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Abstract: The purpose of this study is to give a Bessel polynomial approximation for the solutions of the hyperchaotic Rössler system.
For this purpose, the Bessel collocation method applied to different problems is developed for the mentioned system. This method is
based on taking the truncated Bessel expansions of the functions in the hyperchaotic Rössler systems. The suggested secheme converts
the problem into a system of nonlinear algebraic equations by means of the matrix operations and collocation points, The accuracy and
efficiency of the proposed approach are demonstrated by numerical applications and performed with the help of a computer code written
in Maple. Also, comparison between our method and the differential transformation method is made with the accuracy of solutions.
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1 Introduction

A variety of physical and engineering phenomena can generally be modeled by chaotic or hyperchaotic systems of

ODEs. Most of these systems do not have precise analytical solution (or a closed form), so approximation and numerical

techniques are needed.

Several authors have used numeric-analytic methods to solve these chaotic systems. Some commonly used techniques

for some chaotic systems are the adomian decomposition method [1-4], the variation iteration method [5-9], the

homotopy analysis method [10], the homotopy perturbation method [11] and the differential transformation method [12].

In addition, Park [13], Plienpanich et. al [14] and Yassen [15,16] worked on chaotic dynamical systems.

In this study, we consider the hyperchaotic Rössler system, was constructed by Rössler [17], which is a

three-dimensional system of differential equations given by:


dx
dt =−y− z, x(0) = γ1
dy
dt = x+ay+w, y(0) = γ2
dz
dt = b+ xz, z(0) = γ3
dw
dt =−cz+dw, w(0) = γ4

(1)

where x, y, z and w are state variables, a, b, c, d and R are positive constants, γ1, γ2 and γ3, γ4 are appropriate constants.
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Lately, Yüzbaşı et.al. [20-22] have worked the Bessel collocation method to solve singular differential equations,

pantograph equations, nonlinear Lan-Emden differential equations and system of linear differential equations.

In this paper, the basic ideas of the above-mentioned studies are developed and applied the hyperchaotic Rössler system

which is a class of nonlinear differential equation systems.

Our aim in this article is to obtain approximate solutions of system (1) expressed in the truncated Bessel series form

x(t) =
N

∑
n=0

a1,nJn(t), y(t) =
N

∑
n=0

a2,nJn(t), z(t) =
N

∑
n=0

a3,nJn(t) and w(t) =
N

∑
n=0

a4,nJn(t) (2)

so that a1,n, a2,n, a3,nand a4,n (n = 0,1,2, ...,N) are the unknown Bessel coefficients and Jn(t), n = 0,1,2, . . . ,N are the

Bessel polynomials of first kind defined by

Jn(t) =
[[N−n

2 ]]

∑
k=0

(−1)k

k!(k+n)!

( t
2

)2k+n
(3)

2 Bessel collocation scheme for the hyperchaotic Rössler system

Firstly, let us consider the approximate solutions x(t), y(t), z(t) and w(t) of system (1) defined by the truncated Bessel

series (3). We can write the functions defined in relation (2) in the matrix forms,

x(t) = J(t)A1, y(t) = J(t)A2, z(t) = J(t)A3 and w(t) = J(t)A4 (4)

where

J(t) =
[

J0(t) J1(t) · · · JN(t)
]
, A1 =

[
a1,0 a1,1 · · · a1,N

]T
, A2 =

[
a2,0 a2,1 · · · a2,N

]T

A3 =
[

a3,0 a3,1 · · · a3,N

]T
and A4 =

[
a4,0 a4,1 · · · a4,N

]T
.

Also, we can show the relations (4) in matrix forms

x(t) = T (t)DT A1, y(t) = T (t)DT A2, z(t) = T (t)DT A3, and w(t) = T (t)DT A4 (5)

so that

T (t) =
[

1 t t2 · · · tN
]

and

if N is odd,
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D =



1
0!0!20 0 −1

1!1!22 · · · (−1)
N−1

2

(N−1
2 )!(N−1

2 )!2N−1 0

0 1
0!1!21 0 · · · 0 (−1)

N−1
2

(N−1
2 )!(N+1

2 )!2N

0 0 1
0!2!22 · · · (−1)

N−3
2

(N−3
2 )!(N+1

2 )!2N−1 0

...
...

...
. . .

...
...

0 0 0 · · · 1
0!(N−1)!2N−1 0

0 0 0 · · · 0 1
0!N!2N


(N+1)×(N+1)

,

if N is even,

D =



1
0!0!20 0 −1

1!1!22 · · · 0 (−1)
N
2

(N
2 )!(N

2 )!2N

0 1
0!1!21 0 · · · (−1)

N−2
2

(N−2
2 )!(N

2 )!2N−1 0

0 0 1
0!2!22 · · · 0 (−1)

N−2
2

(N−2
2 )!(N+2

2 )!2N

...
...

...
. . .

...
...

0 0 0 · · · 1
0!(N−1)!2N−1 0

0 0 0 · · · 0 1
0!N!2N


(N+1)×(N+1)

..

On the other hand, the relation between the matrix T (t) and its derivative T (1)(t) is given by

T (1)(t) = T (t)BT (6)

where B,

BT =



0 1 0 · · · 0

0 0 2 · · · 0
...

...
...

. . .
...

0 0 0 · · · N

0 0 0 · · · 0


.

y help of the relations (5) and (6) , we have the matrix relations

x(1)(t) = T (t)BT DT A1, y(1)(t) = T (t)BT DT A2, z(1)(t) = T (t)BT DT A3 and w(1)(t) = T (t)BT DT A4. (7)

We can express the matrices u(t) and u(1)(t) as follows:

u(t) = T̄ (t)D̄A

so that

u(t) =
[

x(t) y(t) z(t) w(t)
]T

, u(1)(t) =
[

x(1)(t) y(1)(t) z(1)(t) w(1)(t)
]T
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T̄ (t) =


T (t) 0 0 0

0 T (t) 0 0

0 0 T (t) 0

0 0 0 T (t)

 , D̄ =


DT 0 0 0

0 DT 0 0

0 0 DT 0

0 0 0 DT

 , B̄ =


BT 0 0 0

0 BT 0 0

0 0 BT 0

0 0 0 BT

 and A =


A1

A2

A3

A4

 .

Thus, we can indicate the system (1) with the matrix form

u(1)(t)−Pu(t)−Rū(t) = g (8)

where

P =


0 −1 −1 0

1 a 0 1

0 0 0 0

0 0 −c d

, u(t) =


x(t)

y(t)

z(t)

w(t)

, R =


0

0

1

0

, ū(t) = [x(t)z(t)] and g =


0

0

b

0

.

We substitute the collocation points, defined by

ts =
R
N

s (9)

into Eq. (9), and thus, we have the matrix equation system

u(1)(ts)−Pu(ts)−Rū(ts) = g

or briefly the fundamental matrix equation is

U (1)− P̄U − R̄Ū = G (10)

where

U (1) =


u(1)(t0)

u(1)(t1)
...

u(1)(tN)

, P̄ =


P 0 · · · 0

0 P · · · 0
...

...
. . .

...

0 0 · · · P


(N+1)×(N+1)

, U =


u(t0)

u(t1)
...

u(tN)

, G =


g

g
...

g


(N+1)×1

,

R̄ =


R 0 · · · 0

0 R · · · 0
...

...
. . .

...

0 0 · · · R


(N+1)×(N+1)

and Ū =


ū(t0)

ū(t1)
...

ū(tN)

.

By using the relations (8) and the collocation points (10), we obtain recurrence relations

u(ts) = T̄ (ts)D̄A and u(1)(ts) = T̄ (ts)B̄D̄A

which can be written as

U = T D̄A (11)
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where

T =
[

T̄ (t0) T̄ (t1) . . . T̄ (tN)
]T

, T̄ (ts) =


T (ts) 0 0 0

0 T (ts) 0 0

0 0 T (ts) 0

0 0 0 T (ts)

 and s = 0,1, . . . ,N.

By substituting the collocation points (10) into the matrix ū(t) given Eq. (9), we find the matrix form

Ū =


ū(t0)

ū(t1)
...

ū(tN)

=


z(t0)x(t0)

z(t1)x(t1)
...

z(tN)x(tN)

= Z̄X̄ (12)

where

Z̄ = T̃ D̃Ā3 (13)

so that

T̃ =


T (t0) 0 · · · 0

0 T (t1) · · · 0
...

...
. . .

...

0 0 · · · T (tN)

, D̃ =


DT 0 · · · 0

0 DT · · · 0
...

...
. . .

...

0 0 · · · DT


(N+1)×(N+1)

, Ā3 =


A3 0 · · · 0

0 A3 · · · 0
...

...
. . .

...

0 0 · · · A3


(N+1)×(N+1)

, ˜̃T =


T (t0)

T (t1)
...

T (tN)

,

˜̃D =
[

DT Z̃ Z̃ Z̃
]
, Z̃ =


0 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0


(N+1)×(N+1)

and A =


A1

A2

A3

A4

.

When we substitute relations (12)-(14) into Eq. (11), we have fundamental matrix equation

{
T B̄D̄− P̄T D̄− R̄T̃ D̃Ā3̃̃T˜̃D

}
A = G (14)

Briefly, we can write Eq. (15) as

WA = G or [W ;G]; W = T B̄D̄− P̄T D̄− R̄T̃ D̃Ā3̃̃T˜̃D (15)

which corresponds to a system of the 4(N + 1) nonlinear algebraic equations with the unknown Bessel coefficients a1,n,

a2,n, a3,n, a4,n, (n = 0,1,2, ...,N).

By using the relation u(t) given in Eq.(8), the matrix form for conditions given in system (1) can be written as

VA = [γ ] or [V ;γ] (16)

so that

V = T̄ (0)D̄A
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and

γ =


γ1

γ2

γ3

γ4

 .

Lastly, by replacing the rows of the matrix [V ;γ] by two rows of the augmented matrix [W ;G], we have the new augmented

matrix

[W̃ ; G̃] (17)

which is a nonlinear algebraic system. The unknown the Bessel coefficients can be found by solving this system. The

unknown Bessel coefficients ai,0,ai,1, . . . ,ai,N , (i = 1,2,3,4) are substituted in Eq. (5). Thus we obtain the Bessel

polynomial solutions

xN(t) =
N

∑
n=0

a1,nJn(t), yN(t) =
N

∑
n=0

a2,nJn(t), zN(t) =
N

∑
n=0

a3,nJn(t), and wN(t) =
N

∑
n=0

a4,nJn(t).

We can easily check the accuracy of this solutions as follows:

Since the truncated Bessel series (2) are approximate solutions of system (1), when the function xN(t), yN(t), zN(t), wN(t)

and theirs derivatives are substituted in system (1), the resulting equation must be satisfied approximately; that is, for

t = tq ∈ [0,R] q = 0,1,2, . . . 

E1,N(tq) =
∣∣∣x(1)(tq)+ y(tq)+ z(tq)

∣∣∣∼= 0,

E2,N(tq) =
∣∣∣y(1)(tq)− x(tq)−ay(tq)−w(tq)

∣∣∣∼= 0,

E3,N(tq) =
∣∣∣z(1)(tq)−b− x(tq)z(tq)

∣∣∣∼= 0,

E4,N(tq) =
∣∣∣w(1)(tq)+ cz(tq)−dw(tq)

∣∣∣∼= 0

(18)

and Ei,N(tq) ≤ 10−kq , i = 1,2,3 (kq positive integer). If max 10−kq = 10−k (k positive integer) is prescribed, then the

truncation limit N is increased until the difference Ei,N(tq), (i = 1,2,3,4) at each of the points becomes smaller than the

prescribed 10−k, see [20-24].

3 Numerical applications

In this section, we apply the presented method for solutions of the hyperchaotic Rössler system given in Eq.(1). Bessel

collocation algorithm were coded in the computer algebra package Maple. In this application, all the calculations were

made with Digits = 30. We also fix the values of the parameters a = 0.25, b = 3, c = 0.5, d = 0.05, R = 1, and take the

initial conditions x(0) =−20, y(0) = 0, z(0) = 0, w(0) = 15.

By following for N = 5,8,11 the procedure given in Section 2, we obtain the approximate solutions of the non-chaotic

system, respectively, as

x5(t) =−20−7.34344x+36.24520x2 −42.82178x3 +34.61182x4 −11.05533x5,
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y5(t) =−20.63247x−4.47669x2 +6.11875x3 −1.81177x4 + .512261x5,

z5(t) = 15−139.27022x+491.84285x2 −822.48976x3 +655.25642x4 −199.90159x5,

w5(t) =−3.67253x+12.87728x2 −21.95501x3 +17.81419x4 −5.54332x5,

x8(t) =−20−11.40590x+85.37562x2 −278.87712x3 +636.99958x4 −906.28709x5

+783.30501x6 −376.75801x7 +77.27979x8,

y8(t) =−20.27545x−8.09341x2 +23.05418x3 −44.45475x4 +63.39137x5 −54.76511x6

+26.26364x7 −5.37448x8,

z8(t) = 15−228.62169x+1518.61182x2 −5641.84690x3 +12772.34268x4 −18012.49169x5

+15450.62769x6 −7374.29005x7 +1500.88294x8,

w8(t) =−5.70114x+37.45674x2 −140.05004x3 +319.24424x4 −453.57086x5 +392.04308x6

−188.57241x7 +38.67907x8,

x11(t) =−20−13.91372x+132.99998x2 −667.83178x3 +2451.79490x4 −6287.28040x5

+11423.69080x6 −14651.70371x7 +12966.21122x8 −7529.10733x9

+2579.84712x10 −395.07219x11,

y11(t) =−20.08195x−11.58408x2 +51.30291x3 −175.52774x4 +450.58900x5

−818.48071x6 +1049.12062x7 −927.89361x8 +538.49190x9 −184.40921x10

+28.22415x11,

z11(t) = 15−282.00267x+2512.02769x2 −13671.05684x3 +49938.15803x4

−127456.79128x5 +230538.19488x6 −294325.46664x7 +259269.03850x8

−149860.50502x9 +51116.22487x10 −7792.56106x11,

w11(t) =−6.95627x61.29578x2 −334.73483x3 +1227.60749x4 −3146.92250x5

+5717.86806x6 −7333.58839x7 +6489.94832x8 −3768.52571x9 +1291.28416x10

−197.74439x11.

The hyperchaotic Rössler system has been solved by using the differential transformation method (DTM) with the 9-term

in [12]). Figure 1 shows the error functions gained by Eq. (19) for the present method and DTM. It is seen from Figure

1 that that the results obtained by the present method is better than obtained by the DTM. Plots of the error functions

obtained the accuracy of the solution imply the effectiveness of the present method. From Figure 1, we see the errors

decrease as N increases.
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Figure 1. For the examples given above, (a) plot of the error functions obtained with accuracy of the solution xN(t) for

N = 5,8,9,11, (b) plot of the error functions gained with accuracy of the solution yN(t) for N = 5,8,9,11, (c) plot of the

error functions obtained with accuracy of the solution zN(t) for N = 5,8,9,11 and (d) plot of the error functions obtained

with accuracy of the solution wN(t) for N = 5,8,9,11.

4 Conclusions

In this study, we have presented the Bessel collocation method for approximating solutions of the hyperchaotic Rössler

system. We have demonstrated the accuracy and efficiency of the presented technique with an example. For a measure of

confidence in the results, we assured the correctness of the obtained solutions by putting them back into the original system

with the aid of Maple. We compare the error functions obtained by Eq.(19) for the presented method and DTM [12] for

various values ofN in Figure 1. It is seen from Figure 1 that the results obtained by the present method is better than that

obtained by the DTM. Also, it is seen from Figure 1 that the errors decrease as N increases. Plots of the error functions

show that our scheme an accurate and reliable technique for the nonlinear hyperchaotic Rössler systems of ODEs. The

approximate solutions of the system (1) by the suggested method can be found easily in shorter time with the computer

programs such as Matlab, Maple and Mathematica. The computations associated with the example have been performed

on a computer by help of a computer code written in Maple.
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[21] Ş. Yüzbaşı, N. Şahin, M. Sezer, A numerical approach for solving linear differential equation systems, J. Adv. Res. Diff. Equ.

3(3): (2011) 8-32.
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