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Abstract: In this paper, a numerical solution of the Rosenau-Korteweg-de Vries (Rosenau-KdV) equation, based on subdomain method
using sextic B-spline is utilized to simulate the motion of single solitary wave. The two invariants of the motion are worked out to define
the conservation properties. L2 and L∞ error norms are used to measure differences between the analytical and numerical solutions.
Applying the von-Neumann stability analysis, the proposed method is illustrated to be unconditionally stable. The method is applied on
three test examples, and the computed numerical solutions are in good agreement with the result available in literature as well as with
exact solutions. The numerical results depict that the scheme is efficient and feasible.
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1 Introduction

Special forms of water waves known as dispersive shallow water waves are receiving quite a bit of attention during the

past few years [1,2,3,4,5,6,7,8,9,10]. Some of these models are Rosenau-KdV equation, Rosenau-Kawahara equation

and Rosenau-KdV-RLW equation. In these few models, it is the dispersion that dominates but nevertheless maintains a

delicate balance with nonlinearity which ensures the propagation of dispersive solitary waves. Thus far, there are many

analytical results that are reported in this context. This paper will change its focus and gear towards numerical

simulations of the model so that the model can be analyzed from a different perspective.

The Korteweg-de Vries equation is the milestone of the nonlinear science derived by Korteweg and de Vries as the

following [11,2,13,14,15,16]:

Ut +UUx +Uxxx = 0. (1)

Eq. (1) is a fundamental mathematical model to describe of weakly nonlinear long wave propagation in dispersive media.

The equation is an significant partial differential equation which arises in the study of many physical phenomena. In the

study of the dynamics of dense discrete systems, the case of wave-wave and wave-wall interactions can not be described

using the well-known KdV equation. Philip Rosenau developed a formulation to treat the dynamics of dense discrete

systems to get over this deficiency of the KdV equation [17,18]. Rosenau equation is stated by

Ut +Uxxxxt +Ux +UUx = 0. (2)
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On the numerical solutions of the Eq. (2), many studies have been performed by the scholars [19,20,21,22,23]. Then, for

the further consideration of the nonlinear wave, Jin-Ming Zuo developed the following so-called Rosenau-KdV equation

and discussed the solitary wave solutions and periodic solutions of its with the sine-cosine and the tanh methods in

Ref.[24]

Ut +Uxxxxt +Ux +UUx +Uxxx = 0, (3)

where Uxxx is the viscous term and subscripts x and t denote differentiation. Recently, the solitary solutions were

examined for the generalized Rosenau-KdV eqaution [25,26,27]. Two invariants were given for the equation in [25,26].

Especially, in Ref. [26] both the singular single soliton solution is derived by the ansatz method and the perturbation

theory is applied to obtain the adiabatic parameter dynamics of the water waves. The ansatz method is carried out to

obtain the topological soliton (shock) solution of the generalized Rosenau-KdV equation [27]. The G′/G expansion,

ansatz and the exp-function methods are implemented to achieve several solutions to the equation [28]. A conservative

three-level linear finite difference scheme for the numerical solution of the initial-bounday value problem of the

Rosenau-KdV equatin is suggested [29]. A mathematical model to obtain the solution of the nonlinear wave by coupling

the Rosenau–KdV equation and the Rosenau–RLW equation is proposed. A numerical tool is applied to the model by

using a three-level average implicit finite difference technique. The fundamental conservative properties of the equation

are preserved by the presented numerical scheme, and the existence and uniqueness of the numerical solution are proved

[30].

In the present paper, a numerical scheme based on the sextic B-spline subdomain method has been set up for solving the

Rosenau-KdV equation with a variant of both initial and boundary conditions. This work is set out as the following. In

Section 2, sextic B-spline subdomain scheme is presented. In Section 3, stability analysis of the scheme is considered. In

Section 4, numerical examples and results of the equation are obtained. Finally in Section 5, a summary is given at the

end of the paper.

2 Sextic B-spline subdomain finite element method

Consider the Rosenau-KdV Eq. (3) is given by the following initial and boundary conditions:

U(x,0) = f (x) a ≤ x ≤ b, (4)

U(a, t) = 0, U(b, t) = 0,

Ux(a, t) = 0, Ux(b, t) = 0,

Uxx(a, t) = 0, Uxx(b, t) = 0, t > 0.

(5)

The interval [a,b] is divided by uniformly sized finite elements of equal length h by the knots xm like that

a = x0 < x1 · · · < xN = b. Let ϕm(x) be sextic B-splines with knots at the points xm,m = 0,1, ...,N. The set of splines

{ϕ−3,ϕ−2, . . . ,ϕN+1,ϕN+2} forms a basis for functions determined over [a,b]. So a global approximation UN(x, t) to the

exact solution U(x, t) can be stated in accordance with the sextic B-splines as:

UN(x, t) =
N+2

∑
m=−3

δm(t)ϕm(x), (6)

c⃝ 2016 BISKA Bilisim Technology



NTMSCI 4, No. 1, 223-235 (2016) / www.ntmsci.com 225

where δm are time dependent quantities to be determined from both boundary and weighted residual conditions. Each

sextic B-spline covers seven elements so that each element [xm,xm+1] is covered by seven splines. Sextic B-splines ϕm(x),

(m =−3(1)N+2), at the knots xm which form a basis over the interval [a,b] are determined by the relationships Ref.[31];

ϕm(x) =
1
h6



(x− xm−3)
6, x ∈ [xm−3,xm−2],

(x− xm−3)
6 −7(x− xm−2)

6, x ∈ [xm−2,xm−1],

(x− xm−3)
6 −7(x− xm−2)

6 +21(x− xm−1)
6, x ∈ [xm−1,xm],

(x− xm−3)
6 −7(x− xm−2)

6 +21(x− xm−1)
6 −35(x− xm)

6, x ∈ [xm,xm+1],

(x− xm+4)
6 −7(x− xm+3)

6 +21(x− xm+2)
6, x ∈ [xm+1,xm+2],

(x− xm+4)
6 −7(x− xm+3)

6, x ∈ [xm+2,xm+3],

(x− xm+4)
6, x ∈ [xm+3,xm+4],

0, otherwise,

(7)

where h = (xm+1 − xm). Using (6) and (7), the nodal values U and its first, second and third derivatives at the knots xm

are obtained as the following:

Um =U(xm) = δm−3 +57δm−2 +302δm−1 +302δm +57δm+1 +δm+2,

U ′
m =U ′(xm) =

6
h (−δm−3 −25δm−2 −40δm−1 +40δm+25δm+1 +δm+2),

U
′′
m =U

′′
(xm) =

30
h2 (δm−3 +9δm−2 −10δm−1 −10δm +9δm+1 +δm+2),

U
′′′
m =U

′′′
(xm) =

120
h3 (−δm−3 −δm−2 +8δm−1 −8δm +δm+1 +δm+2).

(8)

A typical finite interval [xm,xm+1] is turned into the interval [0,1] by local coordinates ξ regarding the global coordinates

hξ = x− xm, 0 ≤ ξ ≤ 1, (9)

so the sextic B-spline shape functions over the element [0,1] can be defined as

ϕ e = (ϕm−3,ϕm−2,ϕm−1,ϕm,ϕm+1,ϕm+2,ϕm+3),

ϕ e =



ϕm−3 = 1−6ξ +15ξ 2 −20ξ 3 +15ξ 4 −6ξ 5 +ξ 6,

ϕm−2 = 57−150ξ +135ξ 2 −20ξ 3 −45ξ 4 +30ξ 5 −6ξ 6,

ϕm−1 = 302−240ξ −150ξ 2 +160ξ 3 +30ξ 4 −60ξ 5 +15ξ 6,

ϕm = 302+240ξ −150ξ 2 −160ξ 3 +30ξ 4 +60ξ 5 −20ξ 6,

ϕm+1 = 57+150ξ +135ξ 2 +20ξ 3 −45ξ 4 −30ξ 5 +156ξ 6,

ϕm+2 = 1+6ξ +15ξ 2 +20ξ 3 +15ξ 4 +6ξ 5 −6ξ 6,

ϕm+3 = ξ 6.

(10)

Since all splines other than ϕm−3(x),ϕm−2(x),ϕm−1(x),ϕm(x),ϕm+1(x),ϕm+2(x),ϕm+3(x) are zero over the element [0,1].

Approximation (7) over this element can be noted down in terms of basis functions (10) as

UN(ξ , t) =
m+3

∑
j=m−3

δ j(t)ϕ j(ξ ), (11)

where δm−3,δm−2,δm−1,δm,δm+1,δm+2,δm+3 act as element parameters and B-splines

ϕm−3(x),ϕm−2(x),ϕm−1(x),ϕm(x),ϕm+1(x),ϕm+2(x) and ϕm+3(x) as element shape functions. Application of subdomain
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method to the Eq. (3) with weight function

Wm(x) =

{
1, x ∈ [xm,xm+1],

0, otherwise,
(12)

creates the weak form ∫ xm+1

xm

1.(Ut +Uxxxxt +Ux +UUx +Uxxx)dx = 0. (13)

Substituting the transformation (10) into weak form (13) and integrating Eq. (13) term by term with some manipulation

by parts, brings on

h
7 (δ̇m−3 +120δ̇m−2 +1191δ̇m−1 +2416δ̇m +1191δ̇m+1 +120δ̇m+2 + δ̇m+3)

+ 120
h3 (δ̇m−3 −9δ̇m−1 +16δ̇m −9δ̇m+1 + δ̇m+3)

+(−δm−3 −56δm−2 −245δm−1 +245δm+1 +56δm+2 +δm+3)

+Zm(−δm−3 −56δm−2 −245δm−1 +245δm+1 +56δm+2 +δm+3)

+ 30
h2 (−δm−3 −8δm−2 +19δm−1 −19δm+1 +8δm+2 +δm+3) = 0,

where the dot indicates differentiation with respect to t and

Zm = δm−3 +57δm−2 +302δm−1 +302δm +57δm+1 +δm+2. (14)

If time parameters δm and its time derivatives δ̇m in Eq. (13) are discretized by the Crank-Nicolson and forward difference

approach respectively,

δ =
δ n

m +δ n+1
m

2
, δ̇m =

δ n+1
m −δ n

m

∆ t
, (15)

we obtain a recurrence relationship between two time levels n and n+ 1 relating two unknown parameters δ n+1
i ,δ n

i ,

i = m−3,m−2, . . . ,m+3,

αm1δ n+1
m−3 +αm2δ n+1

m−2 +αm3δ n+1
m−1 +αm4δ n+1

m +αm5δ n+1
m+1 +αm6δ n+1

m+2 +αm7δ n+1
m+3 =

αm7δ n
m−3 +αm6δ n

m−2 +αm5δ n
m−1 +αm4δ n

m +αm3δ n
m+1 +αm2δ n

m+2 +αm1δ n
m+3,

(16)

where
αm1 = 1−E(1+Zm)−M+K, αm2 = 120−56E(1+Zm)−8M,

αm3 = 1191−245E(1+Zm)+19M−9K, αm4 = 2416+16K,

αm5 = 1191+245E(1+Zm)−19M−9K, αm6 = 120+56E(1+Zm)+8M,

αm7 = 1+E(1+Zm)+M+K, m = 0,1, . . . ,N −1,

and

E =
7∆ t
2h

, M =
105∆ t

h3 , K =
840
h4 . (17)

The system (16) consists of N linear equation in N + 6 unknowns (δ−3,δ−2, . . . ,δN+1,δN+2). To get a solution of this

system, we need six additional constraints. These are obtained from the boundary conditions (5). These conditions provide

us elimination of the parameters δ−3,δ−2,δ−1,δN ,δN+1 and δN+2 from the system (16) which then becomes a matrix

equation for the N unknowns d = (δ0,δ1, . . . ,δN−1) of the form

Adn+1 = Bdn. (18)
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A lumped value for Zm is obtained from (Um +Um+1)/2 as

Zm =
1
2
(δ n

m−3 +58δ n
m−2 +359δm−1 +604δ n

m +359δ n
m+1 +58δ n

m+2 +δ n
m+3). (19)

The resulting system can be effectively solved with a variant of the Thomas algorithm, and we need an inner iteration

δ n∗ = δ n + 1
2 (δ

n − δ n−1) at each time step to cope with the non-linear term Zm. A typical member of the matrix system

(16) can be written in terms of the nodal parameters δ n
m as

γ1δ n+1
m−3 + γ2δ n+1

m−2 + γ3δ n+1
m−1 + γ4 + γ5δ n+1

m+1 + γ6δ n+1
m+2 + γ7δ n+1

m+3 =

γ7δ n
m−3 + γ6δ n

m−2 + γ5δ n
m−1 + γ4 + γ3δ n

m+1 + γ2δ n
m+2 + γ1δ n

m+3,
(20)

where
γ1 = α −β −λ +µ , γ2 = 120α −56β −8λ ,
γ3 = 1191α −245β +19λ −9µ , γ4 = 2416α +16µ,
γ5 = 1191α +245β −19λ −9µ , γ6 = 120α +56β +8λ ,
γ7 = α +β +λ +µ ,

and

α = 1, β = E(1+Zm), λ = M, µ = K m = 0,1, . . . ,N −1. (21)

To start the iteration relation system equation (15), initial parameters must be determined by the aid of initial condition

and six boundary conditions as the following:

UN(xm,0) =δ 0
m−3 +57δ 0

m−2 +302δ 0
m−1 +302δ 0

m +57δ 0
m+1 +δ 0

m+2 =U(xm,0),

U
′
N(a,0) =−δ 0

−3 −25δ 0
−2 −40δ 0

−1 +40δ 0
0 +25δ 0

1 +δ 0
2 = 0,

U
′′
N(a,0) =δ 0

−3 +9δ 0
−2 −10δ 0

−1 −10δ 0
0 +9δ 0

1 +δ 0
2 = 0,

U
′′′
N (a,0) =−δ 0

−3 −δ 0
−2 +8δ 0

−1 −8δ 0
0 +δ 0

1 +δ 0
2 = 0,

U
′
N(b,0) =−δ 0

N−3 −25δ 0
N−2 −40δ 0

N−1 +40δ 0
N +25δ 0

N+1 +δ 0
N+2 = 0,

U
′′
N(b,0) =δ 0

N−3 +9δ 0
N−2 −10δ 0

N−1 −10δ 0
N +9δ 0

N+1 +δ 0
N+2 = 0,

U
′′′
N (b,0) =−δ 0

N−3 −δ 0
N−2 +8δ 0

N−1 −8δ 0
N +δ 0

N+1 +δ 0
N+2 = 0.

Eliminating δ 0
−3,δ

0
−2,δ

0
−1,δ

0
N ,δ 0

N+1,δ
0
N+2 from the system (16) we get N ×N matrix system of the form

Wδ 0 = B, (22)

where W is

W=



384 312 24
2681

9 358 568
9 1

512
9 303 2719

9 57 1

1 57 302 302 57 1

1 57 2719
9 303 512

9

1 568
9 358 2681

9

24 312 384


,
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δ 0 = [δ 0
0 ,δ

0
1 , . . . ,δ

0
N−1]

T and B = [U(x0,0),U(x1,0), . . . ,U(xN−1,0)]T . This matrix system can be solved effectively by

using a variant of Thomas algorithm.

3 Stability analysis

The stability analysis is based on the von-Neumann theory in which the growth factor of a typical Fourier mode

δ n
j = ξ nei jkh, (23)

where k is mode number and h is the element size, is determined for a linearization of the numerical scheme. To carry out

the stability analysis, the Rosenau-KdV equation needs to be linearized by supposing that the quantity U in the non-linear

term UUx is locally constant. Substituting the equation (23) into the scheme (20) we have

ξ =
a− ib
a+ ib

, (24)

where
a = (1208+8µ)+(1191−9µ)cos(kh)+120cos(2kh)+(1+µ)cos(3kh),

b = (245β −19λ )sin(kh)+(56β +8λ )sin(2kh)+(β +λ )sin(3kh).
(25)

Taking the modulus of equation (24) gives |ξ |= 1, hence we find that the scheme (20) is unconditionally stable.

4 Numerical examples and results

In this section, we consider the motion of single solitary wave and three test examples. Accuracy and efficiency of the

method is measured by the error norm L2

L2 =
∥∥Uexact −UN

∥∥
2 ≃

√
h

N

∑
J=1

∣∣∣Uexact
j − (UN) j

∣∣∣2, (26)

and the error norm L∞

L∞ =
∥∥Uexact −UN

∥∥
∞ ≃ max

j

∣∣∣Uexact
j − (UN) j

∣∣∣ , j = 1,2, ...,N −1. (27)

Rosenau-KdV equation satisfies only two conservation laws given by Ref.[25]

I1 =
∫ b

a Udx ≃ h∑N
J=1 Un

j ,

I2 =
∫ b

a [U
2 +(Uxx)

2
]dx ≃ h∑N

J=1[(U
n
j )

2 +(Uxx)
n
j ].

(28)

In the simulation of solitary wave motion, the invariants I1 and I2 are monitored to check the conversation of the numerical

algorithm.

4.1 The motion of single solitary wave

For this problem, we consider solitary wave solution of Eq. (3) with the boundary conditions U → 0 as x →±∞ and the

initial condition

U(x,0) = (−35
24

+
35
312

√
313)sech4(

1
24

√
−26+2

√
313x). (29)
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Table 1: Comparison of the results for single solitary wave with amplitude = 0.52632, h = 0.1, ∆ t = 0.1,−70 ≤ x ≤ 100.

t 0 10 20 30 40
I1 Present 5.4981750556 5.4981749939 5.4981749598 5.4981749423 5.4981749335

[29] 5.4977225480 5.4977249365 5.4977287449 5.4977319638 5.4977342352
I2 Present 1.9897841614 1.9897841614 1.9897841614 1.9897841614 1.9897841614

[29] 1.9845533653 1.9845950759 1.9846459641 1.9846798272 1.9847015013
L2 ×103 Present 0.000000 0.356724 0.646705 0.902514 1.162489

[29] 0.000000 1.641934 3.045414 4.241827 5.297873
[30] - - 0.657830 - -
[30] - - 0.443965 - -

L∞ ×103 Present 0.000000 0.141639 0.244374 0.326169 0.411492
[29] 0.000000 0.631419 1.131442 1.533771 1.878952
[30] - - 0.254116 - -
[30] - - 0.123727 - -

Note that the analytical solution of this problem can be written as

U(x, t) = (−35
24

+
35
312

√
313)sech4[

1
24

√
−26+2

√
313

(
x−

(
1
2
+

1
26

√
313

)
t
)
. (30)

For the numerical simulation of this problem, three sets of parameters have been chosen and discussed. Firstly, we have

used the parameters space step h = 0.1 and time step ∆ t = 0.1 over the problem domain [−70,100] to coincide with those

of earlier results [29,30]. So, the solitary wave has an amplitude 0.52632 and the run of the algorithm is carried up to time

t = 40 to obtain the invariants and error norms L2 and L∞ at various times. Error norms L2, L∞ and two invariants of the

Rosenau-KdV equation are listed in Table 1. It is seen from the table that the error norms are found to be small enough.

The percentage of the relative error of the conserved quantities I1 and I2 are calculated with respect to the conserved

quantities at t = 0. Percentage of relative changes of I1 and I2 are found to be 2.2211×10−6 %, 6×10−10 %, respectively.

Thus, the invariants remain almost constant during the computer run. Also, Table 1 exhibits a comparison of the values

of the invariants and error norms obtained by the present method with those obtained by earlier results [29,30]. It can be

seen from the Table 1 that the error norms obtained by the present method are smaller than given in Ref.[29] and almost

the same in Ref.[30] at t = 20. Figure 1 shows the motion of solitary wave with h = 0.1 and ∆ t = 0.1 at different time

levels. It is observed that the soliton moves to the right at a constant speed and preserves its amplitude and shape with an

increasing of time, as expected. The distributions of the errors at time t = 40 are illustrated for solitary waves amplitudes

0.52632 in Figure 2.

For the second set, the parameters h = 0.05 and ∆ t = 0.05 with range [−70,100] are taken to compare the results obtained

by the present method with earlier results [29,30]. So, the solitary wave has amplitude 0.52632 and the simulations are

run up to time t = 40 to obtain the invariants and the error norms L2 and L∞ at various times. Error norms L2 and L∞

and conserved quantities are reported in Table 2 together with earlier results [29,30]. It can be easily seen from the table

that the error norms obtained by the present method are smaller than given in Ref.[29] and almost the same in Ref.[30]

at t = 20. The agreement between numerical and analytic solution is excellent. Percentage of relative changes of I1 and

I2 are found to be 9.171× 10−7 %, 1.4× 10−9 %, respectively. The profiles of the solitary wave at some discrete times

are shown in Figure 3. The distributions of the errors at time t = 40 are drawn for solitary waves amplitudes 0.52632 in

Figure 4.
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Fig. 1: Single solitary wave with h = 0.1, ∆ t = 0.1, −70 ≤ x ≤ 100, t = 0,20 and 40.

Fig. 2: Error h = 0.1, ∆ t = 0.1, −70 ≤ x ≤ 100, t = 40.
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Fig. 3: Single solitary wave with h = 0.05, ∆ t = 0.05, −70 ≤ x ≤ 100, t = 0,20 and 40.

Fig. 4: Error h = 0.05, ∆ t = 0.05, −70 ≤ x ≤ 100, t = 40.
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Table 2: Comparison of the results for single solitary wave with amplitude= 0.52632, h = 0.05, ∆ t = 0.05, −70 ≤ x ≤
100.

t 0 10 20 30 40
I1 Present 5.4981692134 5.4981691962 5.4981691829 5.4981691736 5.4981691629

[29] 5.4980606845 5.4980608372 5.4980610805 5.4980612870 5.4980613985
I2 Present 1.9897831853 1.9897831854 1.9897831852 1.9897831856 1.9897831853

[29] 1.9843901753 1.9844010295 1.9844143675 1.9844232703 1.9844289740
L2 ×104 Present 0.000000 0.854386 1.779040 2.810186 3.783328

[29] 0.000000 4.113510 7.631169 10.62971 13.27645
[30] - - 1.64418 - -
[30] - - 1.10984 - -

L∞ ×104 Present 0.000000 0.343706 0.627075 0.975412 1.293116
[29] 0.000000 1.582641 2.835874 3.843906 4.709118
[30] - - 0.635011 - -
[30] - - 0.309342 - -

Table 3: Comparison of the results for single solitary wave with amplitude= 0.52632, h = 0.025, ∆ t = 0.025,−70 ≤ x ≤
100.

t 0 10 20 30 40
I1 Present 5.4981698357 5.4981697751 5.4981697199 5.4981696708 5.4981696247

[29] 5.4981454184 5.4981454791 5.4981455454 5.498146095 5.4981456591
I2 Present 1.9897809061 1.9897809063 1.9897809028 1.9897808998 1.9897808987

[29] 1.9849493353 1.9843521098 1.9843555206 1.9843578113 1.9843592922
L2 ×104 Present 0.000000 0.351702 0.916735 1.043479 1.183139

[29] 0.000000 1.028173 1.905450 2.650990 3.306738
[30] - - 0.411082 - -
[30] - - 0.277477 - -

L∞ ×105 Present 0.000000 1.420544 3.258903 4.681364 4.847163
[29] 0.000000 3.965867 7.097948 9.610332 11.76011
[30] - - 1.58769 - -
[30] - - 0.773365 - -

Finally, for the third set, the parameters h = 0.025 and ∆ t = 0.025 with range [−70,100] are chosen to compare the

results obtained by the present method with earlier results [29,30]. So, the solitary wave has amplitude 0.52632 and the

computations are done until time t = 40 to obtain the invariants and the error norms L2 and L∞ at various times. Error

norms L2 and L∞ and conserved quantities are tabulated in Table 3 together with earlier results [29]. It is clearly seen from

the table the error norms obtained by the present method are smaller than given in Ref.[29] and almost te same in Ref.[30]

at t = 20. The agreement between numerical and analytic solutions is perfect. Percentage of relative changes of I1 and I2

are found to be 3.8382× 10−6 %, 3.7× 10−7 %, respectively. It is clear that the soliton moves to the right at a constant

speed and almost unchanged amplitude as time increases, as expected. The profiles of the solitary wave at different time

levels are depicted in Figure 5. The distributions of the errors at time t = 40 are shown graphically for solitary waves

amplitudes 0.52632 in Figure 6.

5 Conclusion

A numerical solution of the Rosenau-KdV equation based on the sextic B-spline subdomain method has been successfully

presented. The performance of the method is examined well by studying the propagation of a single solitary wave. The
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Fig. 5: Single solitary wave with h = 0.025, ∆ t = 0.025, −70 ≤ x ≤ 100, t = 0,20 and 40.

Fig. 6: Error h = 0.025, ∆ t = 0.025, −70 ≤ x ≤ 100, t = 40.
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method successfully models for the motion of solitary waves. The nonlinear term of the equation is linearized. A linear

stability analysis based on the von-Neumann theory indicated that the numerical method is unconditionally stable. Three

test examples are studied to examine the performance of the scheme. To show how good and accurate the numerical

solutions of the test examples, the error norms L2 and L∞ and the invariant quantities I1 and I2 have been used. It is

seen that the error norms are sufficiently small and the invariants are well conserved. The obtained small errors for the

solitary wave solution and conservation constants have been kept satisfactorily constant during the computer run. The

obtained results show that the present method is more accurate than earlier results in the literature. The result shows

that subdomain method is powerful mathematical tool for solving nonlinear partial differential equations having wide

applications in physical problem represented by Rosenau-KdV equation.
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