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Abstract: The aim of this study was to introduce a constructive method to compute a symplectic singular value decomposition (SVD-
like decomposition) of a 2n-by-m rectangular real matrix A, based on symplectic reflectors. This approach used a canonical Schur form
of skew-symmetric matrix and it allowed us to compute eigenvalues for the structured matrices as Hamiltonian matrix JAAT .
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1 Introduction

Singular Value Decomposition (SVD) has been used in many fields of scientific computing such as data compression,
signal processing, automatic control working on applied linear algebra, signal and image processing [13,14]. An example
is about the eigenvalue problem of the matrix

F =

[
−C −G

I 0

]
=

[
−C −I0

I 0

][
I 0
0 G

]

which is related to the gyroscopic system [10,11,12]

q”+Cq′+Gq = 0 ; q(0) = q0 ; q′(0) = q1.

A matrix G ∈ Rm×m is symmetric and positive semi-definite it has a full rank factorization G = LLT . And C ∈ Rm×m is
skew-symmetric. By using the equality [

−C −I
I 0

]
=

[
− 1

2C I
I 0

]
J

[
1
2C I

I 0

]

where J =

(
0 In

−In 0

)
, In denotes the n×n identity matrix, F is similar to the Hamiltonian matrix

J

[
1
2C I
I 0

][
I 0
0 LLT

]
= J

[
− 1

2C I
LT 0

]T [
− 1

2C I
LT 0

]
.
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Therefore the eigenvalue problem of F can be solved by computing the SVD-like decomposition of

(
− 1

2C I
LT 0

)
.

This paper makes a constructive and significant contribution to this area of research for computing a symplectic
SVD-like decomposition of 2n-by-m real matrix based on a canonical Schur form of skew-symmetric matrix [16,17] and
by the use of symplectic reflectors [1,2,3]. A method for computing an SVD-like decomposition was given by Hongguo
Xu [16,17] of a n-by-2m real matrix.

Symplectic SVD-like decomposition is effective for computing the structured canonical form of the Hamiltonian matrix
AJA. Most eigenvalue problems that arise in practice are known to be structured. Therefore, preserving the structure can
help preserve physically relevant symmetries in the eigenvalues of the matrix and may improve the accuracy and
efficiency of eigenvalue computation. Hamiltonian and skew-Hamiltonian eigenvalue problems arise from a number of
applications, particularly in systems and control theory [7,12,15].

The paper is organized as follows: section 2 introduces some notation and some basic result; a symplectic SVD-like
decomposition is proposed in section 3; and section 4 we give a numerical results to demonstrate the effectiveness of the
proposed algorithm.

2 Terminology, notation and some basic facts

In this section, we recall some notations and necessary tools which will be used throughout this paper. The J-transpose

of any 2n-by-2p matrix M is defined by MJ = JT
2pMT J2n ∈ R2p×2n where J2n =

(
On In

−In On

)
, with In and On are the n×n

identity and zero matrix respectively. A Hamiltonian matrix M ∈R2n×2n has the explicit block structure M =

(
A R
G −AT

)
,

where A,G,R are real n×n matrices and G = GT , R = RT . By straightforward algebraic manipulation, we can show that
a Hamiltonian matrix M is equivalently defined by the property MJ = −M. Likewise, a matrix M is skew-Hamiltonian

if and only if MJ = −M, it has the explicit block structure W =

(
A R
G AT

)
, where A,G,R are real n× n matrices and

G = −GT , R = −RT . Any matrix S ∈ R2n×2p that satisfies this property ST J2nS = J2p (SJS = I2p) is called symplectic
matrix. This property is also called J-orthogonality. The symplectic similarity transformations preserve Hamiltonian and
skew-Hamiltonian structures.

Proposition 1. An augmented matrix

S =


I 0 0 0
0 P11 0 P12

0 0 I 0
0 P21 0 P22


is symplectic if and only if P =

(
P11 P12

P21 P22

)
is also symplectic.

Setting Ei = [ei en+i] ∈ R2n×2 for i = 1, · · · ,n, we obtain

EJ
i = ET

i and EJ
i E j = δi jI2,

where

δi j =

{
1
0

if i = j
if i ̸= j.
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Proposition 2. Let U = [u1 u2] be a 2n-by-2 real matrix, where u1 =
2n
∑

i=1
u(1)i ei and u2 =

2n
∑
j=1

u(2)j e j. Then, U is written

uniquely as linear combination of (Ei)1≤i≤n on the ring R2×2.

U =
n

∑
i=1

EiMi where Mi =

(
u(1)i u(2)i

u(1)n+i u(2)n+i

)
.

Proposition 3. Let M be a 2n-by-2n real matrix. Then, M is expressed uniquely as M = ∑n
i=1 ∑n

j=1 EiMi jET
j where Mi j ∈

R2s×2s is given by, (
mi, j mi,n+ j

mn+i, j mn+i,n+ j

)
.

Proposition 4. With the notations of the previous proposition, a matrix M ∈R2n×2n is Hamiltonian (skew-Hamiltonian) if
MJ

i j =−M ji (MJ
i j = M ji).

Proof. The result is obvious, as MJ =
n
∑

i=1

n
∑
j=1

EiMJ
jiE

T
j and MJ =−M.

Definition 1. A matrix M =
n
∑

i=1

n
∑
j=1

EiMi jET
j ∈ R2n×2n is called in upper J-bidiagonal form if Mi j = 02 for j /∈ {i, i+1}

and, in addition, Mii and Mii+1 are diagonal.

2.1 Symplectic reflectors

The symplectic reflector [2,3] in R2n×2 is defined in parallel with elementary reflectors.

Proposition 5. [3] Let U and V be two 2n-by-2 real matrices that satisfy UJU = V JV = I2. If the 2-by-2 matrix C =

I2 +V JU is nonsingular, the transformation S = (U +V )C−1(U +V )J− I2n is symplectic and takes U to V . This is called
a symplectic reflector. Additionally, if UJ =UT and V J =V T , then S is orthogonal and symplectic.

Remark. The proposition above remains true only if UJU =V JV . In this case, C =UJU +V JU .

Lemma 1. Let U = [u1 u2]∈R2n×2 be a non-isotropic matrix (UJU ̸= 02) and V =Uq(U)−1 its normalized matrix. Then,
there is a symplectic reflector S takes V to E1 and therefore U to E1q(U), which in turn takes the following form:

SU =



* 0
0 0
...

...
0 0
0 *
0 0
...

...
0 0


↙ n+1

where

q(U) =


√

αI2,

√
−α

(
1 0
0 −1

)
,

if α > 0

if α < 0
α = uH

1 Ju2.
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Remark.Using symplectic reflectors with a matrix A ∈ R2n×2n, we obtain the factorization A = SR, where S ∈ R2n×2n is

symplectic and R =

(
R11 R12

R21 R22

)
∈ R2n×2n. R is J-triangular and, in addition, R12 is a strictly n-by-n upper triangular

matrix. R is as follows:

We discuss below some useful properties of symplectic reflectors.

Proposition 6. Let S be a 2n-by-2n real symplectic matrix. There is then a sequence of symplectic reflectors S1,S2, · · · ,Sn,
such that S = S1S2 · · ·Sn.

Proof. Step 1: Set U1 = [q1,qn+1] ∈ R2n×2. As S is symplectic, then UJ
1 U1 = I2. Then, the symplectic reflector P1 =

(U1 +E1)(I2 +EJ
1U1)

−1(U1 +E1)
J − I2n verifies P1U1 = E1. The (n+ 1)th-component of both (P1qk) and (P1qn+k) is

equal to zero for k = 2,3, . . .n. On the one hand, (P1q1)
T J (P1qk) = qT

1 Jqk = 0, and on the other hand, (P1q1)
T J (P1qk) =

eT
1 J (P1qk) = eT

n+1 (P1qk) is simply the (n+ 1)th-component of (P1qk). Likewise, the first component of both (P1qk) and
(P1qn+k) disppears. Finally, we obtain

P1S =



n

n←−−−−−−−−−−−−→xy
1 0 · · · 0
0 ∗ · · · ∗
...

...
. . .

...
0 ∗ · · · ∗

n←−−−−−−−−−−→
0 0 · · · 0
0 ∗ · · · ∗
...

...
. . .

...
0 ∗ · · · ∗

n

xy
0 0 · · · 0
0 ∗ · · · ∗
...

...
. . .

...
0 ∗ · · · ∗

1 0 · · · 0
0 ∗ · · · ∗
...

...
. . .

...
0 ∗ · · · ∗


Thereafter, we continue to update the value of qi: qi←− P1qi by varying i from 1 to 2n. Note that now we have q1 = e1

and qn+1 = en+1.

Step 2: Set U1 = [q1,qn+1] ∈ R2n×2. As S is symplectic, then UJ
1 U1 = I2 and the symplectic reflector allows us to set

U2 = [q2,qn+2] ∈ R2n×2. As P1S is still symplectic, U2 verifies UJ
2 U2 = I2, and the symplectic reflector
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P2 = (U2 +E2)(I2 +EJ
2U2)

−1(U2 +E2)
J− I2n has the following form:

P2 =



1 0 · · · 0 0 0 · · · 0

0 ∗ ∗ ∗
... ∗ ∗ ∗

... ∗ ∗ ∗
... ∗ ∗ ∗

0 ∗ ∗ ∗ 0 ∗ ∗ ∗
0 · · · · · · 0 1 0 · · · 0
... ∗ ∗ ∗ 0 ∗ ∗ ∗
... ∗ ∗ ∗

... ∗ ∗ ∗
0 ∗ ∗ ∗ 0 ∗ ∗ ∗


and verifies P2U2 = E2. As in step 1, we obtain

P2P1S =



1 0 0 ... 0
0 1 0 ... 0
0 0 ∗ ... ∗
...

...
...

. . .
...

0 0 ∗ · · · ∗

0 0 0 ... 0
0 0 0 ... 0
0 0 ∗ ... ∗
...

...
...

...
...

0 0 ∗ ... ∗
0 0 0 ... 0
0 0 0 ... 0
0 0 ∗ ... ∗
...

...
...

...
...

0 0 ∗ ... ∗

1 0 0 ... 0
0 1 0 ... 0
0 0 ∗ ... ∗
...

...
...

. . .
...

0 0 ∗ ... ∗



.

We thereby obtain Pn · · ·P2P1S = I2n, and then S = S1S2 · · ·Sn where Sk = PJ
k , which achieves the desired result.

Remark. In lemma 2.8, by using U = [u − Ju], where u ∈ R2n with ∥u∥ ̸= 0, we obtain S orthogonal and symplectic.

Lemma 2. Let u∈R2s be a nonzero 2s-component real vector. The orthogonal symplectic reflector S=(U+
√

αE1)(αI2+√
αEJ

1U)−1(U +
√

αE1)
J− I2s, where U = [u − Ju] verifies Su =

√
αe1 with α = uT u = ∥u∥2

2.

Proof. As UJU = αI2 with α = uT u = ∥u∥2
2 > 0, then a simple calculation gives the result.

3 Symplectic SVD-like decomposition

We describe here a new approach to compute a symplectic SVD-like decomposition for a 2n-by-m rectangular real matrix
A. It’s based on a Schur form of skew-symmetric matrix AT JA. We obtained the following result:

SAQ =


Σp 0 0 0
0 0 Iq 0
0 0 0 0
0 Σp 0 0
0 0 0 0



where Q is an orthogonal matrix, S is symplectic, and Σp = {σ1, · · · ,σp}, p =
rank(AT JA)

2
.

Let A be 2n-by-m rectangular real matrix. We recall here an useful result, which is the Schur like form of the real
skew-symmetric matrix AT JA [16,17].
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Theorem 1. Given a 2n-by-m real matrix A, there is a real orthogonal matrix U such that

AT JA =U

 0p Σ 2
p 0

−Σ 2
p 0p 0

0 0 0m−2p

UT

where Σp = diag(σ1,σ2, . . . ,σp), σi > 0, ∀i and 2p = rank(AT JA).

Xu [16,17] showed that for any n-by-2m real matrix A, there exists an orthogonal matrix Q and a symplectic matrix S,
such that A = QDS−1, where D is in the following form,

D =


Σ 0 0 0 0 0
0 I 0 0 0 0
0 0 0 Σ 0 0
0 0 0 0 0 0


where Σ is positive diagonal. Symplectic SV D-like decomposition is effective for computing the structured canonical form
of the Hamiltonian matrix JAT A. Xu also proposed an algorithm for computing eigenvalues of JAT A using block A11 and
A23 in step 1 of the algorithm (for more details, see section 2 in [17]). Although he obtained the eigenvalues, his algorithm
does not compute the full decomposition of the poorly scaled matrices. We present a new constructive approach which
is main result of this paper, in order to obtain the symplectic SVD-like decomposition and to compute the eigenvalues of
Hamiltonian matrix JAAT .

Theorem 2. ( Symplectic SVD-like decomposition) Let A be a 2n-by-m rectangular real matrix. For a symplectic real
matrix S ∈ R2n×2n and an orthogonal real matrix Q ∈ Rm×m,

SAQ =


Σp 0 0 0
0 0 Iq 0
0 0 0 0
0 Σp 0 0
0 0 0 0


Proof. Applying the real Schur decomposition to the skew-symmetric matrix AT JA

AT JA =U

 0p Σ 2
p 0

−Σ 2
p 0p 0

0 0 0m−2p

UT ,

we construct Vk =
1
σk

AUkJT
2 , where Uk =U

[
ek ep+k

]
for k = 1,2, · · · , p. As we can easily verify V J

k Vk = I2, the 2n-by-2

matrix Vk is symplectic. We have, R(A) = span{AU} = span
{

AU [p]
}
⊕ span

{
AU [s]

}
, where U [p] = U(:,1 : 2p) and

U [s] =U(:,2p+1 : m). Therefore,

w ∈ span
{

AU [p]
}
=⇒ w = AU [p]z, where z ∈ R2p

=⇒ AT Jw =
(
AT JA

)
U [p]z

=⇒ AT Jw =U [p]

(
0p Σ 2

p

−Σ 2
p 0p

)
z
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and
w ∈ span

{
AU [s]

}
=⇒ w = AU [s]y, where y ∈ Rm−2p

=⇒ AT Jw =
(
AT JA

)
U [s]y = 0Rm .

Thus,

w ∈ span
{

AU [p]
}
∩ span

{
AU [s]

}
=⇒


w = AU [p]z, where z ∈ R2p

AT Jw =U [p]

(
0p Σ 2

p

−Σ 2
p 0p

)
z = 0Rm

=⇒ z = 0R2p and then w = 0R2n .

This proves span
{

AU [p]
}
∩ span

{
AU [s]

}
= {0R2n}. As a consequence, we have dim(span

{
AU [p]

}
) = 2p and

dim(span
{

AU [s]
}
) = q = r − 2p, where r is the rank of A. The null space N (A) of the matrix A verifies

N (A)⊂ span
{

U [s]
}

.

Suppose that N (A) = span
{

U [s] (:,q+1 : m−2p)
}

= span{U (:,2p+q+1 : m)}. We then set v j = Au j for

j = 2p+ 1, · · · ,r = 2p+ q. As v j = Au j where u j ∈N (AT JA), then (v j)2p+1≤ j≤r are J-orthogonal and V T
k Jv j = 0 for

all 1 ≤ k ≤ p and 2p+ 1 ≤ j ≤ r. Let us construct the 2n-by-r matrix V as follow: V =
p
∑

k=1
Vk
[
ek ep+k

]T
+

r
∑

j=2p+1
v jeT

j

where ei is the ith canonical basis vector of Rr. We have V T J2nV =

 0p Ip 0
−Ip 0p 0

0 0 0q

. And let’s the m-by-m

orthogonal matrix Q given by Q =
p
∑

k=1
UkJT

2
[
ek ep+k

]T
+

m
∑

j=2p+1
u jeT

j , here ei is the ith canonical basis vector of Rm. We

have

AQ =V

Σp 0 0
0 Σp 0
0 0 Iq×(m−2p)

 .

Step 1: As V1 = [v1,vp+1] ∈ R2n×2 verifies V J
1 V1 = I2, then the symplectic reflector S1 = (V1 +E1)(I2 +EJ

1V1)
−1(V1 +

E1)
J − I2n verifies S1V1 = E1. From the J-orthogonality given above, we have (S1V1)

T J (S1v j) = ET
1 J (S1v j) = 0 for all

j ̸= 1 and j ̸= p+1. Thus, the 1st and the (n+1)th components of (S1v j) are equal to zero. We obtain

S1V =



n

p←−−−−−−−−−−−−→xy
1 0 · · · 0
0 ∗ · · · ∗
...

...
. . .

...
0 ∗ · · · ∗

p←−−−−−−−−−−→
0 0 · · · 0
0 ∗ · · · ∗
...

...
. . .

...
0 ∗ · · · ∗

r−2p←−−−−−−−−−−−→
0 0 · · · 0
∗ · · · · · · ∗
...

. . . . . .
...

∗ · · · · · · ∗

n

xy
0 0 · · · 0
0 ∗ · · · ∗
...

...
. . .

...
0 ∗ · · · ∗

1 0 · · · 0
0 ∗ · · · ∗
...

...
. . .

...
0 ∗ · · · ∗

0 0 · · · 0
∗ · · · · · · ∗
...

. . . . . . ∗
∗ · · · · · · ∗


.

We can therefore update the value of V : V ←− S1V .

Step 2: V2 = [v2,vp+2] ∈ R2n×2 again verifies V J
2 V2 = I2. Then, the symplectic reflector

S2 = (V2 + E2)(I2 + EJ
2V2)

−1(V2 + E2)
J − I2n is such that S2V2 = E2. Again, from the J-orthogonality, we have

ET
2 J (S2v j) = 0 for all j ̸= 2 and j ̸= p+ 2. Thus, the 2nd and the (n+ 2)th components of (S2v j) are equal to zero. We
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obtain

S2V =



n

p←−−−−−−−−−−−−−−−−→xy

1 0 · · · · · · 0
0 1 0 · · · 0
0 0 ∗ · · · ∗
...

...
...

. . .
...

0 0 ∗ · · · ∗

p←−−−−−−−−−−−−−−−→
0 0 · · · · · · 0
0 0 · · · · · · 0
0 0 ∗ · · · ∗
...

...
...

...
...

0 0 ∗ · · · ∗

r−2p←−−−−−−−−−−→
0 0 · · · 0
0 0 · · · 0
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

n

xy

0 0 · · · · · · 0
0 0 0 · · · 0
0 0 ∗ · · · ∗
...

...
...

. . .
...

0 0 ∗ · · · ∗

1 0 · · · · · · 0
0 1 0 · · · 0
0 0 ∗ · · · ∗
...

...
...

. . .
...

0 0 ∗ · · · ∗

0 0 · · · 0
0 0 · · · 0
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗



.

Continuing until the pth step, we obtain

SpV =



n

p←−−−−−−−−−→xy

1 0 · · ·
...

. . .
...

0 0 1
...

...
...

0 0 0

p←−−−−−−−−→
0 0 · · ·
...

. . .
...

0 0 0
...

...
...

0 0 0

r−2p←−−−−−−−−−−→
0 0 · · · 0
0 0 · · · 0
0 0 · · · 0
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

n

xy

0 0 · · ·
...

. . .
...

0 0 0
...

...
...

0 0 0

1 0 · · ·
...

. . .
...

0 0 1
...

...
...

0 0 0

0 0 · · · 0
0 0 · · · 0
0 0 · · · 0
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗



.

We can therefore update the value of V : V ←− SpV . As rank(V ) = rank(A) = r = 2p+ q and according to the lemma
above, there exist q reflectors Sp+1,Sp+2, · · · ,Sp+q such that V ←− Sp+q (· · ·Sp+2 (Sp+1V )) is reduce as follows:

V =

 In×p 0n×p

0p×q

R
0(n−(p+q))×q

0n×p In×p 0n×q


where R ∈ R(r−2p)×(r−2p) is nonsingular triangular matrix. By setting

Sp+q+1 = diag(Ip,R−1, I(n−(p+q)), Ip,R, I(n−(p+q)))

which is a symplectic matrix, V ←− Sp+q+1V is finally in the following form:

V =

 In×p 0n×p

0p×q

Iq

0(n−(p+q))×q

0n×p In×p 0n×q

 .
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Let S = Sp+q+1Sp+q · · ·S2S1. We then have

SAQ =

 In×p 0n×p

0p×q

Iq

0(n−(p+q))×q

0n×p In×p 0n×q




Σp 0 0
0 Σp 0
0 0 Iq×(m−2p)

=


Σp

0(n−p)×p
0n×p

0p×(m−2p)

Iq 0q×(m−2p)

0(n−(p+q))×(m−2p)

0n×p
Σp

0(n−p)×p
0n×(m−2p)

 .

which corresponds to the hypothesized form.

4 Algorithm ( Symplectic SVD-like algorithm)

Input : Matrix A ∈ R2n×m.

Output : A symplectic matrix S ∈ R2n×2n, an orthogonal matrix Q ∈ Rm×m and the desired SVD-like decomposition.

1. Compute a canonical Schur form of skew-symmetric matrix M = AT JA ∈ Rm×m such that

UMUT =

 0p Σ 2
p 0

−Σ 2
p 0p 0

0 0 0m−2p

 .

2. For k = 1, · · · , p, where 2p = rank(M)

Compute Vk =
1
σk

AUkJT
2 where Uk =U [ek ep+k].

End For
3. Set v j = Au j for j = 2p+1, · · · ,r with r = rank(A) = 2p+q.

4. Set V =
p
∑

k=1
Vk[ek ep+k]

T +
r
∑

k=2p+1
v jeT

j

and Q =
p
∑

k=1
UkJT

2 [ek ep+k]
T +

m
∑

k=2p+1
u jeT

j .

5. Set S = I2n and
For k = 1, · · · , p
Compute a symplectic reflector Sk associated to Vk

Update V ← SkV and S← SSk.

End For
6. For k = 1, · · · ,q = r−2p
Using lemma 2.2, we can compute a symplectic reflector Sk associated with vk.

Update V ← SkV with

SkV =

 In×p 0n×p

0p×q

R
0(n−(p+q))×q

0n×p In×p 0n×q


and S← SSk.

End For
7. Updating V ← Sp+q+1V and S← SSp+q+1

where Sp+q+1 = diag(Ip,R−1, I(n−(p+q)), Ip,R, I(n−(p+q))).

with R =V (p+1 : p+q,2p+1 : r)
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8. SAQ = Σ =


Σp 0 0 0
0 0 Iq 0
0 0 0 0
0 Σp 0 0
0 0 0 0

.

Computation of the symplectic SVD-like decomposition of a 2n-by-m matrix A can be viewed as solving an eigenvalue
problem of Hamiltonain JAAT without having to compute the product of the full matrix, as we shown in the first example
below. Let A be a 2n-by-m rectangular matrix. Using algorithm 3.1, we obtain the following result:

SAQ = Σ =


Σp 0 0 0
0 0 Iq 0
0 0 0 0
0 Σp 0 0
0 0 0 0

 .

Therefore,

JAAT = Σ = SJ



0 0 0 Σ 2
p 0 0

qw < 0 0 0 0 0 0
0 0 0 0 0 0
−Σ 2

p 0 0 0 0 0
0 −Iq 0 0 0 0
0 0 0 0 0 0


S

which is the structured canonical form of Hamiltonian matrix JAAT .

5 Numerical examples

We show here the results of numerical tests to compare the method shown in algorithm 3.1 with that of Xu [17]. We
computed the eigenvalues of Hamiltonian matrix JAAT and calculated the error of symplectic SVD-like decomposition.
these experiments were carried out with Matlab 7.8.0 (R2009a) and run on a Core Duo Pentium processor.

Let A be a rectangular matrix, defined as follows:

A = Q


Σ 0 0 0 0 0
0 I 0 0 0 0
0 0 0 Σ 0 0
0 0 0 0 0 0

UT

where Q is a random orthogonal matrix and U is a 14×14 random orthogonal symplectic matrix. We calculated the error
that occurred when computing the symplectic SVD-like decomposition and compared the relative errors in the computed
eigenvalues for Hamiltonian matrix JAAT obtained by the proposed method and that of Xu [17].

• Σ = diag(4,3,2,1), the error in computing symplectic SVD-like decomposition was 1.1743e− 014 with our method
and 1.1897e− 014 with that of Xu. The relative errors for nonzero eigenvalues with the two methods are shown in the
table below:

eigenvalue Algorithm3.1 Xu [17]
±16i 2.2204e−015 2.8e−014
±9i 1.1842e−015 5.3e−015
±4i 2.2204e−015 1.2e−013
±i 1.3323e−015 6.9e−015
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• Σ = diag(10−2,10−1,1,102), the error in computing symplectic SVD-like decomposition was 4.3215e−009 with our
method and 148.4 with that of Xu. As in the previous example, although the eigenvalues are computed correctly by
Xu’s method, computation of the symplectic SVD-like decomposition was incomplete. The relative errors for nonzero
eigenvalues with the two methods are shown in the table bellow:

eigenvalue Algorithm3.1 Xu [17]
±104i 1.5421e−015 6.4681e−015
±i 3.2846e−014 6.4567e−014
±10−2i 5.4357e−012 8.5701e−012
±10−4i 3.5356e−009 5.1430e−009

• Σ = diag(10−4,10−2,1,102), the error in computing symplectic SVD-like decomposition was 1.9411e−008 with our
method and 172.4 with that of Xu. As in the previous example, although the eigenvalues are computed correctly by
Xu’s method, computation of the symplectic SVD-like decomposition was incomplete. The relative errors for nonzero
eigenvalues with the two methods are shown in the table below:

eigenvalue Alg3.1 Xu method[17]
±104i 1.0914e−015 9.0541e−015
±i 1.2679e−013 1.3e−015
±10−4i 1.5679e−009 5.7e−012
±10−8i 1.6254e−006 4.3456e−010

In this example, the relative error of the computed eigenvalue corresponding to λ = 10−8 given by matlab was 12.6377
and the absolute error was 1.2638e−007.

6 Conclusion

We have presented a numerical method for computing symplectic SVD-like decomposition. It is based on the canonical
Schur-form of skew-symmetric matrix, as used by Xu [16,17]. The canonical form of the skew-symmetric matrix AJAT ,
the Hamiltonian matrix JAT A and the skew-Hamiltonian matrix AJA can be derived from such a decomposition. The
numerical examples presented show the effectiveness of proposed algorithm.
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