the unit vector functions T, N, B, E of period
o , such that each set of functions {#;,n;,b;,&}, (i =1,2,3,4) form a solution of the equation (27) corresponding to the
initial conditions (A;, B;,C;, D;). The curve (C) can be described as follows

ats)= [[T)as or ale)= [ poIT(pNilo)

Here, to find T , we can make use of the equation

t A;
nj Bi .
—gemio | B | =123, 30)
b; C;
& D;

which is established by (29). If we take the initial conditions as #;(0) = A;, n;(0) = B;, b;(0) = C;, €(0) = D;, (i=1,2,3,4)
such that (A;,A2,A3,A4), (B1,B2,B3,Bs), (C,C2,C3,Cs), (D1,D2,D3,Dy4) form an orthonormal frame, then from (30)
we obtain

ti = (14+mi1)A; +mpBi+mi3Ci+misDi; (i=1,2,3,4). (31

When the curve (C) is a curve of constant breadth, which is also periodic of period w , it is clear that

[0

/ ptidg —0. (32)
Jo

Hence, form (31) and (32), we have

(0] (0] (0] (0]
A,'/O p(l+m”)d(p+B1/0 pmlzd(p+Ci/() pml3d(p+D,‘/O pmigdo =0; (i= 1,2,3,4)
Since the coefficient determinant A # 0 in this system, we obtain the equalities
[0 w w [0)
/O p(14+my)de=0= /0 pmppd@ = /0 pmpzd@Q = /o pmiad@. (33)

which are the conditions for a curve to be constant breadth curve in E*. Here, we can take the period @ = 27 because of
0 < ¢ <2m . Thus we establish the following corollary.

Corollary 3. Let (C) be a regular curve in E* such that p(¢) > 0, k2(¢) and k3 (@) are continuous periodic functions of
period @. Then (C) is a curve of constant breadth, and also periodic of period , if and only if

(0] (0] w w
M(w) =0, /0 p(1+m11)d<p=0:/0 Pled‘P:/O pm13dgo:/0 pmiado. (34)
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holds, where
M(t) = IA() + 1PA() + ... + TWA(r) + ..,

~1 0 pk O (35)

and m;;(t) are the entries of the matrix M(r).

By means of (29) and (35), the matrix M(¢) can be constructed and each m;; involves infinitely many integrations. Hence,
we can write the conditions (34) in the following forms:

I$p(@)do — [ [5 [ p(@)dsdidp+ [ I3 7 [ I3 p(9)[1+ A(p)A(s)|didsdrdpd e — ... = 0

10 Jo p(@)dtde — [ [§" [o Jo p(@)[1+A(t)A(s)]dtdsdrde + ... = 0

T2 S s p(@)A()drdsde— [ [ I o J3 p(@) A1)+ A(p){A(A(s) + () (s)}dedsdrdpd @+ ... = O

TS TS IS p(@)A(s)(o)dedsdrde — [ 3 [ I8 f5 J3 p(@)A(PI()[1+ A()A(s) + () (s)|dedsdpd pdep + .. = 0.

where 4(¢) = p(6)k2(&), u(§) = p(E)ks(S).

Example 1. Let us consider the special case p = const., ko = const. and k3 = const. In this case, from (33), we have

(36)

®— 9+ (14+pK3) 2 —e(1+p23)2 % ... =0
S = (1+p%3) % + (149234 — .. =0 a7
o[ 28 — (14023 + pK2) 2 + (14 p2K3 + p22)2 2 — . ] =0
kaks[ 25 — (14 p23 4+ p%k3) 2 +..] =0
or
P23 (1+ p2k3) 2 @+ sin[(1+ p2k3) 2 0] =0,
cos[(1+p22) i) =1 or (1+p*K3)2w=2kn, ke Z .

kal(1+p*K3 +p*3) 2 @ —sin{(1 + p2kE + p2k3) 2 0] = 0,
kaks[—1 4 (14 23 + p2k3) & +cos|(1+ p2k3 + p2k3) * 0]] = 0.

where @ = 2km. It is seen that all of the equalities (37) or (38) are satisfied simultaneously, if and only if pk, = 0,
pk3 =0 that is, p = const. > 0 and ky, k3 = 0. Therefore, only ones with p = const. > 0 and k2, k3 = 0 of the curves with
and are curves of constant breadth, which are circles in E*.

Now let us construct the relation characterizing these circles. Since pk;, pks = 0 system (7) becomes
! ! ! /
my =my, my =—my, my =0, my=0. (39)
From (39), the equations with the unknowns m;, m; and mj3 can be written as follows
n n I !
m1+m1:0, m2+m2:0, I’I’L:*":O7 m4:0. (40)

The general solution of (40) is
my = Az cos(@) + B3 sin(@),
my = Cycos(@) + Dy sin(¢),

m3 =Ly,

(41)

my =1Lyp.

(© 2016 BISKA Bilisim Technology
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where A3, B3, C2, Dy, L and L, are arbitrary constants. Replacing (41) into (39), we have A3 = —Dj, B3 = C; and thus
we get
{m1 =Aj3 COS((p) + B3 sin((p), my = B3 COS((p) — A3z sin((p)7m3 =Ly, my= Lz}. 42)

which is the solution set of the system (40). Consequently, replacing (42) into (1), we obtain the equation
o (@) = a(@)+ (Azcos(@) + Bz sin(@))T + (Bzcos(¢) — Az sin(¢))N+ LB+ LE.

which represents the circles with the diameter d = ||@* — ot|| = (A3 + B3 + L3 +L3) 2. In this case, a pair of opposite points
of the curve is (a* (@), a(¢)) for ¢ in 0 < ¢ <2m.

4 Conclusion

In the characterizations and determinations of the special curves and curve pair, the differential equations have an
important role. A differential equation or a system of differential equations with respect to the curvatures can determinate
the special curves or curve pairs. In this paper, the differential equations characterizing the curves of constant breadth in
E* are studied. Furthermore, a criterion for a space curve to be the curve of constant breadth in E*is given.
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