New Trends in Mathematical Sciences

Some operators on Hilbert sequence spaces of generalized means

Sonali Magotra

Department of Mathematics, Baba Ghulam Shah Badshah University, Rajouri, Jammu & Kashmir

Received: 27 March 2016, Revised: 27 March 2016, Accepted: 29 March 2016 Published online: 10 April 2016

Abstract: The idea of sequence spaces of generalized means has recently been introduced by Mursaleen and Noman [2]. In this paper, we study bounded weighted composition operators on some Hilbert sequence spaces of generalized means.

Keywords: Multiplication operators, composition operators, weighted composition operators, Hilbert sequences spaces, sequence spaces of generalized means.

1 Introduction and preliminaries

By w, we denote the space of all complex sequences. If $x \in w$, then we simply write $x = (x_k)$ instead of $x = (x_k)_{k=0}^{\infty}$. Also, we write ϕ for the set of all finite sequences that terminate in zeros. Further, we shall use the conventions that e = (1, 1, 1, ...) and $e^{(k)}$ is the sequence whose only non-zero term is 1 in the k^{th} place for each $k \in \mathbb{N}$, where $\mathbb{N} = \{0, 1, 2, ...\}$.

Any vector subspace of w is called a *sequence space*. We shall write ℓ_{∞} , c and c_0 for the sequence spaces of all bounded, convergent and null sequences, respectively. Further, by ℓ_p $(1 \le p < \infty)$, we denote the sequence space of all p-absolutely convergent series, that is $\ell_p = \{x = (x_k) \in w : \sum_{k=0}^{\infty} |x_k|^p < \infty\}$. The spaces ℓ_{∞} , c and c_0 are Banach spaces with the usual sup-norm given by $||x||_{\infty} = \sup_k |x_k|$. Also, the space ℓ_p $(1 \le p < \infty)$ is a Banach space with the usual ℓ_p -norm defined by $||x||_p = (\sum_{k=0}^{\infty} |x_k|^p)^{1/p}$.

For p = 2, ℓ_2 is the Hilbert space under the inner product defined as

$$\langle x, y \rangle = \sum_{n=0}^{\infty} x_n \bar{y}_n \ \forall x, y \in \ell_2.$$

Throughout this paper, let \mathscr{U} and \mathscr{U}_o be the following sets of sequences

 $\mathscr{U} = \{ u = (u_k) \in w : u_k \neq 0 \text{ for all } k \} \text{ and } \mathscr{U}_0 = \{ u = (u_k) \in w : u_0 \neq 0 \}.$

Let $r, t \in \mathcal{U}$ and $s \in \mathcal{U}_o$. For any sequence $x = (x_n) \in w$, we define the sequence $\bar{x} = (\bar{x}_n)$ of generalized means of x by

$$\bar{x}_n = \frac{1}{r_n} \sum_{k=0}^n s_{n-k} t_k x_k; \quad (n \in \mathbb{N}),$$
(1)

^{© 2016} BISKA Bilisim Technology

that is $\bar{x}_n = (s * tx)_n / r_n$ for all $n \in \mathbb{N}$. Further, we define the infinite matrix $\bar{A}(r, s, t)$ of generalized means by

$$(\bar{A}(r,s,t))_{nk} = \begin{cases} s_{n-k}t_k/r_n; & (0 \le k \le n), \\ 0; & (k > n), \end{cases}$$
(2)

for all $n, k \in \mathbb{N}$. Then, it follows by (1) that \bar{x} is the $\bar{A}(r, s, t)$ -transform of x, that is $\bar{x} = (\bar{A}(r, s, t))x$ for all $x \in w$. It is obvious by (2) that $\bar{A}(r, s, t)$ is a triangle. Moreover, it can easily be seen that $\bar{A}(r, s, t)$ is regular if and only if $s_{n-i} = o(r_n)$ for each $i \in \mathbb{N}$, $\sum_{k=0}^{n} |s_{n-k}t_k| = O(|r_n|)$ and $(s * t)_n/r_n \to 1$ $(n \to \infty)$.

Now, since $\bar{A}(r,s,t)$ is a triangle, it has a unique inverse which is also a triangle. More precisely, we put $D_0^{(s)} = 1/s_0$ and

$$D_n^{(s)} = \frac{1}{s_0^{n+1}} \begin{vmatrix} s_1 & s_0 & 0 & 0 & \cdots & 0 \\ s_2 & s_1 & s_0 & 0 & \cdots & 0 \\ s_3 & s_2 & s_1 & s_0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ s_{n-1} & s_{n-2} & s_{n-3} & s_{n-4} & \cdots & s_0 \\ s_n & s_{n-1} & s_{n-2} & s_{n-3} & \cdots & s_1 \end{vmatrix}; \quad (n = 1, 2, 3, \ldots).$$

Then, the inverse of $\bar{A}(r,s,t)$ is the triangle $\bar{B} = (\bar{b}_{nk})_{n,k=0}^{\infty}$ defined by

$$\bar{b}_{nk} = \begin{cases} (-1)^{n-k} D_{n-k}^{(s)} r_k / t_n; & (0 \le k \le n), \\ 0; & (k > n) \end{cases}$$
(3)

for all $n, k \in \mathbb{N}$. Therefore, we have by (1) that

31

BISKA

$$x_n = \frac{1}{t_n} \sum_{k=0}^n (-1)^{n-k} D_{n-k}^{(s)} r_k \bar{x}_k; \quad (n \in \mathbb{N}).$$
(4)

Recently, Mursaleen and Noman (c.f. [2]) defined the set X(r,s,t) as the matrix domain of the triangle $\overline{A}(r,s,t)$ in X, that is

$$X(r,s,t) = \left\{ x = (x_k) \in w : \bar{x} = \left(\frac{1}{r_n} \sum_{k=0}^n s_{n-k} t_k x_k \right)_{n=0}^\infty \in X \right\}.$$
 (5)

The space $\bar{\ell}_p \ (1 \le p < \infty)$ is a Banach space with the norm

$$\|x\|_{\bar{\ell}_p} = \|\bar{x}\|_{\ell_p} = \left(\sum_{n=0}^{\infty} \left|\frac{1}{r_n}\sum_{k=0}^n s_{n-k}t_k x_k\right|^p\right)^{1/p}.$$

For p = 2, $\overline{\ell}_2$ is a Hilbert space under the inner product

$$\langle x, y \rangle = \langle \Lambda x, \Lambda y \rangle$$

where $(\Lambda x)(n) = \frac{1}{r_n} \sum_{k=0}^n s_{n-k} t_k x_k, n \in \mathbb{N}.$

The set $(b_n^{(k)})_{n=0}^{\infty}$ where

$$b_n^{(k)} = \begin{cases} 0; \ (n < k), \\ (n \in \mathbb{N}) \\ (-1)^{n-k} D_{n-k}^{(s)} r_k / t_n; \ (n \ge k). \end{cases}$$
(6)

Quite recently in [3], authors studied bounded composition and multiplication operators and weighted composition operators (c.f. [4]) on some Hilbert sequence spaces ℓ_p^{λ} (c.f. [1]) which is an special case of $\bar{\ell}_p$. In this paper, we study such operators on $\bar{\ell}_p$.

2 Composition and multiplication operators

In this section we obtain a condition for bounded composition operators.

Theorem 1. Let $T: N \to N$ be a mapping. Then $C_T: \ell_p \to \overline{\ell}_p, 1 \le p < \infty$ is bounded if there exist M > 0 such that

$$\sharp(T^{-1}(\{n\})) \le M \ \forall \ n \in N.$$

Proof. For $x \in \ell_p$, consider

$$|C_{T}x||_{\tilde{\ell}_{p}}^{p} = \sum_{n=0}^{\infty} |\frac{1}{r_{n}} \sum_{k=0}^{n} s_{n-k} t_{k} x_{T(k)}|^{p}$$

$$\leq \sum_{n=0}^{\infty} \left[\sum_{k=0}^{n} (\frac{s_{n-k} t_{k}}{r_{n}})^{1/p} |x_{T(k)}| (\frac{s_{n-k} t_{k}}{r_{n}})^{1/q} \right]^{p}$$

$$\leq \sum_{n=0}^{\infty} \left[\sum_{k=0}^{n} (\frac{s_{n-k} t_{k}}{r_{n}}) |x_{T(k)}|^{p} (\sum_{k=0}^{n} (\frac{s_{n-k} t_{k}}{r_{n}}))^{p/q} \right]$$
(by Holder's inequality)

 $\sum_{n=1}^{\infty} \sum_{k=1}^{n} \sum_{k$

$$\leq \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} (\frac{x - k \cdot k}{r_n}) |x_{T(k)}|^p$$

$$\leq \sum_{k=0}^{\infty} (s_{n-k}t_k) |x_{T(k)}|^p \sum_{n=k}^{\infty} \frac{1}{r_n}$$

$$\leq L \sum_{k=0}^{\infty} |x_{T(k)}|^p, \quad \text{where } L = \sup_k (s_{n-k}t_k) \sum_{n=k}^{\infty} \frac{1}{r_n} < \infty$$

$$= L \sum_{k=0}^{\infty} \sum_{m \in T^{-1}(k)} |x_{T(m)}|^p$$

$$= L \sum_{k=0}^{\infty} \sum_{m \in T^{-1}(k)} |x_k|^p$$

$$\leq LM \sum_{k=0}^{\infty} |x_k|^p$$

$$= LM ||x||_p^p.$$

Therefore we conclude that C_T is a bounded operator.

Corollary 1. If $T: N \to N$ is a constant function, then C_T is not a bounded operator on $\overline{\ell}_p$.

© 2016 BISKA Bilisim Technology

Proof. Suppose $T : \mathbb{N} \to \mathbb{N}$ is a constant function. Then $T(n) = n_0 \quad \forall n \in \mathbb{N}$. Take $x \in \overline{\ell}_p$ such that $x_{n_0} \neq 0$. Then from the equality

$$\| C_T x \|_{\bar{\ell}_p}^p = \sum_{n=0}^{\infty} |\frac{1}{r_n} \sum_{k=0}^n s_{n-k} t_k x_{T(k)}|^p$$
$$= \sum_{n=0}^{\infty} \frac{1}{r_n^p} |\sum_{k=0}^n s_{n-k} t_k x_{n_0}|^p$$
$$= \sum_{n=0}^{\infty} \frac{1}{r_n^p} |r_n x_{n_0}|^p$$
$$= \sum_{n=0}^{\infty} |x_{n_0}|^p$$
$$= \infty$$

Thus C_T is not bounded operator.

33

Example 1. Let $T : N \to N$ be defined by T(n) = n + 1 and $s_n = 1$ for each n. Let $r_n = \sum_{k=0}^n t_k = n^2$ for all n. Then, for any $x \in \ell_2$,

$$\| C_T x \|_{\tilde{\ell}_p}^2 = \sum_{n=0}^{\infty} |\sum_{k=0}^n \frac{s_{n-k} t_k}{r_n} x_{T(k)}|^2$$

$$\leq \sum_{k=0}^{\infty} (k^2 - (k-1)^2) |x_{k+1}|^2 \sum_{n=k}^{\infty} \frac{1}{n^4}$$

$$= \sum_{k=0}^{\infty} |x_{k+1}|^2 (2k-1) \sum_{n=k}^{\infty} \frac{1}{n^4}$$

$$= M \sum_{k=0}^{\infty} |x_{k+1}|^2, \quad \text{where } M = \sup_k (2k-1) \sum_{n=k}^{\infty} \frac{1}{n^4} < \infty$$

$$= M \| x \|^2.$$

Hence $C_T: \ell_2 \to \bar{\ell}_p$ is a bounded operator, that is, the unilateral shift operator is a bounded operator on $\bar{\ell}_p$.

In the next result we consider the multiplication operators.

Theorem 2. Let $\theta : N \to C$ be a bounded function. Then $M_{\theta} : \ell_p \to \overline{\ell}_p$ is a bounded operator.

Proof. Suppose θ is a bounded function. Then $\exists M > 0$ such that

$$|\boldsymbol{\theta}(n)| \leq M \quad \forall \quad n \in N.$$

For $x \in \ell_p$, consider

$$\| M_{\theta} x \|_{\tilde{\ell}_{p}}^{p} = \sum_{n=0}^{\infty} |\sum_{k=0}^{n} \frac{s_{n-k} t_{k}}{r_{n}} \theta(k) x_{k}|^{p}$$

$$\leq \sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{s_{n-k} t_{k}}{r_{n}} |\theta(k)|^{p} |x_{k}|^{p}$$

$$= \sum_{k=0}^{n} t_{k} |\theta(k)|^{p} |x_{k}|^{p} \sum_{n=k}^{\infty} \frac{s_{n-k}}{r_{n}}$$

$$\leq M^{p} L \sum_{k=0}^{\infty} |x_{k}|^{p}, \quad \text{where } L = \sup_{k} t_{k} \sum_{n=k}^{\infty} \frac{s_{n-k}}{r_{n}} < \infty$$

$$= M^{p} L \| x \|^{p}.$$

Hence $||M_{\theta}x|| \le t ||x||$ where $t = ML^{\frac{1}{p}}$ This proves that M_{θ} is a bounded operator.

3 Weighted composition operators

Now, we study the weighted composition operators.

Theorem 3. Let $w : N \to C$ and $T : N \to N$ be two mappings. If there exists M > 0 such that

$$\sum_{m\in T^{-1}(k)}|w(m)|^p\leq M\quad\forall\ k\in N,$$

then $M_{w,T}: \ell_p \to \overline{\ell}_p$ is a bounded operator.

Proof. For $x \in \ell_p$, consider

$$\begin{split} \| M_{w,T}x \|_{\tilde{\ell}_{p}}^{p} &= \sum_{n=0}^{\infty} |\sum_{k=0}^{n} \frac{s_{n-k}t_{k}}{r_{n}} w(k)x_{T(k)}|^{p} \\ &\leq \sum_{n=0}^{\infty} [\sum_{k=0}^{n} \frac{s_{n-k}t_{k}}{r_{n}} |(w(k)|.|x_{T(k)}|]^{p} \\ &= \sum_{k=0}^{\infty} t_{k} |w(k)|^{p} |x_{T(k)}|^{p} \sum_{n=k}^{\infty} \frac{s_{n-k}}{r_{n}} \\ &= \sum_{m=0}^{\infty} t_{m} |w(m)|^{p} |x_{T(m)}|^{p} \text{ where } L = \sup_{m} t_{m} \sum_{n=m}^{\infty} \frac{s_{n-k}}{r_{n}} < \infty \\ &= L \sum_{m=0}^{\infty} (\sum_{k \in T^{-1}(m)} |w(k)|^{p}) |x_{m}|^{p} \\ &\leq ML \sum_{m=0}^{\infty} |f(m)|^{p} \\ &= LM \| x \| \|_{p}^{p}. \end{split}$$

Hence $|| M_{w,T} x || \le t || x ||_p \quad \forall x \in \ell_p$, where $t = (LM)^{\frac{1}{p}}$. This proves that $M_{w,T}$ is a bounded operator.

Acknowledgement. The author of this paper is very thankful to Prof. S.D Sharma, Head, Department of Mathematics, Central University of Jammu, J& K, for his kind help and suggestions.

References

- [1] M. Mursaleen and A.K. Noman, On some new sequence spaces of non-absolute type related to the spaces ℓ_p and ℓ_{∞} I, Filomat, 25(2) (2011) 33-51.
- [2] M. Mursaleen and A.K. Noman, On generalized means and some related sequence spaces, Comput. Math. Appl., 61 (2011) 988-999.
- [3] C. Shekhar, B.S. Komal and M. Mursaleen, Operators on Hilbert spaces of sequences, Thai J. Math., 13(1) (2015) 1-8.

[4] R.K. Singh and B.S. Komal, Composition operators on ℓ_p and its adjoint, Proc. Amer. Math. Soc., 70(1978) 21-25.