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Abstract: In this paper we consider the problem of the estimation of the ψ-regression function when the covariates take values in an
infinite dimensional space. Our main aim is to establish, under a stationary ergodic process assumption, the asymptotic normality of
this estimate.
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1 Introduction

The statistical analysis of functional data has received much attention in the last few years. The are several special issues
dedicated to this topic by various statistical journals (see, for instance Davidian et al. (2004), Gonzalez-Manteiga and
Vieu (2007), Valderrama (2007) or Ferraty (2010) ). This particular interest of this topic is due to the diversity of
application’s fields in which the data to be treated are curves. Indeed, it is well documented that this kind of data can be
found, for instance, in chemometrics, environmetrics, sciences medical, speech recognition, economics. The main
purpose of this contribution is to study the asymptotic properties of the nonparametric robust regression, under less
restrictive dependence conditions that is the ergodicity assumption.

The nonparametric robust analysis of functional data is a very recent field of investigations. The first results in this
subject was given by Azzedine et al. (2008). Since this work, a considerable corpus of research has been dedicated to the
robust nonparametric modeling in functional data analysis. This great consideration is motivated by the fact that the
robust nonparametric regression provides an alternative approach to the classical methods which is insensitive to the
presence of outliers or heteroskedastic variables. Considering a sample of i.i.d, Azzedine et al. (2008) have established
the almost complete convergence of the robust estimators of the regression function when the regressors is functional. In
the same context, Attouch et al. (2009) studied the asymptotic normality of this model. The robust analysis in functional
time series, has been investigated by many authors. We refer, for example, to Crambes et al. (2008) for the convergence
in Lq norm, Attouch et al. (2010) for the asymptotic normality and Chen and Zhang (2009) for the weak and strong
consistency of the nonparametric functional conditional location estimate in the mixing case.

While in all these literatures, the functional time series data is modeled by using the mixing conditions, our main aim in
this paper is to consider the problem of the robust nonparametric analysis of functional ergodic time series data. This
dependence structure covers several case does not satisfy the usual mixing structures. Moreover, the ergodic framework
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avoid the widely used strong mixing condition and its variants to measure the dependency and the very involved
probabilistic calculations that it implies. In addition, from practical point of view the ergodicity condition is one of a
principal postulate of statistical physics. It models the thermodynamic properties of gases, atoms, electrons or plasmas.
This hypothesis is also used in signal processing, for studying the evolution of a random signal. Despite this importance
in applications, the litterateur in this functional dependency is still limited. This problem has been initiated by Laib and
Louani (2010, 2011 ). They consider the problem of functional estimation for nonparametric regression operators under
the ergodicity condition. Recently Gheiriballah et al (2013) gave the almost complete convergence (with rate) of a family
of robust nonparametric estimators for regression function. More recently Benziadi et al. (2014) stated the almost
complete convergence of a recursive kernel estimates of the conditionals quantiles.

Our main goal in this paper is to establish the asymptotic normality of the estimator proposed by Gheiriballah et al
(2013). This results is obtained under, some general condition. We recall that the asymptotic normality is a fundamental
preliminary result to build confidence interval of our model or to precis the asymptotic dominant terms of the moments
of order q by explicating the asymptotic bias and the asymptotic variance which are a basic ingredients of this error. All
these derivatives of our asymptotic results has been discussed in this paper. It should be noted that our hypotheses and
results unify the both cases of finite or infinite dimension of the regressors. Thus, we can say that our result it also even
in vectorial statistic.

The setup of this paper is as follows: We present our model in Section 2. Section 3 is dedicated to fixing notations and
hypotheses. Our main result is given in Section 4. In Section 5 we show the generality of our model and the flexibility of
our conditions by studying some particular case. In Section 6, we discuss the importance of the asymptotic normality
property by giving some direct applications. The proofs of the auxiliary results are relegated to the Appendix.

2 The ψ- regression model and its estimate

Let Zi = (Xi,Yi)i=1,...n be a F ×R-valued measurable strictly stationary process, defined on a probability space (Ω , A ,P),
where F is a semi-metric space, d denoting the semi-metric. For any x in F , we consider ψx a real-valued Borel function
satisfying some regularity conditions to be stated below. The nonparametric model studied in this paper, denoted by θx, is
implicitly defined as a zero with respect to (w.r.t.) t of the following equation

Ψ(x, t) := IE [ψx(Yi, t) | Xi = x] = 0. (1)

We suppose that, for all x ∈ F , θx exists and is the unique zero w.r.t. t of (1) (see, for instance Boente and Fraiman
(1989) or Koul and Stute (1998) for the existence and uniqueness of θx). We point out that this robustification method
belongs to the class of M-estimates introduced by Huber (1964) and it covers and includes many important
nonparametric models, for example, ψx(y, t) = (y− t) yields the classical regression, ψx(y, t) = 1Iy≥t − 1Iy<t leads to the
conditional median function m(x) = med(Y |X = x) and the α th conditional quantile is obtained by setting
ψx(y, t) = 1Iy>t − (1 − α), α ∈ (0,1). In addition, our robustification method allows us to consider the functional
nonparametric regression model with a scale of the error assumed to be known by taking ψx(., .) = ψ(.− ./σ(x)), where
σ(.) is a measure of spread for the conditional distribution of Y given X = x. We return to Stone (2005) for other
examples of the function ψ .
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For all (x, t) ∈ F × IR, we propose a nonparametric estimator of Ψ(x, t) given by

Ψ̂(x, t) :=
∑n

i=1 K(h−1d(x,Xi))ψx(Yi, t)
∑n

i=1 K(h−1d(x,Xi))
,

where K is a kernel and h = hn is a sequence of positive real numbers. A natural estimator θ̂x of θx is a zero w.r.t. t of the
equation

Ψ̂(x, t) = 0.

Obviously, when ψx (Y, t) = Y − t, then θ̂n is the estimator given in Ferraty and Vieu (2006) for the functional
nonparametric regression. While for ψx(y, t) = 1Iy>t − (1−α), we obtain the α th conditional quantile estimate studied by
Laksaci et al. (2009).

In this work, we will assume that the underlying process Zi is functional stationary ergodic (see Laib and Louani (2011)
for the definition and some examples). Of course, this work includes the finite dimensional case (F = Rp) but its
importance is due to the fact that it covers also the infinite dimensional case. Because, these questions in infinite
dimension are particularly interesting, not only for the fundamental problems they formulate, but also for many
applications they may allow, see Bosq (2000), Ramsay and Silverman (2005) and Ferraty and Vieu (2006).

3 Notations, hypotheses and comments

All along the paper, when no confusion is possible, we will denote by C and C′ some strictly positive generic constants, x
is a fixed point in F and Nx denote a fixed neighborhood of x. For r > 0, let B(x,r) := {x′ ∈ F/ d(x′,x)< r}. Moreover,
for i = 1, . . . ,n, we put Fk is the σ -field generated by ((X1,Y1), . . .(Xk,Yk))) and we pose Gk is the σ -field generated by
((X1,Y1), . . .(Xk,Yk),Xk+1). In order to establish our asymptotic results we need the following hypotheses:

(H1) The processes (Xi,Yi)i∈IN satisfies:
(i) The functions ϕ(x,r) := IP(X ∈ B(x,r))> 0, and ϕi(x,r) = IP(Xi ∈ B(x,r)|Fi−1)> 0 ∀ r > 0.

(ii) For all r > 0,
1

nϕ(x,r)

n

∑
i=1

ϕi(x,r)→p 1 and nϕ(x,h)→ ∞ as h → 0.

(H2) The functions Ψ such that:
(i) The function Ψ(x, ·) is of class C 1 at Nx a fixed neighborhood of θx.

(ii) For each fixed t in Nx the functions Ψ(·, t) and λ2(·, t) = IE[ψ2
x (Y, t)|X = ·]

are continuous at the point x.
(iii) The derivative of the real function

Φ(s,z) = IE [Ψ(X1,z)−Ψ(x,z)|d(x,X1) = s]

exists at s = 0 and is continuous w.r.t. the second component at Nx.

(H3) For each fixed t in the neighborhood of θx ∀ j ≥ 2,

IE
[
ψ j

x (Y, t)|Gi−1
]
= IE

[
ψ j

x (Y, t)|Xi
]
<C < ∞,a.s.,

(H4) The function ψx is continuous and monotone w.r.t. the second component.
(H5) The kernel K is a positive function supported on (0,1[. Its derivative K′ exists on (0,1) and satisfies K′(t)< 0 for

0 < t < 1.
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(H6) There exists a function τx(·) such that

∀t ∈ [0,1] lim
h→0

ϕ(x, th)
ϕ(x,h)

= τx(t),

K2(1)−
∫ 1

0
(K2(u))′τx(u)du > 0 and K(1)−

∫ 1

0
K′(u)τx(u)du ̸= 0.

Comments on the hypotheses.

Our assumptions are quite mild. Indeed, the ergodicity of functional data: The latter is exploited together with condition
(H1 (ii) ) which is less restrictive to the conditions imposed by Laib and Louani (2011) (see Gheriballah et al.(2013) for
more discussion). In this work, the functional space of our model is characterized by the regularity condition (H2iii).
This condition replace the Lipschitz condition usually assumed in nonparametric functional data analysis. This change is
useful in order to explicit asymptotically the bias term. However, the Lipschitz condition gives inexact/inaccurate
asymptotic bias term which not interesting for the asymptotic normality. The robustness property is controlled by (H4)
where only the convexity ( which is fundamentals constraints of the robustness properties of the M-estimators ) of the
score function is needed. In order to cover the classical regression studied in this ergodic functional context by Laib and
Louani (2011) we establish our asymptotic normality without the boundedness condition for the score function.
Condition (H3), (H5) and (H6) are very similar to those used by Ferraty et al. (2007). Moreover, the function τx(·)
defined in (H5) plays a fundamental role in the asymptotic normality result. It permits to give the variance term
explicitly. Note that this function can be specified in several situations where the function ϕ(x,h) is known and (H5) is
fulfilled. We quote the following cases (which can be found in Ferraty et al. (2007)).

(i) ϕ(x,h) =Cxhγ +o(hγ) for some γ > 0 with τx(s) = sγ ,
(ii) ϕ(x,h) =Cxhγ1 exp

{
−Ch−γ2

}
+o
(
hγ1 exp

{
−Ch−γ2

})
for some γ1 > 0 and γ2 > 0 with τx(·) being Dirac’s

function in 1.

4 Results

Our main result is given in the following theorem

Theorem 1. Assume that (H1)-(H6) hold, then θ̂x exists and is unique with great probability and for any x ∈ A , we have

(
nϕ(x,h)
σ2(x,θx)

)1/2(
θ̂x −θx −Bn(x)

)
D→ N (0,1) as n → ∞

where
Bn(x) = hΦ ′(0,θx)

β0

β1
+o(h) and σ2(x,θx) =

β2λ2(x,θx)

β 2
1 (Γ1(x,θx))2

with

β0 =−
∫ 1

0
(sK(s))′βx(s)ds, β j =−

∫ 1

0
(K j)′(s)βx(s)ds, for, j = 1, 2),

Γ1(x,θx) =
∂
∂ t

Ψ(x,θx) and A = {x ∈ F , λ2(x,θx)Γ1(x,θx) ̸= 0}

and D→ means the convergence in distribution.

In order to remove the bias term Bn(x), we need an additional condition on the bandwidth parameter h.
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Corollary 1. Under the hypotheses of Theorem 1 and if the bandwidth parameter h satisfies nh2ϕ(x,h)→ 0 as n → ∞, we
have (

nϕ(x,h)
σ2(x,θx)

)1/2(
θ̂x −θx

)
D→ N (0,1) as n → ∞.

Proof. (Proof of Theorem 1 and Corollary 1). We give the proof for the case of a increasing ψx, decreasing case being
obtained by considering −ψx. In this case, we define, for all u ∈ IR, z = θx −Bn(x)+ u [nϕ(x,h)]−1/2 σ(x,θx). Let us
remark that,

IP

{(
nϕ(x,h)
σ2(x,θx)

)1/2(
θ̂x −θx +Bn(x)

)
< u

}
= IP

{
θ̂x < θx −Bn(x)+u [nϕ(x,h)]−1/2 σ(x,θx)

}
= IP

{
0 < Ψ̂(x,z)

}
.

It is clear thar we can write
Ψ̂(x, t) = Bn(x, t)+

Rn(x, t)

Ψ̂D(x)
+

Qn(x, t)

Ψ̂D(x)

where
Qn(x, t) := (Ψ̂N(x, t)−Ψ̄N(x, t))−Ψ(x, t)(Ψ̂D(x)−Ψ̄D(x))

Bn(x, t) :=
Ψ̄N(x, t)
Ψ̄D(x)

, and Rn(x, t) :=−
(

Ψ̄N(x, t)
Ψ̄D(x)

−Ψ(x, t)
)
(Ψ̂N(x, t)−Ψ̄N(x, t))

with

Ψ̂N(x, t) :=
1

nIE[K(h−1d(x,X1))]

n

∑
i=1

K(h−1d(x,Xi))ψx(Yi, t),

Ψ̄N(x, t) :=
1

nIE[K(h−1d(x,X1))]

n

∑
i=1

IE
[
K(h−1d(x,Xi))ψx(Yi, t)|Fi−1

]
,

Ψ̂D(x) :=
1

nIE[K(h−1d(x,X1))]

n

∑
i=1

K(h−1d(x,Xi)),

Ψ̄D(x) :=
1

nIE[K(h−1d(x,X1))]

n

∑
i=1

IE
[
K(h−1d(x,Xi))|Fi−1

]
.

It follows that

IP

{(
nϕ(x,h)
σ2(x,θx)

)1/2(
θ̂x −θx +Bn(x)

)
< u

}
= IP

{
−Ψ̂D(x)Bn(x,z)−Rn(x,z)< Qn(x,z)

}
.

Therefore, our main result is a consequence of the following intermediates results.

Lemma 1. Under the hypotheses of Theorem 1, we have for any x ∈ A

(
nϕ(x,h)β 2

1
β2λ2(x,θx)

)1/2

Qn(x,z)
D→ N (0,1) as n → ∞.

Lemma 2. (see, Laib and Louani, 2010) Under Hypotheses (H1) and (H4)-(H6), we have,

Ψ̂D(x)−1 = oP(1).

Lemma 3. Under hypotheses (H1), (H2), and (H4)-(H6) we have

(
nϕ(x,h)β 2

1
β2λ2(x,θx)

)1/2

Bn(x,z) = u+o(1), as n →+∞.
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Lemma 4. Under hypotheses (H1), (H2), and (H4)-(H6) we have,

(
nϕ(x,h)β 2

1
β2λ2(x,θx)

)1/2

Rn(x,z) = oP (1) a.co.

Lemma 5. Under Hypotheses (H1) and (H4)-(H6), θ̂x exists a.s. for all sufficiently large n

5 Some special cases

In this section we discus the generality of our study by comparing it to some popular case. More precisely, we consider
three special cases such as the classical regression case, the independent case and the multivariate case which are
respectively studied, Laib and Louani(2010), Attouch et al. (2009).

(i) The classical regression case: As noticed earlier the classical regression defined by conditional expectation is a
particular case of our study with ψx(Y, t) = (Y − t).

So, for this particular case we obtain the following convergence rate.

Corollary 2. Under the hypotheses (H1)-(H6), we have

(
nϕ(x,h)
σ2(x,θx)

)1/2(
θ̂x −θx −Bn(x)

)
D→ N (0,1) as n → ∞

where

Bn(x) = hΦ ′(0,θx)
β0

β1
+o(h) and σ2(x,θx) =

β2(IE[Y 2|X = x]− IE2[Y |X = x])
β 2

1

Remark. Clearly, this convergence rate is exactly what is obtained by Laib and Louani (2011) for the standard regression
model.

(i) The independent case: In this situation, condition (H1(ii)) is automatically verified and for all i = 1, . . .n take
ϕi(x,r) = ϕ(x,r).

Therefore, condition (H1) is restricted to ϕ(x,r)> 0, for all r > 0. Thus, our Theorem leads to the next Corollary.

Corollary 3.Under assumptions (H1)-(H6) we have:

(
nϕ(x,h)
σ2(x,θx)

)1/2(
θ̂x −θx −Bn(x)

)
D→ N (0,1) as n → ∞

Remark. We point out that in this case where the (Xi,Yi) are independent, we obtain the same convergence rate given by
Attouch et al . (2009).

(i) The real case As mentioned in the introduction on, in the real case when F = IR, and if the probability density of
the random variable X (resp. the conditional density of X given Fi−1 ) denoted by f (resp. by fFi−1

i ), is strictly
positive and of C 1 class, then ϕ(x,h) = f (x)h + o(h) and BBp(Xi ∈ [x−h,x+h]|Fi−1) = fFi−1

i (x)h + o(h)).
Moreover the ergodic Theorem insure that

∥1
n

n

∑
i=1

fFi−1
i − f∥→ 0,

where ∥.∥ is a norm in sparable Banach space C 1.
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Therefore condition (H1) is verified and Theorem ?? can be reformulated in the following way.

Corollary 4. Under assumptions (H2)-(H6) and if the probability density of the random variable X (resp. the conditional
density of X given Fi−1 ) denoted by f (resp. by fFi−1

i ), is strictly positive and of C 1 class, we have:

(
nϕ(x,h)
σ2(x,θx)

)1/2(
θ̂x −θx −Bn(x)

)
D→ N (0,1) as n → ∞

Remark. A similar thing can be concluded if F = IRp. It is worth to noting that this last consistency is also new in vectorial
statistic

6 Some applications

6.1 Conditional Confidence curve

The most important application of the asymptotic normality result is the building of confidence intervals for the true value
of θx given curve X = x. However, the latter requires an estimation of the bias Bn(x) term and the standard deviation
σ(x,θx). For sake of shortness, we neglect the bias term and we estimate σ(x,θx) by plug-in method as follows. Indeed,
if ψx is of class C1, w.r.t the second component, the quantities λ2(x,θx) and Γ1(x,θx) can be estimated by

λ̂2(x, θ̂x) =
∑n

i=1 K(h−1d(x,Xi))ψ2
x (Yi, θ̂x)

∑n
i=1 K(h−1d(x,Xi))

,

and

Γ̂1(x, θ̂x) =
∑n

i=1 K(h−1d(x,Xi))
∂
∂ t ψx(Yi, θ̂x)

∑n
i=1 K(h−1d(x,Xi))

.

Furthermore, the quantities β1 and β2 can be estimated empirically by

β̂1 =
1

nϕ(x,h)

n

∑
i=1

K(h−1d(x,Xi)) and β̂2 =
1

nϕ(x,h)

n

∑
i=1

K2(h−1d(x,Xi))

It follows that σ̂(x, θ̂x) :=

(
β̂2λ̂2(x, θ̂x)

(β̂1)2Γ̂1
2
(x, θ̂x)

)1/2

. Thus, we get the following approximate (1−ζ ) confidence interval for

θx

θ̂x ± t1−ζ/2 ×

(
σ̂2

n (x, θ̂x)

nϕ(x,h)

)1/2

where t1−ζ/2 denotes the 1−ζ/2 quantile of the standard normal distribution. It should be to note that the function ϕ(x, ·)
does not appear in the calculation of the confidence interval by simplification.

6.2 Smoothing parameter selection

As all nonparametric estimation with the smoothing technique, the choice of the smoothing parameters, plays a primordial
role. The most celebrated criterium for the smoothing parameter choice is the mean squared error where the optimal one
have to balance the bias and variance terms. However, in our robust approach, this L2 error is not adequate if we suspect
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that outliers are present. In this context, the L1 error is more adapted to this case. For both criteria, our asymptotic result
is a basic ingredient to determine the leading term in these errors. Indeed, by using the same arguments as those used by
Crambes et al. (2008) we show that

E
[∣∣∣θ̂n −θx

∣∣∣q]= E

[∣∣∣∣∣Bn(x)+

√
σ(x,θx)

nϕ(x,h)
W

∣∣∣∣∣
q]

+o

(
1√

nϕ(x,h)q

)

where W is a standard gaussian variable. Therefore, an ideal theoretical rule permitting to obtain an optimal bandwidth,
for both (robust or no robust case) is the minimization of the leading term:

E

[∣∣∣∣∣Bn(x)+

√
σ(x,θx)

nϕ(x,h)
W

∣∣∣∣∣
q]

.

Of course that the practical utilization of this method requires some additional computational efforts. More precisely, it
requires the estimation of the unknown quantities Bn(x) and σ(x,θx). The latter is estimated by σ̂(x, θ̂x) while Bn(x) can
be estimated by the same fashion where the real function Φ(t,s) is treated as a real regression function with response
variable Ψ(X , t)−Ψ(x, t). In conclusion, we can say that, the practical utilization of the present approach is possible, but
it needs the determination of a pilot estimator of the conditional density function.

6.3 The functional times series prediction

It is well known that one of the most application of the nonparametric functional data analysis in dependent data is the
prediction of a future real characteristic of an continuous processus by taking into account the whole past continuously.
Indeed, let (Zt)t∈[0,b[ be a continuous time real valued random process. From Zt we may construct N functional random
variables (Xi)i=1,...,N defined by:

∀t ∈ [0,b[, Xi(t) = Z((i−1)b+t)/N .

The prediction aims is to evaluate a real characteristic denoted Y given XN . The definition (1) shows that the random
variable θ̂XN , defined by (2), is the best approximation of this characteristic with respect to the loss function ρx(, t) =∫ t

0
ψx(,s)ds, where (2) is given by using the N − 1 pairs of r.v (Xi,G(Xi+1))i=1,...,N−1 with G is the function which

describes this characteristic.
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7 Appendix

Proof. (Proof of Lemma 1). For all i = 1, . . . ,n we put Ki(x) = K(h−1d(x,Xi)) and

ηni =

(
ϕ(x,h)β 2

1
β2λ2(x,θx)

)1/2

(ψx(Yi,z)−Ψ(x,z))
Ki(x)
EK1(x)

(2)

and define ζni := ηni −E[ηni | Fi−1]. Under this consideration we write

(
nϕ(x,h)β 2

1
β2λ2(x,θx)

)1/2

Qn(x,z) =
1√
n

n

∑
i=1

ζni

As ζni is a triangular array of martingale differences according the σ -fields (Fi−1)i, we are in position to apply the central
limit theorem based on unconditional Lindeberg condition (see, Gaenssler et al. (1978)). More precisely, we must to check
the following condition

1
n

n

∑
i=1

IE[ζ 2
ni|Fi−1]→ 1 in probability (3)

and

for every ε > 0
1
n

n

∑
i=1

IE[ζ 2
ni1Iζ 2

ni>εn]→ 0. (4)
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Firstly, we prove (3). To do that,we write

IE[ζ 2
ni|Fi−1] = E[η2

ni|Fi−1]−E2[ηni|Fi−1].

Therefore, it suffices to show the
1
n

n

∑
i=1

E2[ηni | Fi−1]→P 0 (5)

and
1
n

n

∑
i=1

E[η2
ni|Fi−1]→P 1. (6)

For the first convergence we have

| E[ηni|Fi−1] |=
1

EK1(x)

(
ϕ(x,h)β 2

1
β2λ2(x,θx)

)1/2

| E[(Ψ(Xi, t)−Ψ(x, t))Ki(x) | Fi−1] |

≤ 1
EK1(x)

((
ϕ(x,h)β 2

1
β2λ2(x,θx)

))1/2

sup
u∈B(x,h)

|Ψ(u, t)−Ψ(x, t) | E[Ki(x) | Fi−1].

Obviuosly, under (H1) and (H5) we have

Cϕi(x,h)≤ IE [Ki(x)|Fi−1]≤C′ϕi(x,h).

and
Cϕ(x,h)≤ IE [∆i(x)]≤C′ϕ(x,h).

On other hand condition (H2ii) implies that

sup
u∈B(x,h)

|Ψ(u, t)−Ψ(x, t) |= o(1).

Combining these lasts three results, we obtain

(| E[ηni | Fi−1])
2 ≤ sup

u∈B(x,h)
|Ψ(u, t)−Ψ(x, t)

(
β 2

1
β2λ2(x,θx)

)
| 1

ϕ(x,h)
ϕ 2

i (x,h)

≤ sup
u∈B(x,h)

|Ψ(u, t)−Ψ(x, t) |
(

β 2
1

β2λ2(x,θx)

)
1

ϕ(x,h)
ϕi(x,h).

Finally, under the fact that (see, (H1ii))
1

nϕ(x,h)

n

∑
i=1

ϕi(x,h)→P 1

we obtain that

1
n

n

∑
i=1

(E[ηni | Fi−1])
2 = sup

u∈B(x,h)
|Ψ(u, t)−Ψ(x, t) |

(
β 2

1
β2λ2(x,θx)

)(
1

nϕ(x,h)

n

∑
i=1

ϕi(x,h)

)
=op(1).
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Now, we treat the convergence (6), Indeed, we write

1
n

n

∑
i=1

E[η2
ni | Fi−1] =

1
n(EK1(x))2

(
ϕ(x,h)β 2

1
β2λ2(x,θx)

) n

∑
i=1

E[(ψx(Yi,z)−Ψ(x,z))2K2
i (x) | Fi−1]

=
1

n(EK1(x))2

(
ϕ(x,h)β 2

1
β2λ2(x,θx)

)( n

∑
i=1

E[ψ2
x (Yi,z)∆ 2

i (x) | Fi−1]

−2Ψ(x,z)
n

∑
i=1

E[ψx(Yi,z)∆ 2
i (x) | Fi−1]

+Ψ 2(x,z)
n

∑
i=1

E[∆ 2
i (x) | Fi−1]

)
.

Denote

J1 =
n

∑
i=1

E[(ψ2
x (Yi,z)∆ 2

i (x) | Fi−1], J2 =
n

∑
i=1

E[(ψx(Yi,z)∆ 2
i (x) | Fi−1]

and

J3 =
n

∑
i=1

E[∆ 2
i (x) | Fi−1].

It is easily seen that

J1 = λ2(x,z)
n

∑
i=1

E[(K2
i (x)|Fi−1]+

n

∑
i=1

[
IE
[
ψ2(Yi,z)K2

i (x)|Fi−1
]
−λ2(x,z)IE

[
K2

i (x)|Fi−1
]]

= λ2(x,z)
n

∑
i=1

E[(K2
i (x)|Fi−1]+

n

∑
i=1

[
IE
[
K2

i (x)IE[ψ2(Yi,z)|Gi−1]|Fi−1
]
−λ2(x,z)IE

[
K2

i (x)|Fi−1
]]

= λ2(x,z)
n

∑
i=1

E[(K2
i (x)|Fi−1]+

n

∑
i=1

[
IE
[
K2

i (x)IE[ψ2(Yi,z)|Xi]|Fi−1
]
−λ2(x,z)IE

[
K2

i (x)|Fi−1
]]
.

Using the same arguments as those used in (5), to evaluate the second term. Then, we have,

1
nIE [K1(x)]

n

∑
i=1

[
IE
[
K2

i (x)IE[ψ2(Yi,z)|Xi]|Fi−1
]
−λ2(x,z)IE

[
K2

i (x)|Fi−1
]]

≤ sup
u∈B(x,h)

| λ2(x,z)−λ2(x,z) |

(
1

nϕ(x,h)

n

∑
i=1

IP(Xi ∈ B(x,h)|Fi−1)

)
.

Furthermore, we use the continuity of λ2(x, .), to write

λ2(x,z) = λ2(x,θx)+o(1)

Thus,
1

nIE [K1(x)]
J1 = λ2(x,θx)

1
nIE [K1(x)]

n

∑
i=1

IE
[
K2

i (x)|Fi−1
]
+o(1)

and by the same manner

1
nIE [K1(x)]

J2 =Ψx(x,θx)
1

nIE [K1(x)]

n

∑
i=1

IE
[
K2

i (x)|Fi−1
]
+o(1) = o(1)
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Finally we have
1
n

n

∑
i=1

E[η2
ni | Fi−1] =

1
n(EK1(x))2

(
ϕ(x,h)β 2

1
β2

) n

∑
i=1

E
[
(K2

i (x)|Fi−1
]
+o(1)

Next, we use the same ideas used in Ferraty et al. (2009) to get

IE
[
K2

i (x)|Fi−1
]
= K2(1)ϕi(x,h)−

∫ 1

0
(K2(u))′ϕi(x,uh)du

and

IE [K1(x)] = K(1)ϕ(x,h)−
∫ 1

0
(K(u))′ϕ(x,uh)du

it follows that

1
nϕ(x,h)

n

∑
i=1

E
[
(K2

i (x)|Fi−1
]
=

K2(1)
nϕ(x,h)

n

∑
i=1

ϕi(x,h)

−
∫ 1

0
(K2(u))′

ϕ(x,uh)
nϕ(x,h)ϕ(x,uh)

n

∑
i=1

ϕi(x,uh)du

= K2(1)−
∫ 1

0
(K2(u))′τx(u)du+op(1) = β2 +op(1).

and
1

nϕ(x,h)
IE [K1(x)] = β1 +o(1).

We deduce that

lim
n7→∞

1
n

n

∑
i=1

E[η2
ni | Fi−1] = 1

which completes the proof of (3).
Concerning (4), we write

ζ 2
ni1Iζ 2

ni>εn ≤
|ζni|2+δ√
(εn)δ

for every δ > 0

Observe that

IE[ζ 2+δ
ni ] = IE

[∣∣∣ηni(x)−E[ηni | Fi−1]
∣∣∣2+δ

]
≤ 21+δ IE

[
|ηni(x)|2+δ

]
+21+δ |IE

[
E[ηni | Fi−1]]

2+δ
]
|

By the Jensen inequality we obtain
E[ζ 2+δ

ni ]≤CIE
[
|ηni(x)|2+δ

]
.

So, it remains to evaluate IE
[
|ηni(x)|2+δ ]. For this, once again we use the Cr-inequality

IE
[
|ηni(x)|2+K]≤C

(
ϕ(x,h)β 2

1

β2λ2(x,θx)IE2 [K1]

)1+δ/2

IE
[
K2+δ

i (x)ψ2+δ (Yi, t)
]
+Ψ 2+δ (x,z)IE

[
K2+δ

i

]
We conditione by Xi, and we use the fact that

IE
[
ψ2+δ (Yi, t) | Xi

]
< ∞.
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It follows that

IE
[
|ηni(x)|2+δ

]
≤C
(

1
ϕ(x,h)

)1+δ/2

E([Ki(x)]2+δ )

≤C
(

1
ϕ(x,h)

)δ/2

(7)

Consequently
1
n

n

∑
i=1

IE[ζ 2
ni1Iζ 2

ni>εn]≤C
(

1
nϕ(x,h)

)δ/2

→ 0

which completes the proof of the Lemma.

Proof. (Proof of Lemma 3). By a simple manipulation we have

Ψ̄N(x,z)
Ψ̄D(x)

=
1

∑n
i=1 IE [Ki | Fi−1]]

n

∑
i=1

IE [Ki [IE[ψx(Y,z)|X1]− IE[ψx(Y,z)|X = x]] | Fi−1]]

+ IE[ψx(Y,z)|X = x]− IE[ψx(Y,θ(x))|X = x] =: I1 + I2. (8)

For I1(x) we use the same ideas asi in Ferraty et al. (2007), we obtain under (H2iii)

Ai =IE [Ki [IE[ψx(Y,z)|Xi]− IE[ψx(Y,z)|X = x]] | Fi−1]

=IE [Ki [IE[Ψ(Xi,z)−Ψ(x,z)|d(x,Xi)] | Fi−1]]]

=IE [KiΦ(d(x,Xi),z) | Fi−1]]

=
∫

Φ(th,z)K(t)dPFi−1(th)

=hΦ ′(0,z)
∫

tK(t)dPFi−1(th). (9)

Using the continuity of Φ ′(0, ·) and the fact that

∫
tK(t)dPFi−1(th) = K(1)ϕi(x,h)−

∫ 1

0
(sK(s))′ϕi(x,sh)ds

to obtain that
1
n

n

∑
i=1

Ai = hΦ ′(0,θx)

(
K(1)−

∫ 1

0
(sK(s))′τx(s)ds

)
+op(h).

Similarly, we have
1
n

n

∑
i=1

IE [Ki | Fi−1]] =

(
K(1)−

∫ 1

0
K′(s)τx(s)ds

)
+op(1).

At last,
I1 = Bn(x)+o(h).

Concerning I2 we use a Taylor expansion to get, under (H2)

I2 =−Bn(x)+u [nϕ(x,h)]−1/2 σ(x,θx)
∂
∂ t

Ψ(x,θx)+o
(
[nϕ(x,h)]−1/2

)
.

The result is then a consequence of the decomposition (8).
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Proof. (Proof of Lemma 4) Clearly, it suffices to show that

Ψ̄N(x, t)−Ψ(x, t)Ψ̄D(x)
Ψ̄D(x)

= op(1)

and
|Ψ̂N(x, t)−Ψ̄N(x, t)|= op(1).

On the one hand

Ψ̄N(x, t)−Ψ(x, t)Ψ̄D(x)
Ψ̄D(x)

=
1

nIE [K1(x)]Ψ̄D(x)

n

∑
i=1

[IE [Ki(x)IE[ψ(Yi, t)|Gi−1]|Fi−1]−Ψ(x, t)IE [Ki(x)|Fi−1]]

=
1

nIE [K1(x)]Ψ̄D(x)

n

∑
i=1

[IE [Ki(x)IE[ψ(Yi, t)|Xi]|Fi−1]−Ψ(x, t)IE [Ki(x)|Fi−1]]

≤ 1
nIE [K1(x)]Ψ̄D(x)

n

∑
i=1

[IE [Ki(x)|Ψ(Xi, t)−Ψ(x, t)|Fi−1]]

Finally by (H1ii), we deduce that∣∣∣∣Ψ̄N(x, t)−Ψ(x, t)Ψ̄D(x)
Ψ̄D(x)

∣∣∣∣≤ sup
x′∈B(x,h)

|Ψ(x′, t)−Ψ(x, t)| → 0.

On the other hand, the convergence
Ψ̂N(x,z)−Ψ̄N(x,z) = op(1)

will be established by showing the following two results

IE
[
Ψ̂N(x,z)−Ψ̄N(x,z)

]
→ 0

and
Var

[
Ψ̂N(x,z)−Ψ̄N(x,z)

]
→ 0.

The first one is a consequence of the definitions of Ψ̂N(x,z) and Ψ̄N(x,z). Next, for the second one, we have

Ψ̂N(x,z)−Ψ̄N(x,z) =
n

∑
i=1

∆i(x,z)

where

∆i(x,z) =
1

nIE[K1]
Kiψ(Yi,z)− IE [Kiψ(Yi,z)|Fi−1] . By Burkholder ’s inequality, we have

IE

[
n

∑
i=1

∆i(x,z)

]2

≤
n

∑
i=1

IE [∆i(x,z)]
2 .

Furthermore, by Jensen’s inequality we show that

IE [∆i(x,z)]
2 ≤ 1

n2IE2[K1]
IE
[
K2

i ψ2(Yi,z)
]
≤ 1

n2IE2[K1]
IE
[
K2

i
]
≤ 1

nϕ 2(x,h)
ϕi(x,h)
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Hence, (H1) gives
Var

[
Ψ̂N(x,z)−Ψ̄N(x,z)

]
→ 0.

Proof. (Proof of the Lemma 5) It is clear that, the monotony of ψx(Y, ·), for all ε > 0

Ψ(x,θx − ε)≤Ψ(x,θx)≤Ψ(x,θx + ε).

By using a similar argument as those used in the previous Lemmas we show that

Ψ̂(x, t)−→Ψ(x, t) in probability

for all real fixed t ∈ Nx. So, for sufficiently large n and for all ε small enough

Ψ̂(x,θx − ε)≤ 0 ≤ Ψ̂(x,θx + ε) holds with probability tending to 1.

Since ψx is continuous function, then as Ψ̂(x, t) is a continuous function of t, there exists a θ̂x ∈ [θx − ε,θx + ε] such
that Ψ̂(x, θ̂x) = 0. Finally, the uniqueness of θ̂x is a direct consequence of the strict monotonicity of ψx, w.r.t. the second
component, and the fact that

IP

(
n

∑
i=1

Ki = 0

)
= IP

(
Ψ̂D(x) = 0

)
→ 0 as n → ∞.

which imply (∑n
i=1 Ki ̸= 0) with probability tending to 1. Moreover, as θ̂x ∈ [θx − ε,θx + ε] in probability, then

θ̂x → θx in probability as n −→ ∞.
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