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Abstract: We perform a multiple scales analysis on the modified nonlinear Schrödinger (MNLS) equation in the Hamiltonian form.
We derive, as amplitude equations, Korteweg-de Vries (KdV) flow equations in the bi-Hamiltonian form.
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1 Introduction

We consider a system of two coupled nonlinear Schrödinger (NLS) equations,

iq1t +q1xx +
(

α |q1|2 +β |q2|2
)

q1 = 0,

iq2t +q2xx +
(

β |q1|2 +δ |q2|2
)

q2 = 0,
(1)

where α , β , δ are some constants. The integrability of this system was proved by Manakov only for the case α=β=δ ,
which we shall refer as the integrable Manakov system [1].

Equation (1) is important for a number of physical applications when α is positive and all remaining constants are set
equal to 1. For example, for two-mode optical fibres, α = 2 [2]; for propagation of two modes in fibres with strong
birefringence, α = 2

3 [3] and in the general case 2
3 ≤ α ≤ 2 for elliptical eigenmodes. The special value α = 1 (1)

corresponds to at least two possible physcal cases, namely the case of a purely electrostrictive nonlinearity or in the
elliptical birefringence case, when the angle between the major and minor axes of the birefringence ellipse is ca.35o. The
experimental observation of Manakov solitons in crystals has been reported by [4]. Recently the Manakov model has
appeared in a Kerr-type approximation of photorefractive crystals [5]. The pulse-pulse collision between
wavelength-division-multiplexed channels of optical fibre transmission systems is described by (1) with α = 2 ( [6], [7],
[8], [9]). Wavelength division-multiplexing is one means of increasing the bandwidth in optical communication systems.
This technique is limited by the finite bandwidth of the Er-doped fibre amplifiers which are now incorporated into most,
if not all, such systems. General quasi-periodic solutions in terms of n-phase theta functions for the integrable Manakov
system are derived by Adams [10], while a series of special solutions are given in ([11], [12], [13], [14]). Quasi-periodic
and periodic solutions showed for coupled nonlinear Schrödinger equations of Manakov type, also mention the method
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of constructing elliptic finite-gap solutions of the stationary KdV and AKNS hierarchy [15].

The Manakov equations are a system of two coupled nonlinear Schrödinger (NLS) equations of the form

iq1t +q1xx +2µ
(
|q1|2 + |q2|2

)
q1 = 0,

iq2t +q2xx +2µ
(
|q1|2 + |q2|2

)
q2 = 0,

(2)

and known to be a useful model for the study of pulse propagation in birefringent optical fibers. Here q1 = q1(x, t) and
q2 = q2(x, t) are the complex amplitudes of two interacting components, µ is positive parameter, and x and t are
normalized space and time. Note that our variables x and t are interchanged with those of [16], in order to represent the
propagation variable, the one associated with the first-order derivative in the Manakov equation, by t. [This is consistent
with Manakov’s original paper [1], Eq. (3).]

In this paper we apply a multiple scales method following Zakharov and Kuznetsov [17] to derive the KdV flow
equations from the integrable Manakov equations (2). This is an important derivation since the KdV flow equations
comes out from the integrable Manakov equations. Comparing our derivation to the KdV-integrable Manakov equations
derivation, the equations for the coefficients at each order in epsilon, contain no secular terms. Thus no freedom is left in
choosing coefficients and the expansion is uniquely determined.

In section 2 we present some background materials on the integrable Manakov equations, KdV flow equations. In section
3 we first give a multiple scales method. Then we apply the method to the integrable Manakov equations with derivation
of the KdV flow equations.

Throughout the paper we make extensive use of Reduce to calculate and simplify our results.

2 Background Materials

In this section we present some background materials on the integrable Manakov equations, and KdV flow equations.

2.1 The Manakov equation

The Manakov equation, which known to be a useful model for the study of pulse propagation in birefringent optical fibers,
is given by the equation (1) together with the complex conjugate. This Manakov equation (α=β=δ = 1) (1) can be written
in the following solution of (1) in the form,

q1(x, t) = v1(x)exp{ia1t + iC1

∫ x
dxv−2

1 (x)}, (3)

q2(x, t) = v2(x)exp{ia2t + iC2

∫ x
dxv−2

2 (x)},

where the v1,2(x) are real fonctions and a1, a2, C1, C2 are real constant. Substituting (1) into (3) reduce the system to the
equations,
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d2v1

dx2 +δv3
1 +βv1v2

2 −a1v1 −C2
1v−3

1 = 0, (4)

d2v2

dx2 +αv3
2 +βv2v2

1 −a2v2 −C2
2v−3

2 = 0.

The system (4) is a natural Hamiltonian two-particle system with a Hamiltonian of the form,

H =
1
2

p2
1 +

1
2

p2
2 +

1
4
(δv2

1 +2βv2
1v2

2 +αv4
2)−

1
2

a1v2
1 −

1
2

a2v2
2 +

1
2

C2
1v−2

1 +
1
2

C2
2v−2

2 , (5)

where pi(x) = dqi(x)�dx, i = 1,2 [15].

2.2 The KdV Flow Equations

KdV flow equations are in the following form ([18], [19]):

utn = Rn[u]ux = B0[u]δuHn+1 = B1[u]δuHn, n = 0,1, . . . , (6)

where δu variational derivative, the recursion and Hamiltonian operators, and Hamiltonian functions are respectively given
by

R = B1[u]∂−1, B0[u] = ∂ , B1[u] = ∂ 3 +4u∂ +2ux, (7)

H0 =
1
2 u,

H1 =
1
2 u2,

H2 = u3 − 1
2 u2

x ,
...

(8)

3 The Multiple Scales Method

Following Zakharov and Kuznetsov [17] we use a multiple scales method to derive the KdV flow equations (6) from the
integrable Manakov equations (2). We also apply the method to derive Hamiltonian functions for the KdV flow equations
(6) from that of the Manakov equation (2).

We now consider integrable Manakov equations (2) and seek a solution in the form by separating the phase and
amplitude:

q1(ξ ,τ) = eiθ(ξ ,τ)
√

N(ξ ,τ), q2(ξ ,τ) = eiθ(ξ ,τ)
√

M(ξ ,τ) (9)

with complex conjugates. Inserting this assumed solution into the integrable Manakov equations (2) and grouping the real
and imaginary parts, we respectively obtain the following system:

Nτ = −2(NV )ξ ,

Vτ =

(
V 2 −2µN −2µM− Nξ ξ

2N +
N2

ξ
4N2

)
ξ

Mτ = −2(MV )ξ ,

Vτ =

(
V 2 −2µN −2µM− Mξ ξ

2M +
M2

ξ
4M2

)
ξ

(10)
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where θ(ξ ,τ)ξ =V (ξ ,τ). Then we assume the following series expansions for solutions:

M = 1+
∞
∑

n=1
ε2nNn(x, t1, t2, . . . , tn),

N = 1+
∞
∑

n=1
ε2nNn(x, t1, t2, . . . , tn) ,

V =
∞
∑

n=1
ε2nVn(x, t1, t2, . . . , tn).

(11)

We also define slow variables with respect to the scaling parameter ε > 0 respectively as follows:

x = ε(ξ +2τ), tn = ε2n+1τ , n = 1,2, . . . (12)

We now substitute series expansions (11) with (12) into the system (10) and equate coefficients at the powers of ε to zero
separately. Then we end up an infinite set of equations for Nn and Mn in the powers of ε for each n. If we let ε → 0 and
vanish the terms at minimal powers of ε , by considering the case n ≥ 1 we obtain the following:

(i) For the coefficients of ε3, we find

2N1x +2V1x = 0,
4µN1x +4µM1x +4V1x = 0,
2M1x +2V1x = 0,
4µN1x +4µM1x +4V1x = 0.

(13)

(ii) For the coefficient of ε5, we find

2(N2x +V2x)+N1t1 +2N1xV1 +2V1xN1 = 0,
4µ(N2x +M2x)+N1xxx +12µ(N1xN1 +M1xN1)

+4V2x +2V1t1 +12V1xN1 −4V1xV1 = 0,
2(M2x +V2x)+M1t1 +2M1xV1 +2V1xM1 = 0,
4µ(N2x +M2x)+M1xxx +12µ(N1xV1 +M1xM1)

+4V2x +2V1t1 +12V1xN1 −4V1xV1 = 0.

(14)

(iii) For the coefficients of ε7, we find

2(N3x +V3x)+N2t1 +N1t2 +2(N2xV1 +N1xV2 +V2xN1 +V1xN2) = 0,
4(µN3x +M3x +V3x)+N2xxx +12µ(N2xN1 +M2xN1)

+12µ(N1xN2 +M1xN2)+12µ(N1xN2
1 +M1xN2

1 )

+2N1xxxN1 −2N1xxN1x −4(V2xN1 +−4V2xV1)

+2(V2t1 +V1t2)+12V2xN1 +6V1t1 N1

+12V1xN2 +12V1xN2
1 −12V1xN1V1 −4V1xV2 = 0,

2(M3x +V3x)+M2t1 +M1t2 +2(M2xV1 +M1xV2 +V2xM1 +V1xM2) = 0,
4(µN3x +M3x +V3x)+M2xxx +12µ(N2xM1 +M2xM1)

+12µ(N1xM2 +M1xM2)+12µ(N1xM2
1 +M1xN2

1 )

+2M1xxxM1 −2M1xxM1x −4(V2xM1 +−4V2xV1)

+2(V2t1 +V1t2)+12V2xM1 +6V1t1N1

+12V1xM2 +12V1xM2
1 −12V1xM1V1 −4V1xV2 = 0

...

(15)
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and so on. If we take µ = 1
2 in (13), we find

N1 =−V1 = M1, (16)

by considering the constants of integration as zero.

3.1 The Derivation of KdV Flow Equations

We now use (16) in the system (14) and take

N2 = M2,

M2 =−V2 +
1
8

V1xx +
3
4

V 2
1 , (17)

so that we find the following equation

V1t1 =
1
4
(V1xxx −4V1V1x), (18)

or making the transformation

t1 →
1
4

t1, V1 →−3
2

u

we derive the well known KdV equation
ut1 = uxxx +6uux. (19)

If we take in the equation (17) for V2 as
V2 = k1V 2

1 + k2V1xx, (20)

then insert this into the equation (15), we obtain the equation

V1t2 =
1
32

(
64(N3x+V3x)−(16k1+96k2−16)V1xxxV1−(8k2−1)V1xxxxx−(32k2+4)V1xxV1x−(32k1−96)V1xV 2

)
, (21)

N3 = M3.

Now chosing

N3 =−V3 +
1

1280
(−171V1xxxx −1356V1xxV1x +516V 2

1x +3136V 3
1 ), (22)

with
k1 =−82

27
, k2 =−133

18
,

from the equation (21), and using an appropriate transformation for t2 → − 1
64 t2, we derive the Lax’s fifth order KdV

equation as t2 KdV flow equation:
ut2 =

(
uxxxx +10uuxx +5u2

x +10u3)
x . (23)

We now insert (20) and (22) the latter into the system and choose

V3 = k3V1xxxx + k4V1xxV1x + k5V 2
1x + k6V 3

1 , (24)

N4 = M4
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we finally obtain from the coefficients of ε9, the seventh order KdV flow equation

ut3 = uxxxxxxx +14uuxxxxx +42uxuxxxx +70uxxuxxx +70u2uxxx +280uuxuxx +70u3
x +140u3ux (25)

where we take

k1 =
101
56

, k2 =

√
195361−815

896
,

k3 =
3(−219

√
195361−498965)
4064256

,k4 =
3(7

√
195361−21997)

92256
,

k5 =
−17

√
195361−151889

25088
,k6 =−4769

784

and make an appropriate transformation t3 → 1
512 t3. In general, proceeding the calculation as before, we obtain KdV flow

equations (6).

We therefore get the KdV flow equations (6) integrable Manakov equations (2) by using the multiple scales method. This
fact is quite natural because the expression (11) as ε → 0 represents a quasi monochromatic weakly nonlinear wave
packet whose complex envelope should be described by the integrable Manakov equations (2) ([20], [21]).

4 Conclusion

We have used a multiple scales method to provide a new derivation of the KdV flow equations from the integrable
Manakov equations. This derivation is not only on the level of equation but also on the level of the Hamiltonian densities.
The equations for the coefficients at each order in epsilon, contain no secular terms in our derivation of KdV flow equations
(6). Therefore no freedom is left in choosing coefficients at each order in epsilon and the expansion is uniquely determined.
Thus there exists a relation between the integrable Manakov equations (2) with the KdV flow equations (6).Details are
given in [22].
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