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Abstract: In this paper , we obtain the period of Fibonacci sequence in the finite fields of order p? by using equality recursively defined
by F11 =A1F, +AoF,—1, for n > 0, where Fp = 0,F; =1 and A1,A( are generators elements of these fields of order 2.
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1 Introduction

Generalized Fibonacci sequence have been intensively studied for many years and have become into an interesting topic
in Applied Mathematics. Fibonacci sequences and their related higher-order (tribonacci, k-nacci) sequences are generally
viewed as sequences of integers. The notation of Wall number was first proposed by D. D. Wall [7] in 1960. In [7], he
gave some theorems and properties concerning Wall number of the Fibonacci sequences. K. Lu and J. Wang [5]
contributed to the study of the Wall number for the k-step Fibonacci sequences. D. J. De Carli [2] gave a generalized
Fibonacci sequences over an arbitrary ring in 1970. Special cases of Fibonacci sequences over an arbitrary ring have
been considered by R. G. Bauschman [1], A. F. Horadam [4] and N. N. Vorobyov [6] where this ring was taken to be the
set integers. O. Wyler [8] also worked with such a sequence over a particular commutative ring with identity.
Classification of finite rings of order p>with p a prime have been studied by B. Fine [3].

A sequence of ring elements is periodic if, after a certain point, it consists only of repetitions of a fixed subsequence. The
number of elements in the repeating subsequence is called the period of the sequence. For example, the sequence
a,b,c,d,e,b,c,d,e,b,c,d,e,... is periodic after the initial element a and has period 4. A sequence of ring elements is
simply periodic with period k if the first k elements in the sequence form a repeating subsequence. For example, the
sequence a,b,c,d, e, f,a,b,c,d,e, f,a,b,c,d,e, f,... is simply periodic with period 6.

Definition 1. Let f* denote the n th member of the k-step Fibonacci sequence defined as

fé”z{‘,fﬁj for n>k (D
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with boundary conditions fl-(k) =0for1 <i<kand fk(k) = 1.Reducing this sequence modulo m , we can get a repeating
sequence, denoted by f(k,m) = (fl(k’m),fz(k’m)7 oy 5 Y where fl-(k’m) = fi<k) (modm). Then we have that

Fllm) = (f5m gl fEmy = (0,0,...,0,1)

and it has the same recurrence relation as in (1), [5].
Theorem 1. f(k,m) is a periodic sequence [5].

Theorem 2. For any prime p, up to isomorphism, the finite 2-generator field of order p* is given by the following
presentations [3]:
<a,b :pa=pb=0,a*> =a,b*> = ja,ab=b,ba = b>,
where j is not a square in Z, if p # 2
<a,b :2a=2b=0,a*>=a,b* =a+b,ab=b,ba= b>,
ifp=2

Definition 2. Let R be a ring with identity I. The sequence {M,} of elements of R recursively is defined by

GF (p*) =

Myio =AMy +AoM, for n>0, 2)

where M,,M1,Aq and A\ are arbitrary elements of R [2].

Definition 3. A special case of equality (2) is denoted by {F,} and defined by
Fopo =A1F 1 +AoF,  for n>0,

where F, =0,F] =1, and Ay,A are arbitrary elements of R [2].
We next denote the identity of the GF(p?) by 1.
Theorem 3. If F,,;» = A1 F,+1 +AoFy, then Fyip = F, 1A+ F,Ay [2].

Theorem 4. Let
<a,b :pa=pb=0,a>=a,b* = ja,ab=b,ba = b>,
where j is not a square in Zp, if p # 2
(a,b:2a=2b=0,a>=a,b>* =a+b,ab=b,ba=D),
ifp=2

GF (p*) =

@ Ifi=p-1,
O7a5b70’b’ja707ja’jb707jb)a70’a’b7"'

Fibonacci sequences is simple periodic and period is 12.
(i) Ifj=p-2,
0,a,b,(j+1)a,0,(j+ 1)a,(j+1)b,a,0,a,b,...

Fibonacci sequences is simple periodic and period is 8.
(i) Ifj=p—3,
O7a7b7 ) (-] + l)a’ (]+2)b7a707a’b’ A

Fibonacci sequences is simple periodic and period is 6.
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Gv) Ifj=p—4,
0,a,b, (j+ 1)a, (j+2)b, (4k+ 1)a, 2k + 1)b, (j — (4k — 1))a, (j — (2k—2))b,
k=1
(4k+ 1)a, (2k+1)b, (j — (4k—1))a, (j — (2k —2))b, ...,0,1,b, ...

k=2

Fibonacci sequences is simple periodic and period is 4p.

Proof. Let us consider the De finitionl.5. For F,, 1o = A1 F,+1 +AoF, where Fy =0,Fy =1 and A; = b,Ag =a,n > 0.

(i) Suppose that a single period of mod(p) is partitioned into smaller finite subsequences Ag A1,A>, ... as shown below
a=1:
07a7b?O’b7ja’07ja?jb’03jb7a?0’a7b’ b
—— N N ——

Ag Ay Ay Az
If it is use ja = b?, jab = b*b = jb=b>
0,a,b,0,b,b*,0,b%,b°,0,b%,a,0,a,b, ...
AN e SR e
Ao A A Az

Each subsequence A; has & = 3 terms and it contains exactly one zero. Every subsequence A; for i > 1 is a multiply
of Ay, more precisely, the following congruences hold modulo p

Ay = bAg
Ay = bA,
Az = bPA
A1 = bn71A0
A, = b"A

Now, the last term in A,_; is b" , the last term in Ag is b and the last term in Az is b* = a = 1 ,i.e order of b is 4. If
the number of subsequences A; is B = 4, clearly it follows that Fibonacci sequence is simple periodic and period is
o.f=34=12.
(ii) Suppose that a single period of mod(p) is partitioned into smaller finite subsequences Ag,A;,Az, ... as shown below
a=1:
0,a,b,(j+1)a,0,(j+ 1a,(j+1)b,a,0,a,b,...

If it is use ja = b%, jab = b*b => jb = b, jb* =da=Db*4ab=4b=10,...,(j+ Da=b""", (j+1)b =157, ...
Then,
0,a,b,b"~1,0,6P~" bP b*P"> = 4,0,a,b, ...

A A
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Each subsequence A; has oo = 4 term and it contains exactly one zero. Every subsequence A; is a multiply of A,
more precisely, the following congruences hold modulo p

AL =bPA,.

Now , the last term in A, is bP~ ! and the last term in A; is b**"2 =a =1, i.e., order of b is 2p — 2. If number
of subsequences A; is B = 2. Clearly, it follows that period is o..3. So, Fibonacci sequence is simple periodic and
period is 4.2 = 8.
(i) Ifj=p-3,
0,a,b,(j+ 1)a,(j+2)b,a,0,a,b,...

Ao

It is clear that only subsequence Ap has @ = 6 term and it contains exactly one zero. Thus, Fibonacci sequence is
simple periodic and period is 1.6 = 6.
(iv) Suppose that a single period of mod(p) is partitioned into smaller finite subsequences Ag,A;,A>, ... as shown below

a=1:

0,a,b,(j+1)a,(j+2)b,(4k+ 1)a,(2k+ 1)b,(j — (4k —1))a, (j — (2k—2))b,

k=1
(4k+ 1)a, (2k+1)b, (j — (4k—1))a, (j — (2k —2))b, ...,0,a, b, ...

k=2

and

0,a,b,(j+1)a,(j+2)b,(4k+1)a,(2k+1)b,(j — (4k—1))a, (j — (2k—2))b,

k=1
Ag
(4k+ )a, 2k+ 1)b,(j — (4k— 1))a,(j— (2k—2))b, ..., (4k+ 1)a, (2k+ 1)b,
k=2 k=r
Ag
(j— (& — 1))a, (j — (2k —2))b, (4k + D)a, (2k+ 1)b(4k + 1)a, (2k + )b, ..., (4k+ 1)a, (2k + 1)b,
k=r k=r+1 k=s
A
(j—(dk—1))a,(j— (2k—2))b,(dk+ 1)a,(2k+ 1)b(4k + 1)a, (2k+ 1)b, ..., (4k+ 1)a, 2k + 1)b,
k=s k=s+1 k=t
A
(j— (4k—1))a,(j— (2k—2))b, (4k + 1)a, 2k+ 1)b(4k+1)a, (2k+ 1)b, ..., (4k + 1)a, (2k+ 1)b,
k=t k=t+1 k=u
A3

0,a,...

Each subsequences A; has p term and it contains exactly one zero. If j=4k—1,F,, =0,F,41 = (j—(2k—2))b,1 <
n <3, then

Faop=0,Fapr1 =a,Fapra=0b,...

Thus, Fibonacci sequence is simple periodic and period is 4p.
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Example 1. (i) For p =11, the presentation of GF (11?)
GF(11%)=(a,b: 1la=11b = 0,a* = a,b* = ja,ab = b,ba ="b)
Jj is not square an element in the Z;. If p = 11, the non-square elements of Z; can be calculated as follows.
17=1,22=4,32=9.4>=552=3,6"=3,7=5,82=9,92 =4

where 7, = {0,172,3,4,5,6,7,8,97ﬁ}. After this point, the numbers repeat. For example

GF(11?)=(a,b: 1la=11b=0,a* = a,b* = 10a,ab = b,ba = b)
Let us consider the De finition 1.5. For F,1 o = A1F,+1 +AoF, where Fy =0,F; =1 and A =b,Ag=a,n > 0.

0,1,=a,b,b>*+a*=10a+a=11la=0,ba = b,b* = 10a,
10ab + ba = 11b = 0,10a*> = 10a, 10ab = 10b, 106> + 10a*> = 110a = 0,
10ba = 10b,10b* = 100a = a,ab+ 10ba = 11b = 0,a*> = a,ab = b, ...

From relations in the GF (112) , we have follows
b* = 10a,b> = 10ab = 10b,b* = 106> = 100a = a

Then the sequence is
0,a,b,0,b,b>,0,b>,b%,0,b% a,0,a,b, ...
e S N N~
Ao A A, As

Each subsequence has 3 terms and the number of subsequences 4 . Thus, Fibonacci sequence is simple periodic

and period is 3.4 =12..
(ii) For p = 13, the presentation of GF (13?)

GF(13%) = (a,b: 13a = 13b = 0,a* = a,b* = ja,ab = b,ba =b)

GF(13%) = (a,b: 13a=13b=0,a* = a,b* = 11a,ab = b,ba = b)
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Let us consider the Definition 1.5. For F,1 2 = A1F,+1 +AoF, where Fp =0,F1 =1and A =b,Ap=a,n>0.

0,1,a,b,b*> +a*> = 1la+a = 12a,12ab+ba = 13b = 0, 124> = 12a,
12ab = 12b,12b* + 12a* = 132a + 12a = 144a = a,ab+ 12ba = 0,

a>=a,ab=b,...

From relations in the GF (13%) , we have follows

b? =1la,b® = 11ab = 11b,b* = 116> = 121a = 4a,b> = dab = 4b,
b® =5a,b” = 5b,b% = 3a,b° =3b,b'"° = Ta,b" =7b,

b7 =9b,b'"® =994 = 8a,b'° = 8b,H*° = 88a = 10a,b*' = 10b,
b*? = 110a = 6a,b>* = 6ab = 6b,b** = 66a = a, ...

That is b*?~2 = b*6~2 = b** = 4 . Then the sequence is

0,a,b,12a,0,12a,12b,a,0,a,b, ...
—— ——
Ao A
0,a,b,b'2,0,b".6"3,°*,0,a,b...
—_—— ——
Ao Ay
Each subsequence has 4 terms and the number of subsequences 2. Thus, Fibonacci sequence is simple periodic and

period is 2.4 = 8.
(iii) For p = 17, the presentation of GF(17%)

GF(17*) = {(a,b: 17a = 17b = 0,a* = a,b* = ja,ab = b,ba = b)

GF(17*) = (a,b: 17a=17b = 0,a* = a,b* = 14a,ab = b,ba = b)
Let us consider the De finition 1.5. For F,1p = A1F,+1 +AoF, where Fp =0,F1 =1 and A =b,Ap =a,n>0.

0,1,=a,b,b*> +a* = 14a+a = 15a,15ba+ ab = 16b,
16b* + 15a% = 224a + 15a = 239a = a,ba + 16ab = b+ 16b = 176 = 0,
b0+ aa = a* :a,ba+aO:b,bb+aa:b2—|—a2 =l4a+a=15a,...

Then the sequence is
0,a,b,15a,16b,a,0,a,b,15a, ...
| ———

A

Subsequence has 6 terms and there is a subsequence. Thus, Fibonacci sequence is simple periodic and period is 6 .
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(iv) For p = 19, the presentation of GF(19?)

GF(19%) = (a,b: 19a = 19b = 0,a* = a,b* = ja,ab = b,ba =b)

and the set of elements that are square in the Zy9 is {0,1,4,5,6,9,11,16,17} . From Theorem 1.7. (iii), j = 19—4 =

15
GF(19*) = (a,b: 19a = 19b = 0,a* = a,b* = 15a,ab = b,ba = b)

Let us consider the De finition 1.5. For F,1p = A1F,+1 +AoF, where Fp =0,F1 =1 and Ay =b,Ag=a,n>0.1t

is use relations to GF (192),

0,a,b,16a,17b,5a,3b,12a,15b,9a,5b,8a,13b,13a,7b,4a,11b,17a,9b

Ao
0,9b,2a,11b,15a,7b,6a,13b,11a,5b,10a,15b,7a,3b, 14a,17b,3a,b,18a
A
0,18a,18b,3a,2b,14a,16b,7a,4b,10a,14b,11a,6b,6a,12b,15a,8b,2a,10b
A
0,10b,17a,8b,4a,12b,13a,6b,8a,14b,9a,4b,12a,16b,5a,2b,16a,18b,a
Az

0,a,...

Fork=4, j=44—-1,F91=0, Fio14y1=Fo=(15-(24-2)b=9, 1<n<3, Fr19=0, Fio41 =

a, Fp1942=>b.
It is clear that subsequence A;,0 <i <3, has p = 19 term and it contains exactly one zero. Thus, Fibonacci sequence

is simple periodic and period is 4p =4.19 =76 .

2 Conclusion

For any prime p, up to isomorphism, it can be seen that the period of the Fibonacci sequence GF (p?) of field of order p?

is determined by j in the presentation of GF (p?). Consider p = 11 :

(i) From Example i., we have that the period of the Fibonacci sequence is 12 for j=p—1,p=11.

GF(11%) = (ab: 1la=11b=0,a* = a,b* = 8a,ab = b,ba = b)

From Definition 1.5. For F; 42 = A1Fy+1 +AoF, where Fy =0,F1 =1 and Ay =b,Ap=a,n>0.
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0,1 =a,bb*+a*> = 8a+a=9a,9ba+ ab = 10b,
106> + 94> = 80a+9a = a,ba+ 10ab = b+ 10b = 11b = 0,
b0+ aa = a* = a,ba+a0 = b,bb+aa = b*+a*> =8a+a =9a, ...

Then the sequence is
0,a,b,9a,10b,a,0,a,b,9a, ...
—_— ——
Ap

Subsequence has 6 terms and there is a subsequence. Thus, Fibonacci sequence is simple periodic and period is 6 .
@iv) If it is use Theorem 1.7., iv. for j = p—4 =11 —4 =7 , it can be seen clearly that the period of the Fibonacci

sequence is 44 .

Consequently, the period of the Fibonacci sequence is 12 for j = p— 1, the period of the Fibonacci sequence is 6

for j = p — 3 and the period of the Fibonacci sequence is 44 for,j =p—4,p=11.
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