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Abstract: In this paper numerical studies for the variable-order fractional delay differential equations are presented. Adams-Bashforth-
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1 Introduction

Variable-order fractional calculus i.e., the fractional differentiation and integration of variable order is the generalization
of classical calculus and fractional calculus, which were invented by Newton and Leibnitz hundreds of years ago. Now
the study on it becomes a hotpot in recent ten years. It has turned out that many problems in physics, biology,
engineering, and finance can be described excellently by models using mathematical tools from variable-order fractional
calculus.

In real world systems, delay is very often encountered in many practical systems, such as control systems [1], lasers,
traffic models [2], metal cutting, epidemiology, neuro science, population dynamics [3], chemical kinetics [4] etc.
Delayed fractional differential equations FDEs are correspondingly used to describe such dynamical systems. In recent
years, delayed FDEs begin to arouse the attention of many researchers [5,2]. Simulating these equations is an important
technique in the research; accordingly, finding effective numerical methods for the delayed FDEs is a necessary process.
The effective methods and their development for numerically solving fractional differential equations (FDEs) have
received increasing attention over the last few years. Several methods based on Caputo or Riemann-Liouville definitions
[9] have been proposed and analyzed. For instance, based on the predictor-corrector scheme, Diethelm et al. introduced
Adams-Bashforth-Moulton algorithm [6,7], and mean while some error analysis presented to improve the numerical
accuracy. In recent years, the application of the method is extended to more concrete physical and mathematical models
[11]. Variable order differential equations, i.e., differential equations where the order of the derivative changes with
respect to either the dependent or the independent variables, have not received as much attention as fractional order
systems, despite of the ability of variable order formulations to model continuous spectral behavior in complex
dynamics. Many authors have introduced different definitions of variable order differential operators, each of these with
a specific meaning to suit desired goals. These definitions such as Riemann-Liouville, Grunwald, Caputo, Riesz
([9],[10]), and some notes as Coimbra definition [8]. The main aim of this paper is to study numerically the
variable-order fractional delay differential equations (FDDEs) by using the Adams- Bashforth-Moulton method.
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This paper is organized as follows. In Section 1, we give some definitions and mathematical tools of variable-order
fractional calculus. In Section 2, we introduce the known Adams- Bashforth-Moulton method; moreover, the
effectiveness of the Adams-Bashforth-Moulton method for solving variable-order fractional differential equation is
illustrated. In Section 3, we give an introduction of SI Model and we present the Existence and Uniqueness of SI Model.
In section 5 we present solution of SI Model by using Adams-Bashforth-Moulton method , the conclusion is given in
Section 6.

2 Some mathematical tools

In this part, we give some definitions of fractional derivative and variable-order derivative ([12],[13]).

Definition 1. let f ∈Cα and α ≥ 0 then the (left-sided) Riemann-Liouville integral of order µ , µ > 0 is given by

Iµ
t f (t) =

1
Γ (µ)

t∫
0

(t − τ) f (τ)dτ, t > 0.

Definition 2. The (left sided) Caputo fractional derivative of f , f ∈Cm
−1, m ∈ N ∪{0} , is defined as

Dµ
t f (t) =

{
dm

dtm f (t) , µ = m
Im−µ
t

dm f (t)
dtm , m−1 ≤ µ ≤ m, m ∈ N

Note that for m−1 ≤ µ ≤ m, m ∈ N,

Iµ
t Dµ

t f (t) = f (t)−
m−1

∑
k=0

dk f (0)
dtk

tk

k!

Iµ
t tν =

Γ (ν +1)
Γ (µ +ν +1)

tµ+ν .

Definition 3. Let α (t) be a positive real number, f ∈Cm[0,T ], t ≤ T and m = [max0≤t≤T T {α (t)} ]+1. Then

Dα(t) f (t) = lim
hN→0

1

hα(t)
N

N

∑
k=0

(−1)k
(

α (t)
k

)
f (t − khN). (1)

With hN =(t −0)
/

N being called the Grunwald-Letnikov variable-order fractional derivative of order α (t) of the function
f.

Definition 4. The Riemann-Liouville variable order derivative is defined as follows:

Dα(t)
t f (t) =

1
Γ (m−α (t))

(
dm

dtm

) t∫
0

(t − τ)m−1−α(τ) f (τ)dτ (2)

Where m = [max0≤t≤T{α (t)}]+1,m ∈ N provided the right side is point wise defined on t > 0.
Let α(t)> 0, be a continuous and bounded function, f(τ) ∈ Cm[0, t], and 0 ≤ τ ≤ t. then

Dα(t)
t f(t) =

 1
Γ (m−α(t))

t∫
0

f (τ)
(t−τ)α(τ)+1−m dτ, m−1 ≤ α (t)≤ m

dm

dtm f (t) , α (t) = m.

(3)

Is called the Caputo variable-order fractional derivative of f (t)where m = [max0≤t≤T{α(t)}]+1,m ∈ N and Γ () is the
Gamma function.
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3 The Adams-Bash forth-Moulton Method [16]

In the following we apply the Adams-Bash forth-Moulton predictor-corrector method to implement the numerical solution
of variable-order nonlinear FDDEs. Let us consider the following variable-order fractional system:

Dα(t)
t y(t) = f(y(t),y(t−τ)), t ∈ [0,T],0 <α(t)≤ 1, (4)

y(t) = g(t), t ∈ [−τ,0] (5)

where f is in general a nonlinear function.

Also, consider a uniform grid {tn= nh : n =−k,−k+1, ..,−1,0,1, ...,N} where k and N are integers such that h = τ/k.
Let

yh (t j)= g(t j) , j =−k,−k+1, ...,−1,0. (6)

And note that
yh(t j−τ) =yh(jh−kh) =yh(tj−k), j = 0,1,2, ...,N. (7)

Applying Iα(tn+1)
tn+1

on both sides of (4) and using (5), we claim to:

yh(tn+1) = g(0)+
1

Γ (α (tn+1))

tn+1∫
0

(tn+1 −ξ )α(tn+1)−1 f (y(ξ ) ,y(ξ − τ))dξ (8)

Further the integral in equation (8) is evaluated using product trapezoidal quadrature formula. Then we have the following
corrector formula:

yh(tn+1) = g(0)+
hα(tn+1)

Γ (α (tn+1)+2)
f (y(tn+1) ,y((tn+1)− τ))+

hα(tn+1)

Γ (α (tn+1)+2)

n

∑
j=0

a j,n+1 f (t j,yh (t j) ,yh (t j − τ)) ,

or

yh(tn+1) = g(0)+
hα(tn+1)

Γ (α (tn+1)+2)
f (y(tn+1) ,y(tn+1−k))+

hα(tn+1)

Γ (α (tn+1)+2)

n

∑
j=0

a j,n+1 f
(
t j,yh (t j) ,yh

(
t j−k
))

, (9)

where

a j,n+1 =


nα(tn+1)+1 − (n−α (tn+1))(n+1)α(tn+1) j = 0,
(n− j+2)α(tn+1)+1 +(n− j)α(tn+1)−2(n− j+1)α(tn+1)+1 1 ≤ j ≥ n,
1 j = n+1,

(10)

yh
(
t j−k
)
≈ νn+1 =

{
δyn−m+2 +(1−δ )yn−m+1, i f m > 1
δyp

n+1 +(1−δ )yn, i f m = 1
(11)

0 ≤ δ< 1 and the unknown term yh(tn+1) appears on both sides of (9). Due to nonlinearity of f equation (9) can’t be
solved explicitly for yh(tn+1), so we replace the term yh(tn+1) on the right hand side by an approximation yp

h
(tn+1) which

called predictor [15]. The product rectangle rule is used in (8) to evaluate predictor term

yp
h
(tn+1) = g(0)+

1
Γ (α (tn+1))

n

∑
j=0

b j,n+1 f (yh (t j) ,yh (t j − τ)) ,
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or

yp
h
(tn+1) = g(0)+

1
Γ (α (tn+1))

n

∑
j=0

b j,n+1 f
(
yh (t j) ,yh

(
t j−τ

))
, (12)

where

b j,n+1 =
hα(tn+1)

α (tn+1)

(
(n− j+1)α(tn+1)− (n− j)α(tn+1)

)
. (13)

Now we apply the mentioned method to determine the numerical solution of variable-order fractional system. Consider
the following variable-order fractional system:

Dα1(t)x = f1 (x,y,z) ,

Dα2(t)x = f2 (x,y,z) , (14)

Dα3(t)x = f3 (x,y,z) ,

With 0 <αi(t)≤ 1and initial condition (x0,y0,z0)According to the previous method, the system (14) can be discredited as
follows:

xn+1 = x0 +
hα1(tn+1)

Γ (α1 (tn+1)+2)
f1
(
xp

n+1,y
p
n+1,z

p
n+1

)
+∑ hα1(tn+1)y j,n+1

Γ (α1 (tn+1)+2)
f1 (x j,y j,z j) ,

yn+1 = y0 +
hα2(tn+1)

Γ (α2 (tn+1)+2)
f2
(
xp

n+1,y
p
n+1,z

p
n+1

)
+∑ hα2(tn+1)y2 j,n+1

Γ (α2 (tn+1)+2)
f2 (x j,y j,z j) , (15)

zn+1 = x0 +
hα3(tn+1)

Γ (α3 (tn+1)+2)
f3
(
xp

n+1,y
p
n+1,z

p
n+1

)
+∑ hα3(tn+1)y3 j,n+1

Γ (α3 (tn+1)+2)
f3 (x j,y j,z j) ,

where

xp
n+1 = x0 +∑

β1 j ,n+1

Γ (α1 (tn+1))
f1 (x j,y j,z j)

yp
n+1 = y0 +∑

β2 j ,n+1

Γ (α2 (tn+1))
f2 (x j,y j,z j) (16)

zp
n+1 = z0 +∑

β3 j ,n+1

Γ (α3 (tn+1))
f3 (x j,y j,z j) .

4 4- SI model

The SI Model is the simplest one among the epidemic models. That is why it is also called the Simple Model. We divide
the population just in the susceptible compartment S (t) and the infectious compartmentI (t). We do assume the disease to
be highly infectious but not serious, which means that the ineffective remain in contact with susceptible for all timet ≥ 0.
We also assume that the ineffective continue to spread the disease till the end of the epidemic, the population size to
be constant (S (t)+ I (t) = N) and homogeneous mixing of population. Infection rate is proportional to the number of
infective, i.e. β = rλ I We have a pair of ordinary differential equations for this model:

dS (t)
dt

=−rλS (t) I (t)

dI (t)
dt

= rλS (t) I (t) (17)
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where

N = S (t)+ I (t)

S (t) = N − I (t) (18)

and therefore we get
dI
dt

= rλ (t) [N − I (t)] . (19)

What is known as the logistic growth equation.

Fig. 1

4.1 Procedure solution of SI model by using Adams-Bash forth-Moulton method

At Now, we define the equations (17) at differential order α (t) ,α (t)then this model can be taking the following form:

Dα1(t)S =−rλS (t) I (t)

Dα2(t)S = rλS (t) I (t) . (20)

With initial conditions S(0) = 1, I(0) = 1 where

f1 (S, I) =−rλS (t) I (t)

f2 (S, I) = rλS (t) I (t) . (21)

By applying the Adams-Bash forth-Moulton Method on SI Model we see the following result

Sn+1 = S0 +
hα1(tn+1)y j,n+1

Γ (α1 (tn+1)+2)
f1
(
Sp

n+1, I
p
n+1

)
+∑ hα2(tn+1)y2 j,n+1

Γ (α2 (tn+1)+2)
f2 (S j, I j) ,

In+1 = I0 +
hα1(tn+1)y j,n+1

Γ (α1 (tn+1)+2)
f1
(
Sp

n+1, I
p
n+1

)
+∑ hα2(tn+1)y2 j,n+1

Γ (α2 (tn+1)+2)
f2 (S j, I j) , (22)

So

Sn+1 = 1+
hα1(tn+1)y j,n+1

Γ (α1 (tn+1)+2)
(
−rλSp

n+1Ip
n+1

)
+∑ hα2(tn+1)y2 j,n+1

Γ (α2 (tn+1)+2)
(−rλS jI j)

In+1 = 1+
hα1(tn+1)y j,n+1

Γ (α1 (tn+1)+2)
(
−rλSp

n+1Ip
n+1

)
+∑ hα2(tn+1)y2 j,n+1

Γ (α2 (tn+1)+2)
(rλS jI j) . (23)

Figs. 1 and 2 show the solutions S (t)and I (t)of system (17) for α= 1,h = 0.1and α= 0.5,h = 0.1.
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Fig. 2: The numerical behavior os system (17) at α = 1 and h = 0.1.

Fig. 3: The numerical behavior os system (17) at α = 0.5 and h = 0.1.

4.2 Convergent of SI model

Using equation (17), put α = α = α and use

Dα1 S (t) = σα,k

n

∑
j=0

ω(α)
j

[
Sn− j+1 −Sn− j

]
and

Dα2 S (t) = σα,k

n

∑
j=0

ω(α)
j

[
In− j+1 − In− j

]
,
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in [14]. Then by using the latest equations. So we have got

σα,k

n

∑
j=0

ω(α)
j

[
Sn− j+1 −Sn− j

]
+ rλSnIn = 0 F1

σα,k

n

∑
j=0

ω(α)
j

[
In− j+1 − In− j

]
− rλSnIn = 0 F2. (24)

We substituting for value of n = 1,2,3, ..., at n = 1 equation (24) become

σα,k

(
ω(α)

1 [S1 −S0]
)
+ rλS1I1 = 0

σα,k

(
ω(α)

1 [I1 − I0]
)
− rλS1I1 = 0. (25)

By using Jacobin matrix

(Jn) =

(
∂F1
∂Sn

∂F2
∂Sn

∂F1
∂ In

∂F1
∂ In

)
. (26)

Use (25) and (26) to evaluate

|J1|=

(
∂F1
∂S1

∂F2
∂S1

∂F1
∂ I1

∂F2
∂ I1

)
=

(
σα,kω(α)

1 + rλ I1 −rλ I1

rλS1 σα,kω(α)
1 + rλS1

)

So the determinant of Jacobin matrix equal to

|J1|=

∣∣∣∣∣σα,kω(α)
1 + rλ I1 −rλ I1

rλS1 σα,kω(α)
1 + rλS1

∣∣∣∣∣= (σα,kω(α)
1 + rλ I1

)(
σα,kω(α)

1 − rλS1

)
+ r2λ 2S1I1

= σ2
α,k

ω2 (α)
1 +σα,kω(α)

1 (rλ I1 − rλS1)− r2λ 2S1I1 + r2λ 2S1I1 = σ2
α,k

ω2 (α)
1 +σα,kω(α)

1 (rλ I1 − rλS1) (i).

At n = 2 equation (24) become

σα,k

(
ω(α)

1 [S1 −S0]+ω(α)
2 [S2 −S1]

)
+ rλS2I2 = 0

σα,k

(
ω(α)

1 [I1 − I0]+ω(α)
2 [I2 − I1]

)
− rλS2I2 = 0. (27)

By using Jacobin matrix

(J2) =

(
∂F1
∂S2

∂F2
∂S2

∂F1
∂ I2

∂F1
∂ I2

)
=

(
σα,kω(α)

2 + rλ I2 −rλ I2

rλS2 σα,kω(α)
2 + rλS2

)
. (28)

So the determinant of Jacobin matrix equal to

|J2|=

∣∣∣∣∣σα,kω(α)
2 + rλ I2 −rλ I2

rλS2 σα,kω(α)
2 + rλ I2

∣∣∣∣∣= (σα,kω(α)
2 + rλ I2

)(
σα,kω(α)

2 − rλS2

)
+ r2λ 2S2I2

= σ2
α,k

ω2 (α)
2 +σα,kω(α)

2 (rλ I2 − rλS2)− r2λ 2S2I2 + r2λ 2S2I2 = σ2
α,k

ω2 (α)
2 +σα,kω(α)

2 (rλ I2 − rλS2) (ii),

and so on
...
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At n equation (24) become

σα,k

(
ω(α)

1 [S1 −S0]+ ...+ω(α)
n [Sn −Sn−1]

)
+ rλSnIn = 0

σα,k

(
ω(α)

1 [I1 − I0]+ ...+ω(α)
n [In − In−1]

)
+ rλSnIn = 0. (29)

By using Jacobin matrix

(Jn) =

(
∂F1
∂Sn

∂F2
∂Sn

∂F1
∂ In

∂F1
∂ In

)
=

(
σα,kω(α)

n + rλ In −rλ In

rλSn σα,kω(α)
n + rλSn

)
. (30)

So the determinant of Jacobin matrix equal to

|Jn|=

∣∣∣∣∣σα,kω(α)
n + rλ In −rλ In

rλSn σα,kω(α)
n + rλ In

∣∣∣∣∣= (σα,kω(α)
n + rλ In

)(
σα,kω(α)

n − rλSn

)
+ r2λ 2SnIn

= σ2
α,k

ω2 (α)
n +σα,kω(α)

n (rλ In − rλSn)− r2λ 2SnIn + r2λ 2SnIn = σ2
α,k

ω2 (α)
2 +σα,kω(α)

2 (rλ I2 − rλS2) (iii).

By ((i) ,(ii) ,(iii)) SI model convergent uniformly If |Jn|= 0 then weather or σα,kω(α)
n = 0.

σα,kω(α)
n (rλ In − rλSn) = 0

σα,kω(α)
n = rλ (In −Sn) .

In this section, we study the numerical solution of the non-linear fractional SI model of the form:

Dα1(t)S =−rλS (t) I (t) ,
Dα2(t)S = rλS (t) I (t) ,

t > 0, 0 < α1,α2 ≤ 1. (31)

The parameter α (t) ,α (t) refers to the fractional order of the time derivative. With initial condition.

S (0) = S0, I (0) = I0. (32)

4.3 Existence and uniqueness of SI model

Let J = [0,1],T <∞ and C(J) be the class of all continuous functions defined on J, with the norm. ∥S∥= supt∈J
∣∣e−NtS (t)

∣∣,
∥I∥= supt∈J

∣∣e−Nt I (t)
∣∣ , N > 0, which is equivalent to the sup-norm ∥S∥= supt∈J |s(t)| , ∥I∥= supt∈J |I (t)| . To study the

existence and the uniqueness of the initial value problem of the fractional SI model (30), we suppose that the solution
S(t),I(t) belongs to the space B = {S, I ∈ ℜ : |S, I| ≤ b for any constant b The initial Value problem (32) has a unique
solution S, I ∈C (J).

Sl , Il ∈ X =
{

S, I ∈ L [0,1] ,∥S∥=
∥∥e−NtS (t)

∥∥L1,∥I∥=
∥∥e−NtS (t)

∥∥L1
}
.

Proof. Form properties of fractional calculus. The fractional differential equation (30) can be written as.

I1−α dS (t)
dt

=−rλS (t) I (t)

I1−α dI (t)
dt

= rλS (t) I (t) . (33)
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Operating with Iα so we obtain

S (t) = Iα [−rλS (t) I (t)]

I (t) = Iα [rλS (t) I (t)] . (34)

Now let us defined the operator F : C(J)→ C(J) by

FS (t) = Iα [−rλS (t) I (t)]

FI (t) = Iα [rλS (t) I (t)] . (35)

Then

(1)

e−Nt (FS1 −FS2) = e−Nt Iα [−rλS1 (t) I (t)+ rλS2 (t) I (t)]

= e−Nt Iα rλ I (t) [S2 (t)−S1 (t)]

≤
t∫

0

(t −S)α−1

Γ (α)
eN(t−s) (−rλ ) Iα I (t) [S2 (t)−S1 (t)]e−Nsds

≤ ∥I2 − I1∥
t∫

0

−rλSα−1e−Ns

Γ (α)
ds

There for we obtain
e−Nt (FS1 −FS2)≤ ∥S2 −S1∥ .

(2)
e−Nt (FI1 −FI2) = e−Nt Iα [−rλ I1 (t)S (t)+ rλ I2 (t)S (t)]

= e−Nt Iα rλS (t) [I2 (t)− I1 (t)]

≤
t∫

0

(t−S)α−1

Γ (α) eN(t−s) (−rλ ) Iα S (t) [I2 (t)− I1 (t)]e−Nsds

≤ ∥I2 − I1∥
t∫

0

−rλSα−1e−Ns

Γ (α) ds.

There for we obtain
e−Nt (FI1 −FI2)≤ ∥I2 − I1∥ .

And operator F given by (35) has a unique fixed point. Consequently the integral equation (32) has a unique
solution,S, I ∈C (J).

Now from equation (32), we formally have

(1)

S (t) =
tα

Γ (α +1)

[
(−rλS0I)+ Iα

(
−rλSlI

)]
,

and

dS (t)
dt

=
tα−1

Γ (α +1)

[
(−rλS0I)+ Iα

(
−rλSlI

)]
e−NtSl (t) = e−Nt

[
tα−1

Γ (α +1)

[
(−rλS0I)+ Iα

(
−rλSlI

)]]
.
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From which we can deduce that Sl ∈ C(J)and Sl ∈ X Now from Eq.(35), we get

dS (t)
dt

=
d
dt

Iα [−rλSI] ,

Iα−1 dS (t)
dt

= I1−α d
dt

[−rλSI] =
d
dt

I1−α Iα [−rλSI] ,

Dα S (t) =
d
dt

I [−rλSI] =−rλSI,

and

S (0) = Iα [−rλSI]t=0 = 0.

(2)

I (t) =
tα

Γ (α +1)

[
(−rλSI0)+ Iα

(
−rλSIl

)]
and

dI (t)
dt

=
tα−1

Γ (α +1)

[
(−rλSI0)+ Iα

(
−rλSIl

)]
e−Nt Il (t) = e−Nt

[
tα−1

Γ (α +1)

[(
−rλSIl

)
+ Iα

(
−rλSIl

)]]
.

From which we can deduce that Il ∈ C(J)and Il ∈ X now from Eq. (35), we get

dI (t)
dt

=
d
dt

Iα [rλSI] ,

Iα−1 dI (t)
dt

= I1−α d
dt

[rλSI] =
d
dt

I1−α Iα [rλSI] ,

Dα I (t) =
d
dt

I [rλSI] = rλSI,

and
I (0) = Iα [rλSI]t=0 = 0.

Then the integral equation (32) is equivalent to the initial value problem (31) and theorem is proved.

5 Conclusions

Variable-order fractional calculus has been highly neglected since it was proposed. Nevertheless, the scientific community
has found a large variety of applications which can be modeled and more clearly understood by using this branch of
mathematics. By using the Adams-Bash forth-Moulton method, we obtain the numerical solution of the variable-order
fractional SI Model We present a convergent of SI Model in section 4, also we prove that the Existence and Uniqueness
of SI Model. Moreover, we hope our work about variable-order fractional calculus would generate interest from related
scholars in the future and also hope that their work may result in significant contributions to this field.
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