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Abstract: In this paper, we consider the residual correction of the Hermite polynomial solutions of the generalized pantograph
equations. The Hermite polynomial solutions are obtained by a collocation method. By means of this collocation method, the problem
is into a system of algebraic equations and thus unknown coefficients are determined. An error problem is constructed by using the
orginal problem and the residual function. Error problem is solved by the Hermite collocation method and thus the imroved
approximate solutions are gained. The technique is illustrated by studying the problem for two examples. The obtained results show
that the residual corrcetion method is very effective.
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1 Introduction

In this study, we imrove the approximate solutions based on the Hermite polynomials of the generalized pantograph
equation [1-9]

y(m)(x) =
J

∑
j=0

m−1

∑
k=0

Pjk(x)y(k)(α jx+β j)+g(x), −∞ < a ≤ x ≤ b < ∞ (1)

under the boundary conditions

m−1

∑
k=0

aiky(k)(a)+biky(k)(b) = λi, i = 0,1, ...,m−1 (2)

where y(0)(x) = y(x) is a unknown function, Pjk(x) and g(x) are the functions defined on interval a ≤ x ≤ b and α j, β j,
aik, bik,b jk and λi are real constants.

In this improvement, we obtain the approximate solutions of Eq.(1) under conditions (2) in the form

y(x)∼= yN,M(x) = yN(x)+ eN,M(x) (3)

where

yN(x) =
N

∑
n=0

anHn(x) (4)
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is the Hermite polynomial solution and

eN,M(x) =
M

∑
n=0

a∗nHn(x)

is a approximation to error function eN(x). eN,M(x) is the Hermite polynomial solution of the error problem obtained by
using the residual error function. Here, an and a∗n, (n = 0,1,2, ...,N) are the unknown Hermite coefficients; N and M are
any positive integers and Hn(x), (n = 0,1,2, ...) denote the Hermite polynomials defined by

Hn(x) =
[[ n

2 ]]

∑
k=0

(−1)k(n)!
k!(n−2k)!

(2x)n−2k.

2 Fundamental matrix relations

Let us consider the pantograph equation (3) and find the matrix forms of each term in the equation. First we can convert
the approximate solution (4) to matrix forms as

y(x) = H(x)A (5)

where

H(x) = [H0(x) H1(x) ... HN(x)] and A = [a0 a1 ... aN ]
T .

In here, the matrix form H(x) can be written as

H(x) = X(x)FT (6)

so that X(x) =
[
1 x ... xN

]
and for odd values of N:

F =



20 0 · · · 0 0
0 21 · · · 0 0
...

...
...

...
...

(−1)(
N−5

2 ) 20

0!
(N−1)!
(N−1

2 )!
0 · · · 0 2N−1

0 (−1)(
N−1

2 ) 21

1!
N!

(N−1
2 )!

· · · 0 2N


,

By putting Eq.(6) into Eq.(5), we have the matrix form

y(x) = X(x)FT A (7)

The k-th order derivative of Eq.(7) is given by

y(k)(x) = X(x)BkFT A (8)

where

B =


0 1 0 · · · 0
0 0 2 · · · 0
...

...
...

. . .
...

0 0 0 · · · N
0 0 0 · · · 0

 .
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By placing x → α jx+β j in Eq. (8), we obtain the matrix form

y(k)(α jx+β j) = X(x)B(α j,β j)BkFT A (9)

where
X(α jx+β j) = X(x)B(α j,β j) and for α j ̸= 0 and β j ̸= 0:

B(α j,β j) =



(
0
0

)
(α j)

0(β j)
0

(
1
0

)
(α j)

0(β j)
1

(
2
0

)
(α j)

0(β j)
2 · · ·

(
N
0

)
(α j)

0(β j)
N

0

(
1
1

)
(α j)

1(β j)
0

(
2
1

)
(α j)

1(β j)
1 · · ·

(
N
1

)
(α j)

1(β j)
N−1

0 0

(
2
2

)
(α j)

2(β j)
0 · · ·

(
N
2

)
(α j)

2(β j)
N−2

...
...

... · · ·
...

0 0 0 · · ·

(
N
N

)
(α j)

N(β j)
0


and for α j ̸= 0 andβ j = 0:

B(α j,0) =


(α j)

0 0 · · · 0
0 (α j)

1 · · · 0
...

...
. . .

...
0 0 · · · (α j)

N

 .

3 Method of solution

Firstly, we substitute the matrix relations (8) and (9) into Eq.(1) and thus we obtain the matrix equation

X(x)BmFT A =
J

∑
j=0

m−1

∑
k=0

Pjk(x)X(x)B(α j,β j)BkFT A+g(x) (10)

The collocation points defined by

xi = a+
b−a

N
i, i = 0,1, ...,N

are substituted into Eq. (10) and thus we obtain system of matrix equations as

X(xi)BmFT A =
J

∑
j=0

m−1

∑
k=0

Pjk(xi)X(xi)B(α j,β j)BkFT A+g(xi), i = 0,1, ...,N

or briefly the fundamental matrix equation is{
X(x)BmFT −

J

∑
j=0

m−1

∑
k=0

Pjk(x)X(x)B(α j,β j)BkFT

}
A = G (11)

where

Pjk =


Pjk(x0) 0 · · · 0

0 Pjk(x1) · · · 0
...

...
. . . 0

0 0 · · · Pjk(xN)

, G =


g(x0)

g(x1)
...

g(xN)

, X =


X(x0)

X(x1)
...

X(xN)

=


1 x0 · · · xN

0
1 x1 · · · xN

1
...

...
. . .

...
1 xN · · · xN

N

.
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Briefly, Eq.(11) can be written in the form

W = X(x)BmFT −
J

∑
j=0

m−1

∑
k=0

Pjk(x)X(x)B(α j,β j)BkFT (12)

WA = GHere[W ;G], Eq.(12) corresponds to a system of (N + 1) linear algebraic equations with the unknown Hermite
coefficients a0,a1, ...,aN .

By using the relation (8), the matrix form of the conditions (2) becomes

UiA = [λi] (13)

where

Ui = [ui0 ui1 ... uiN ] =

[
m−1

∑
k=0

aikX(a)+bikX(b)

]
BkFT = λi, i = 0,1, ...,m−1.

To obtain the solution of Eq. (1) under the conditions (2), by replacing the m rows of matrix (12) by the m row matrices
(13) we have the new augmented matrix

W̃A = G̃ or
[
W̃ ; G̃

]
.

If rankW̃ = rank[W̃ ; G̃] = N +1, the unknown coefficients matrix A becomes

A = (W̃ )−1G̃.

Thus, the Hermite coefficients matrix A is uniquely determined. Finally, by substituting the determined coefficients
a0,a1, . . . ,aN into Eq.(4), we get the Hermite polynomial solution

yN(x) =
N

∑
n=0

anHn(x) (14)

4 Error estimation and improved approximate solutions

In this section, we develope an error estimaton for the Hermite approximate solution of Eq.(1) by means of the residual
correction method [10,11] and we improve the approximate solution (14) by using this error estimation. The residual
error estimation was presented for the Bessel approximate solutions of the system of the linear multi-pantograph
equations [12]. For the problem (1)-(2), we modify the error estimation considered in [10-12].

Let us call eN(x) = y(x)− yN(x) as the error function of the Hermite approximation yN(x) to y(x), where y(x) is the exact
solution of problem (1)-(2). Hence, yN(x) satisfies the following problem:

y(m)
N (x)−

J

∑
j=0

m−1

∑
k=0

Pjk(x)y
(k)
N (α jx+β j) = g(x)+RN(x), (15)

m−1

∑
k=0

(
a jky(k)N (a)+b jky(k)N (b)

)
= λ j, j = 0,1, ...,m−1 (16)

can be obtained by substituting yN(x) into the Eq. (1) and in here RN(x) is the residual function associated with yN(x).

By using the method defined in Section 3, we purpose to find an approximation eN,M(x) to the eN(x).
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Subtracting (15) and (16) from (1) and (2), respectively, the error function eN(x) satisfy the equation

e(m)
N (x)−

J

∑
j=0

m−1

∑
k=0

Pjk(x)e
(k)
N (α jx+β j) =−RN(x), (17)

with the homogeneous conditions

m−1

∑
k=0

(
a jke(k)N (a)+b jke(k)N (b)

)
= 0, j = 0,1, ...,m−1 (18)

Solving the error problem (17)-(18) by the method given in Section 3, we obtain the approximation eN,M(x) to eN(x).

Consequently, we have the improved approximate solution

yN,M(x) = yN(x)+ eN,M(x)

Note that if the exact solution of the problem is not known, then we can estimate the error function by eN,M(x).

5 Numerical Examples

In this section, we present two numerical examples to demonstrate the efficiency of the method.

Example 1 [2] Let us first consider the problem{
y(3)(x) = xy′′(2x)− y′(x)− y

( x
2

)
+ xcos(2x)+ cos

( x
2

)
y(0) = 1,y′(0) = 0,y′′(0) =−1.

(19)

The exact solution of the problem is given byy(x) = cos(x). In Table 1, we compare the exact solution and the
approximate solutions for N = 8 and M = 10,15. The actual absolute errors are compared with the estimated absolute
errors in Table 2. Also, we give the absolute errors of the improved approximate solutions for N = 8 and M = 10,15 in
Table 2. The absoluter errors for N = 8 and M = 15 are compared with the Taylor Method (TM) [2] and the Bessel
collocation method (BCM) [4] in Table 3. Figure 1-(a) shows a comparison of the actual and estimated absolute error
functions. Figure 1-(b) is a plot of the improved absolute error functions for N = 8 and M = 10,15.

Table 1 Numerical results of the exact and the approximate solutions for N = 8 and M = 10,15 of the problem (19)

Exact solution
Hermite Polynomial

solution
Improved Hermite polynomial solution

xi y(xi) = cos(xi) y8(xi) y8,10(xi) y8,15(xi)

0 1 1 1 1
0.2 0.98006657784124163 0.98006657779186457 0.98006657783667039 0.98006657784124174
0.4 0.92106099400288510 0.92106099410744413 0.92106099402827402 0.92106099400288544
0.6 0.82533561490967822 0.82533562654399351 0.82533561646485876 0.82533561490968421
0.8 0.69670670934716539 0.69670681756116215 0.69670672357995023 0.69670670934722034
1 0.54030230586813976 0.54030280268159703 0.54030237104271506 0.54030230586838979
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Table 2 Numerical results of the error functions for N = 8 and M = 10,15 of the problem (19)

Absolute errors Estimated absolute errors Improved absolute errors

xi
|e8(xi)|=

|y(xi)− y8(xi)|
|e8,10(xi)|

∣∣e8,15(xi)
∣∣ |E8,10(xi)|

∣∣E8,15(xi)
∣∣

0 0 1.4505e-020 3.8021e-020 0 0
0.2 4.9377e-011 4.4806e-011 4.9377e-011 4.5712e-012 1.1102e-016
0.4 1.0456e-010 7.9170e-011 1.0456e-010 2.5389e-011 3.3307e-016
0.6 1.1634e-008 1.0079e-008 1.1634e-008 1.5552e-009 5.9952e-015
0.8 1.0821e-007 9.3981e-008 1.0821e-007 1.4233e-008 5.4956e-014
1 4.9681e-007 4.3164e-007 4.9681e-007 6.5175e-008 2.5002e-013

Table 3 Comparison of the absolute errors for N = 8 and M = 15 of problem (19)

xi
Present method for
N = 8 and M = 15

TM [2]
forN = 8

BCM [4]
forN = 8

0 0 0 0
0.2 1.1102e-016 8.0000e-008 4.9377e-11
0.4 3.3307e-016 5.1200e-006 1.0456e-10
0.6 5.9952e-015 5.8322e-005 1.1634e-08
0.8 5.4956e-014 3.2771e-004 1.0821e-07
1 2.5002e-013 1.2503e-003 4.9681e-07

 

 

 

Figure 1. (a) Comparison of the absolute error functions |eN(x)| = |y(x)− yN(x)| and the estimated absolute error
functions |eN,M(x)| for N = 8 and M = 10,15 of problem (19).
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Example 2. [13]. We consider the pantograph equation

y′′(x) =
3
4

y(x)+ y
( x

2

)
− x2 +2, 0 ≤ x ≤ 1

with the initial conditions y(0) = 0 and y′(0) = 0. By applying the method defined in Section 2, we obtain the approximate
solution y(x) = x2 which is the exact solution of the problem.

 

 

 

Figure 1. (b) Comparison of the corrected absolute error functions |EN,M(x)|= |y(x)− yN,M(x)|for N = 8 and M = 12,15
of problem (19).

6 Conclusions

In this paper, we presented the Hermite collocation method for solving the linear generalized pantograph equations and
we improved the Hermite polynomial solutions by means of the residual correction. By using the residual correction, an
efficiently error estimation can be made for the Hermite collocation method. It is seen from table 2 and figure 1-(a) that
the estimated absolute errors |eN,M(xi)| and the actual absolute errors|eN(xi)| = |y(xi)− yN(xi)| are almost the same.
Also, we see from table 2 and figure 1-(b) that the residual improvement for approximate solutions is very effective.
Moreover, if the exact solution of the problem is not known, then the absolute errors |eN(xi)| = |y(xi)− yN(xi)| can be
approximately computed with aid of the estimated absolute error function|eN,M(x)|. If the problem has an exact solution
which is the polynomial function, then it can be obtained by this method. The comparisons of the present method by the
other methods show that our method is very effective.
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