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Abstract: In this paper, an approximate method based on Bernoulli polynomials has been presented to obtain the solution of
generalized pantograph equations with linear functional arguments. Both initial and boundary value problems have been solved by this
collocation technique. Approximate solution can also be corrected with the residual function. Some numerical examples have been
given to illustrate the reliability and efficiency of the method.
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1 Introduction

Pantograph equations are a kind of functional differential equations, the name of which is originated from the study on
the collection of current by the pantograph head of an electric locomotive [1]. These equations play an important role in
many areas such as economy, biology, astrophysics, control and electrodynamics [1-4]. Properties of the analytic
solution of pantograph equations have been given by several authors [5-11]. A numerical solution of such equations with
high-order has not been studied in detail. In recent years, there has been a growing interest in the numerical solution of
pantograph equations. Taylor methods have been used to find the approximate solutions of difference,
differential-difference, integro-difference and pantograph equations [12-16]. High-order pantograph equations with
initial conditions have been also studied by Taylor method [17], Adomian decomposition method [18], differential
transform method [19] and homotopy perturbation method [20]. Besides, a subdivision approach for second-order
functional differential equations with boundary conditions has been given in [21].

In this study, our purpose is to develop a method based on the Bernoulli polynomials to obtain the solution of the
generalized pantograph equation

y(m)(t)+
J

∑
j=0

m−1

∑
k=0

p jk(t)y(k)(α jt +β j) = f (t), a ≤ t ≤ b (1)

with initial conditions

m−1

∑
k=0

ciky(k)(c) = λi, c ∈ [a,b] (2)
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or boundary conditions

m−1

∑
k=0

aiky(k)(a)+biky(k)(b) = µi, i = 1,2, . . . ,m. (3)

Here p jk(t) and f (t) are known functions defined on the finite interval [a,b], cik, aik, bik, λi, µi, α jand β j are real or
complex constants.

We assume that the solution is expressed by the Bernoulli series

y(t) =
∞

∑
n=0

ynBn(t)

where Bn(t) are the Bernoulli polynomials defined as

Bn(t) =
n
∑

r=0

(
n
r

)
Brtn−r, Br = Br(0) (Bernoulli numbers),

and yn are unknown coefficients.

2 Fundamental matrix relations

Firstly, we consider the desired solution y(t) of Eq. (1) approximated by a truncated Bernoulli series expansion of the
form

y(t)∼= yN(t) =
N

∑
n=0

ynBn(t). (4)

Here N is any positive integer such that N ≥ m. Then we can put the finite series (4) in the matrix form as

y(t)∼= B(t)Y

where B(t) =
[

B0(t) B1(t) · · · BN(t)
]
,

Y =
[

y0 y1 · · · yN

]T
.

Differentiating and using the following relation [22]

Bn
′(x) = nBn−1(x),

we obtain

y′(t)∼= B(t)AY

so that B′(t) = B(t)A and
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A =



0 1 0 0 0 · · · 0
0 0 2 0 0 · · · 0
0 0 0 3 0 · · · 0
0 0 0 0 4 · · · 0
...

...
...

...
...

. . .
...

0 0 0 0 0 · · · N
0 0 0 0 0 · · · 0


(N+1)x(N+1)

.

Similarly, the matrix form of the second derivative becomes

y′′(t)∼= B(t)A2Y.

By continuing, we get the derivatives of the unknown function in the forms

y(m)(t)∼= B(t)AmY (5)

and

y(k)(α jt +β j)∼= B(α jt +β j)AkY, k = 0,1,2, . . . ,m−1. (6)

3 Method of solution

For constructing the main matrix equation, we first substitute the matrix relations (5) and (6) into Eq. (1). Then, by using
the collocation points ts (s = 0,1, ...,S), we obtain the system of the matrix equations as

B(ts)AmY +
J

∑
j=0

m−1

∑
k=0

p jk(ts)B(α jts +β j)AkY = f (ts).

Thus, the main matrix equation becomes {
BAm +

J

∑
j=0

m−1

∑
k=0

P jkB jAk

}
Y = F (7)

where

P jk =


p jk(t0) 0 · · · 0

0 p jk(t1) · · · 0
...

...
. . .

...
0 0 · · · p jk(tS)

 , F =


f (t0)
f (t1)

...
f (tS)

 , B =


B0(t0) B1(t0) · · · BN(t0)
B0(t1) B1(t1) · · · BN(t1)

...
...

...
B0(tS) B1(tS) · · · BN(tS)



B j =


B(α jt0 +β j)

B(α jt1 +β j)
...

B(α jtS +β j)

=


B0(α jt0 +β j) B1(α jt0 +β j) · · · BN(α jt0 +β j)

B0(α jt1 +β j) B1(α jt1 +β j) · · · BN(α jt1 +β j)
...

...
...

B0(α jtS +β j) B1(α jtS +β j) · · · BN(α jtS +β j)

 .
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Hence, the fundamental matrix equation (7) for Eq. (1) can be written in the compact form

WY = For[W;F] (8)

This corresponds to a system of S+ 1 linear algebraic equations with the unknown Bernoulli coefficients y0,y1, . . . ,yN .
To determine the coefficients uniquely, m equations are needed. These equations are obtained from the conditions as
follows:

By means of the relation (6), matrix forms of the conditions (2) and (3) can be written, respectively

m−1
∑

k=0
cikB(c)AkY = λi, i = 1,2, ...,m,

m−1

∑
k=0

aikB(a)AkY +bikB(b)AkY = µi,

or compactly,

UiY = ηi, [Ui;ηi]≡
[

ui,0 ui,1 ui,2 . . . ui,N ; ηi

]
(9)

where ηi is the right side any of the conditions (2) or (3) to be used.

To obtain the solution of Eq. (1) under the given conditions, we combine the matrices (8) and (9). Adding the elements of
the row matrices (9) to the end of the matrix (8), we have the new augmented matrix

[
W̃; F̃

]
. Alternatively, we can

replace m rows of the augmented matrix (8) with the row matrices (9), and denote the new augmented matrix by
[W ∗,F∗]. These linear systems can be solved by the standard methods such as matrix inversion, Gauss elimination and
LU decomposition. Thus, the matrix Y, which gives the coefficients of the Bernoulli polynomial solution (4), is
determined. If the solution of the problem is a polynomial of degree at most N, then the method determines its
coefficients. Otherwise, an approximate polynomial solution is obtained.

If the number of the collocation points equals to N-m+1, say S=N-m, we obtain a squared system with dimension N+1 by
adding the entries belong to the conditions. However, if S=N, this system becomes rectangular. In this case, in order to
form a linear system of N + 1 equation with N + 1 unknown, we replace some rows instead of adding. Note that the
location of the rows to be deleted affects the numerical results.

4 Accuracy of solution and error estimation with residual correction

We can easily check the accuracy of the method as follows. As the truncated Bernoulli series (4) is an approximate solution
of Eq. (1), the function yN(t) must satisfy the pantograph equation approximately; that is, the remainder term is

RN(t) = y(m)
N (t)+

J

∑
j=0

m−1

∑
k=0

p jk(t)y
(k)
N (α jt +β j)− f (t) (10)

Numerical results at the collocation points are affected only by round-off errors that we consider as negligible. Thus, the
remainder term must be zero at the collocation points ts, that is RN(ts) = 0, since y(k)(ts) = y(k)N (ts), k = 0,1, . . . ,m.

When N is sufficiently large enough, the error decreases. If d −1 exact decimal digits are required for the solution, then
the truncation limit N is increased until
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max
n

|RN(tn)| ≤ 10−d , tn ∈ [a,b],

where tn are any points different from the collocation points.

If the exact solution is known, then the error function is the difference between the approximate and the exact solutions
defined by

eN(t) = y(t)− yN(t),

otherwise it can be estimated by following.Here we analyze the error function of yN(t)and show that it can be obtained
using the residual function of the operator equation,

L [y(t)] = f (t), L [y(t)] = y(m)(t)+
J

∑
j=0

m−1

∑
k=0

p jk(t)y(k)(α jt +β j).

We know the residual function RN(t)

L [yN(t)]− f (t) = RN(t), a ≤ t ≤ b.

Since L is a linear operator, the error function eN(t) satisfies the equation

L [eN(t)] =−RN(t), a ≤ t ≤ b

with homogenous initial conditions

m−1

∑
k=0

cikeN
(k)(c) = 0, c ∈ [a,b] ,

or homogenous boundary conditions

m−1

∑
k=0

aikeN
(k)(a)+bikeN

(k)(b) = 0, i = 1,2, . . . ,m.

Solving the new equation with homogenous conditions, we approximate the error function. Denoting this by eN,M(t),
yN(t) can be improved. So, we have a new approximation yN,M(t) given by

yN,M(t) = yN(t)+ eN,M(t).

Consequently, we construct a new error function

EN,M(t) = eN(t)− eN,M(t) = y(t)− yN,M(t),

where eN,M(t) is the estimated error function and EN,M(t) is the corrected error function.

The residual correction method is similar to the deferred correction method [23]. We could repeat the procedure:

i. form the residual function,

ii. solve the error equation,

iii. form a new corrected approximation.
Note that, if the error equation are solved again by Bernoulli collocation method, the new truncation limit M must be
chosen greater than N. If we choose M =N, the collocation points are taken different from the previous one. Otherwise, we
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obtain trivial solution because of RN(ts) = 0 and homogeneous conditions, and therefore we can not have any estimation.
For example, at the first approximation, taking the collocation pointsts defined by

ts = a+ s(b−a)/(N −m) s = 0,1, . . . ,N −m,

and then choosing the new collocation points by

ts = a+ s(b−a)/M, s = 0,1, . . . ,M,

we obtain the improved results. However, dimensions of the linear algebraic system are different although the truncation
limits are the same. Dimension of the augmented matrix W̃ is (N+1)x(N+1) at the first approach whereas (N+m+1)x(N+1)
at the second approach.

5 Numerical examples

The presented method is useful in finding the numerical solution of generalized pantograph equations in terms of
Bernoulli polynomials. We illustrate the numerical solution with the following six examples. All the numerical
computations have been done using a program written in Mathcad 15. The results obtained by the presented method are
compared with the known results. The accuracy of solutions and the error analysis are performed as well.

Example 1. Let us first consider the pantograph equation of the second order

y′′(t) = 3
4 y(t)+ y

( 1
2 t
)
− t2 +2, y(0) = 0, y′(0) = 0, 0 ≤ t ≤ 1

with the exact solution y(t) = t2. Here m = 2, p00(t) = −3
4 , p10(t) =−1, α0 = 1, α1 =

1
2 , β0 = β1 = 0, f (t) =−t2 +2.

Following the procedure in Section 3, the fundamental matrix equation of the problem is

WY =
{

BA2− 3
4 B0 −B1

}
Y = F.

Taking N = 2 and using the collocation points t0 = 0, t1 = 1/2, t2 = 1, we have the augmented matrix

[W,F ] =

−7/4 7/8 41/24 ; 2
−7/4 1/4 25/12 ; 7/4
−7/4 −3/8 47/24 ; 1

 ,
and the matrix forms of the initial conditions are

[U1;λ1] =
[

1 − 1
2

1
6 ; 0

]
, [U2;λ2] =

[
0 1 −1 ; 0

]
.

We can combine the matrix form of the pantograph equation with matrix form of the conditions in different ways. One
is to replace the last two rows of [W,F ] with [Ui;λi]. Solving this system [W ∗,F∗] or the other system

[
W̃ , F̃

]
, Bernoulli

coefficients matrix is obtained as

Y =
[

1/3 1 1
]T

.

Thereby, we find the exact solution.

Average relative errors by the wavelet method [24] for N=15 and N= 255 at the points ts = s/16, s = 1,2, ...,16 are
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4.92E-4 and 1.96E-6, respectively. However, our average relative errors for all N (solved until 100) at the same points are
zero with the zero tolerance 50. Although the exact solution is obtained for N=4 by Taylor method [17], it is found for
N=2 by the presented method.

Example 2. Consider the linear delay differential equation of the first order

y′(t)+ y(t)+ y(0.8t) = 0,y(0) = 1. (11)

By means of the Eq. (7), the fundamental matrix equation of the problem is

{BA+B+B1}Y = 0

where B1 is a matrix for α1 = 0.8, β1 = 0. Following the procedure in Section 3, we find the solution of the problem for
different N. The obtained results, using the collocation points ts = s/N −1 (s = 0,1, ...,N −1), are given in Table 1. The
previous results of (11) by Walsh series approach [25], by Laguerre series approach [26], by delayed unit step function
series approach [27], and by Taylor series approach [17] are also given in Table 2 for comparison. The Bernoulli method
seems more rapidly convergent than the other methods. Although accuracy is obtained at six decimal places for N=7 by
the presented method, the same accuracy is obtained for N=11 by Taylor method and for N=29 by Laguerre method.
Besides, Walsh and DUSF series method can not reach the same accuracy even for N=99. Accuracy of the solution for
N=19 shown in Table 1 is better than the Taylor method shown in Table 2, as well.

Table 1. Bernoulli series solutions of Eq. (11) and accuracy of these solutions.

Bernoulli Series Solution yN(t) Accuracy of Solutions |RN(t)|
t N=7 N=11 N=19 N=20 N=7 N=11 N=19 N=20

0 1.000000 1.000000 0000 1.000000 0000 00000 1.0000000000 00000 0.00 1.11E-16 2.22E-16 0.00

0.2 0.664691 0.664691 0008 0.664691 0008 28908 0.6646910008 28912 1.75E-7 1.11E-16 1.11E-16 0.00

0.4 0.433561 0.433560 7788 0.433560 7787 76339 0.4335607787 76341 1.20E-7 3.33E-16 0.00 1.11E-16

0.6 0.276482 0.276482 3302 0.276482 3302 22267 0.2764823302 22268 1.20E-7 2.22E-16 2.22E-16 1.11E-16

0.8 0.171484 0.171484 1120 0.171484 1119 76061 0.1714841119 76062 1.75E-7 4.44E-16 5.55E-16 0.00

1 0.102670 0.102670 1266 0.102670 1265 74419 0.1026701265 74413 2.22E-16 1.11E-16 1.11E-16 2.22E-16

Table 2. Comparison of the solutions of Eq. (11).

Walsh Series DUSF Series Laguerre Series Taylor Series Solutions
t N = 99 N = 99 N = 19 N = 29 N = 8 N = 11 N = 19 R19(t)

0 1.000000 1.000000 0.999971 1.000000 1.000000 1.000000 1.000000 0000 00000 8.44 E-15

0.2 0.665621 0.664677 0.664703 0.664691 0.664691 0.664691 0.664691 0008 28909 1.38 E-14

0.4 0.432426 0.433540 0.433555 0.433561 0.433561 0.433561 0.433560 7787 76339 3.22 E-14

0.6 0.275140 0.276460 0.276471 0.276482 0.276483 0.276482 0.276482 3302 22267 1.25 E-14

0.8 0.170320 0.171464 0.171482 0.171484 0.171494 0.171484 0.171484 1119 76062 7.38 E-15

1 0.100856 0.102652 0.102679 0.102670 0.102744 0.102670 0.102670 1265 74418 1.55 E-14

Example 3. Consider the following multi pantograph equation with variable coefficients

y′(t) = 1
2 et/2y

( 1
2 t
)
+ 1

2 y(t) (12)
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which has the exact solution y(t) = et . The fundamental matrix equation of the problem is

{
BA− 1

2 (B+P1B1)
}

Y = 0

where B1 is a matrix for α1 = 0.5, β1 = 0 and P1 is a diagonal matrix for p1(t) = et/2 defined in Eq. (7).

Table 3. Average relative errors of Eq. (12).

N = 2 N = 3 N = 4 N = 5 N = 6 N = 7 N = 8 N = 9 N = 10 N = 11 N = 12

4.37E-2 1.46E-3 9.86E-5 3.94E-6 1.99E-7 6.97E-9 2.79E-10 8.38E-12 2.77E-13 7.12E-15 1.76E-16

Table 4. Comparison of absolute errors|eN(t)| for Example 3.

t N=3 N=4 N=5 N=6 N=7 N=8 N=9 N=10 N=11 N=12

0.2 1.84E-03 1.38E-04 7.48E-06 3.22E-07 1.17E-08 3.85E-10 1.18E-11 3.46E-13 9.33E-15 0

0.4 4.52E-03 2.04E-04 7.27E-06 2.90E-07 1.23E-08 4.58E-10 1.48E-11 4.36E-13 1.18E-14 0

0.6 5.36E-03 1.59E-04 9.08E-06 4.34E-07 1.51E-08 5.33E-10 1.79E-11 5.34E-13 1.47E-14 0

0.8 4.06E-03 2.45E-04 1.31E-05 4.21E-07 2.03E-08 6.41E-10 2.17E-11 6.61E-13 1.87E-14 0

1 3.26E-03 4.51E-04 7.75E-06 8.45E-07 1.32E-08 1.15E-09 1.55E-11 1.12E-12 1.24E-14 0

Table 5. Comparison of corrected errors E7,M(t) with residual corrections.

t R7(t) e7(t) M=7 M=8 M=9 M=10 M=11 M=12

0.2 2.04E-08 1.17E-08 8.00E-09 -2.50E-10 7.73E-12 -2.33E-13 6.88E-15 0

0.4 -1.41E-08 1.23E-08 8.59E-09 -3.36E-10 1.04E-11 -2.98E-13 8.22E-15 0

0.6 1.43E-08 1.51E-08 1.05E-08 -3.48E-10 1.26E-11 -3.76E-13 1.04E-14 0

0.8 -2.12E-08 2.03E-08 1.38E-08 -4.60E-10 1.45E-11 -4.68E-13 1.29E-14 0

1 0 1.32E-08 9.22E-09 -7.95E-10 1.08E-11 -7.77E-13 9.33E-15 0

The average relative errors of solution obtained by the presented method at the collocation points are given in Table 3 for
different N. The errors of the wavelet method [24] for N=15 and N=255 are respectively 4.37E-4 and 2.05E-5. The
average relative error of the variational iteration method [28] is also found 4.92E-3 at the second iteration. Besides,
Taylor methods [16] and [17] have respectively the errors 1.73E-8, 2.11E-8 for N=9. It is obvious that the presented
method has better results than wavelet, variational iteration and Taylor methods. However, average relative errors of
Adomian method [18] and homotopy perturbation method [20] are also 5.33E-16 and 2.78E-16 for N=12, respectively.
These results are similar to our error, yet these are higher than the presented method. For N=11, collocation points in our
method are ts = s/10, s = 0,1, ...,10, that is, step size h=0.1. The average relative errors of spline methods [29], [30] and
[31] for h=0.01 are 4.45E-6, 2E-10, 6.87E-11 respectively. In addition, although the absolute errors in the exponential
approximation method [32] for N=3, N=5 and N=10 are around 10−2, 10−3 and 10−5, respectively, they are around 10−3,
10−6 and 10−13 in our method. Table 3 and Table 4 show that presented method has better results than the other methods.

Residual functions must be equal to zero at the collocation points, i.e. RN(ts) = 0, ts = s/(N −1) , s = 0,1, . . . ,N − 1,
but some of these are computed accuracy of 16 digits in Mathcad. To get rid of this error caused by computer, we took
the zero tolerance 15 in Table 4 and Table 5. We observe from Table 4 that 15 digits accuracy are obtained at N=12. The
errors are corrected with the residual function as in Section 4. In Table 5, the new collocation points are chosen by
tk = k/M, k = 0,1, . . . ,Mand N is taken seven at the first approach. Table 5 shows that corrected errors are better than
the previous results, yet 15 digit accuracy are obtained M=15. For this reason, we do not need to have any correction, we
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already have good approximation.

Example 4. Consider the boundary value problem,

y′′(t) = y(|t|) , y(0) = 1andy(1) = e,

has a unique solution y(t) = et . In Table 6, the absolute errors obtained by the present method are compared with the
errors for h = 1/10n, n = 1,2,3 given by collocation method in [21]. Collocation points for N=12 are
ts = s/10, s = 0,1, ...,10. in presented method, that is mesh size is h=0.1. Compared the first and the last columns of the
Table 6, it seems that Bernoulli collocation method has much better result than the other collocation method. Here zero
tolerance is fifty. From numerical computations, presented method converges quite fast.

Table 6. Comparison of absolute errors of Example 4.

Subdivision Approach Present method

t h=0.1 h=0.01 h=0.001 N=5 N=6 N=9 N=10 N=11 N=12

0.1 6.079E-7 8.785E-11 4.752E-13 9.921E-6 3.418E-7 1.467E-11 3.428E-13 1.044E-14 0.000

0.2 1.086E-6 1.609E-10 4.511E-12 1.296E-5 2.887E-7 9.938E-12 1.628E-13 8.438E-15 2.220E-16

0.3 1.562E-6 2.177E-10 9.976E-12 9.854E-6 6.311E-8 1.067E-11 1.315E-13 8.660E-15 0.000

0.4 1.914E-6 2.571E-10 1.455E-11 5.088E-6 5.701E-8 1.115E-11 4.818E-14 8.216E-15 0.000

0.5 2.070E-6 2.772E-10 1.777E-11 3.081E-6 2.356E-8 1.022E-11 1.554E-14 8.882E-15 0.000

0.6 1.999E-6 2.760E-10 2.071E-11 5.670E-6 9.104E-9 1.142E-11 7.949E-14 8.438E-15 2.220E-16

0.7 1.690E-6 2.508E-10 2.008E-11 1.111E-5 1.179E-7 1.117E-11 1.648E-13 9.770E-15 4.441E-16

0.8 1.205E-6 1.988E-10 1.782E-11 1.473E-5 3.571E-7 1.068E-11 1.945E-13 9.326E-15 4.441E-16

0.9 7.159E-7 1.162E-10 9.839E-12 1.139E-5 4.041E-7 1.602E-11 3.828E-13 1.155E-14 0.000

Example 5. Consider the pantograph equation of the third order

y′′′(t)− ty′′(2t)+ y′(t)+ y
( t

2

)
= t cos(2t)+ cos

( t
2

)
(13)

under the following two cases:

i. initial conditions; y(0) = 1, y′(0) = 0, y′′(0) =−1,

ii. boundary conditions; y(0) = 1, y(π) =−1, y′(π) = 0.

The exact solution of the problem with conditions is y(t) = cos t, and the main matrix equation of (13) is

{
BA3 +P02B0A2 +BA+B2

}
Y = F

where B0 andB2 are the matrices corresponding to α0 = 2, β0 = 0 and α2 = 0.5, β2 = 0, respectively, P02 is a matrix
defined in Eq.(7) for p02(t) =−t.

The approximate solutions obtained by using the collocation points ts = sπ/(N −m) in [0,π] for N=4, N=5, N= 6, N=7
are compared with the exact solution in Figure 1 and Figure 2. Absolute errors in [0,π] for N=8, N=9, N= 10, N=11,
N=12 are shown in Figure 3 and Figure 4, as well. From the Figures, it is obvious that the results get better as increase N.
Besides, absolute errors of the problem with the initial conditions at the selected points in [0,1] are tabulated in Table 7.
Obtained results are good.
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Figure 1. Comparison the solutions of Eq. (13) with initial conditions.

Figure 2. Comparison the solutions of Eq. (13) with boundary conditions.
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Figure 3. Error analysis of Eq.13 with initial conditions.

Figure 4. Error analysis of Eq.13 with boundary conditions.

c⃝ 2015 BISKA Bilisim Technology



107 A.Akyuz-Dascioglu and M.Sezer: Bernoulli collocation method for high-order.....

Table 7. Absolute errors |eN(t)| for Example 5.

t N=12 N=13 N=14 N=15 N=16

0.2 2.220E-14 1.332E-15 3.331E-16 2.220E-16 1.110E-16

0.4 1.845E-13 2.653E-14 5.773E-15 3.331E-16 0.000

0.6 9.717E-12 7.372E-13 1.624E-13 1.099E-14 7.772E-16

0.8 8.851E-11 6.486E-12 1.432E-12 9.592E-14 7.438E-15

1 4.041E-10 2.943E-11 6.495E-12 4.354E-13 3.375E-14

Example 6. Finally, let us consider the pantograph equation of the third order

y′′′(t)+ y(t)+ y(t −0.3) = e−t−0.3, y(0) = 1, y′(0) =−1, y′′(0) = 1.

The exact solution is y = e−t . Maximum absolute errors and mean errors are tabulated in Table 8, by applying the
presented method for different collocation points and truncation limit. Also, the last three rows replaced with the entries
of the conditions in the system [W∗,F∗]. The numerical results of the trigonometric points are better than the others. In
addition to this, the results are improved by the residual correction in Section 4. For example, let the collocation points
be tk = k/(N − 3) at the first approximation, its maximum errors can be seen in the first column of the Table 8. After
calculated the residual function for N=5, the new system

[
W̃ , F̃

]
for the error function with homogenous conditions can

be formed using the new collocation points t j = j/M ( j = 0,1, ...,M). Solving this system, estimated error function e5,M

are obtained. In Table 9, maximum absolute errors of the corrected function, that is max
∣∣E5,M

∣∣, are given. It can be seen
these results are better than the results in Table 8. For N=8, maximum error is nearly 10−8 by the presented method,
whereas 10−6 and 10−7 by Taylor [17] and Hermite [33] methods, respectively. Furthermore, maximum error for N=26
is about 10−8 in Jacobi method [34].

Table 8. Comparison of the maximum and mean errors for Example 6.

tk = k
N−3 ,k = 0,1, ...,N −3 ti = i

N , i = 0,1, ...,N ti = 1
2

[
1+ cos (N−i)π

N

]
N max mean max mean max mean
3 3.45E-2 1.05E-2 3.45E-2 1.05E-2 3.45E-2 1.05E-2

3 3.45E-2 1.05E-2 3.45E-2 1.05E-2 3.45E-2 1.05E-2

4 7.77E-3 2.29E-3 2.32E-3 5.26E-4 4.21E-3 1.02E-3

5 4.63E-4 1.51E-4 2.04E-4 4.12E-5 2.98E-4 5.71E-5

6 2.16E-5 7.31E-6 1.06E-5 1.72E-6 1.60E-5 2.55E-6

7 9.88E-7 3.35E-7 6.52E-7 9.90E-8 6.90E-7 9.29E-8

8 4.09E-8 1.39E-8 2.69E-8 3.40E-9 2.54E-8 2.97E-9

9 1.53E-9 5.22E-10 1.25E-9 1.51E-10 7.97E-10 8.19E-11

10 5.14E-11 1.75E-11 4.32E-11 4.44E-12 2.30E-11 2.22E-12

11 1.50E-12 5.11E-13 1.56E-12 1.47E-13 5.44E-13 5.19E-14

12 3.59E-14 1.23E-14 4.94E-14 4.39E-15 1.40E-14 1.32E-15

13 0 0 1.33E-15 0 0 0

Table 9. Comparison of the maximum absolute errors with the residual correction.

M=6 M=7 M=8 M=9 M=10 M=11 M=12 M=13

1.01E-5 4.72E-7 1.78E-8 6.15E-10 1.87E-11 4.59E-13 6.22E-15 0
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6 Conclusions

A collocation method based on the truncated Bernoulli series is developed to numerically solve higher order pantograph
equations with initial or boundary conditions. This method is applied to any finite interval. It is obvious that Nth order
Bernoulli series approximation gives the exact solution when the solution is polynomial of degree less than or equal to N.
However, more terms of the Bernoulli series are required for accurate calculation for large t, if the solution is not
polynomial. Bernoulli approximation converges to the exact solution as N increases, but the truncation limit N must be
chosen large enough. Besides, the residual error estimation is given for the method. If the exact solution of the problem is
unknown, residual function can be used to estimate the error. The corrected approximate solution can also be computed
by summing the estimated error function and approximate solution obtained by the Bernoulli collocation method.

Bernoulli collocation method provides two main advantages: it is very simple to construct the main matrix equation and
it is very easy for computer programming. Another considerable advantage is that computational time of the method is
too short. Besides, our method produces much better results than the other methods in the examples.
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