

Generalized intuitionistic fuzzy ideals of hemirings

Asim Hussain and Muhammad Shabir

Quaid-i-Azam University, Islamabad, Pakistan

Received: 31 July 2015, Revised: 1 August 2015, Accepted: 27 August 2015 Published online: 10 April 2016

Abstract: In this paper we generalize the concept of quasi-coincident of an intuitionistic fuzzy point with an intuitionistic fuzzy set and define $(\in, \in \lor q_k)^*$ -intuitionistic fuzzy ideals of hemirings and characterize different classes of hemirings by the properties of these ideals.

Keywords: Intuitionistic fuzzy sub-hemiring, intuitionistic fuzzy ideal, fully idemotent hemiring, regular hemiring.

1 introduction

Dedekind introduced the modern definition of the ideal of a ring in 1894 and observed that the family Id(R) of all the ideals of a ring R obeyed most of the rules that the ring $(R, +, \cdot)$ did, but $(Id(R), +, \cdot)$ was not a ring. In 1934, Vandiver [25] studied an algebraic system, which consists of a non-empty set S with two binary operations "+" and "." such that S was semigroup under both the operations and $(S, +, \cdot)$ satisfies both the distributive laws but did no satisfy the cancellation law of addition. Vandiver named this system a 'semiring'. Semirings are common generalization of rings and distributive lattices. A hemiring is a semiring in which "+" is commutative and it has an absorbing element. Semirings (hemirings) appear in a natural manner in some applications to the theory of automata, formal languages, optimization theory and other branches of applied mathematics (see for example [9, 10, 11, 12, 18, 19]).

Zadeh introduced the concept of fuzzy set in his definitive paper [26] of 1965. Many authors used this concept to generalize basic notions of algebra. In 1971, Rosen feld [22] laid the foundations of fuzzy algebra. He introduced the notions of fuzzy subgroup of a group. Ahsan et al. [3] initiated the study of fuzzy semirings. Murali [20] defined the concept of belongingness of a fuzzy point to a fuzzy subset under a natural equivalence on fuzzy subset and Pu and Liu introduced the concept of quasicoincident of a fuzzy point with a fuzzy set in [21]. Bhakat and Das [5] used these ideas and defined (\in , $\in \forall q$)-fuzzy subgroup of a group which is a generalization of Rosenfeld's fuzzy subgroup. Many researchers used these ideas to define (α , β)-fuzzy substructures of algebraic structures (see [8, 15, 16, 23]).

Generalizing the concept of the quasi-coincident of a fuzzy point with a fuzzy subset, Jun [13] defined $(\in, \in \lor q_k)$ -fuzzy subalgebra in BCK/BCI-algebras. In [24] Shabir et al. characterized semigroups by the properties of $(\in, \in \lor q_k)$ -fuzzy ideals, quasi-ideal and bi-ideals. Jun et al. in [15] defined $(\in, \in \lor q_k)$ -fuzzy ideals of hemirings. Asghar et al. [17], defined $(\in, \in \lor q_k)$ -fuzzy bi-ideals in ordered semigroups.

On the other hand Atanassov [4] introduced the notion of intuitionistic fuzzy set which is a generalization of fuzzy set. Intuitionistic fuzzy hemirings are studied by Dudek in [7]. Coker and Demirici [6] introduced the notion of fuzzy point. In [14], Jun introduced the notion of (ϕ, ψ) -intuitionistic fuzzy subgroup of a intuitionistic group where

 $\phi, \ \psi \in \{\in, q, \in \lor q, \in \land q\} \text{ and } \phi \neq \in \land q.$

Generalizing the concept of quasi-coincident of an intuitionistic fuzzy point with an intuitionistic fuzzy set we define $(\in, \in \lor q_k)^*$ -intuitionistic fuzzy ideals of hemirings and characterize different classes of hemirings by the properties of these ideals.

2 Preliminaries

A semiring is a set *R* together with two binary operations addition "+" and multiplication " \cdot " such that (R, +) and (R, \cdot) are semigroups, where both algebraic structures are connected by the ring like distributive laws:

a(b+c) = ab+ac and (a+b)c = ac+bc

for all a, b and $c \in R$. An element $0 \in R$ is called a zero element of R if a + 0 = 0 + a = a and $0 \cdot a = a \cdot 0 = 0$ for all $a \in R$. A hemiring is a semiring with zero element, in which "+" is commutative. A hemiring $(R, +, \cdot)$ is called commutative if multiplication is commutative, that is ab = ba for all $a, b \in R$. An element $1 \in R$ is called an identity element of R if $a \cdot 1 = 1 \cdot a = a$ for all $a \in R$. A non-empty subset I of a hemiring R is called a left (right) ideal of R if I is closed under addition and $RI \subseteq I$ ($IR \subseteq I$). I is called a two-sided ideal or simply an ideal of R if I is both a left ideal and a right ideal of R. A hemiring R is called regular if for each $x \in R$ there exists $a \in R$ such that x = xax.

Theorem 1. [1] A hemiring R is regular if and only if $A \cap B = AB$ for all right ideals A and left ideals B of R. Generalizing the concept of regular hemirings, in [2] right weakly regular hemirings are defined as: A hemiring R is right weakly regular if for each $x \in R$, we have $x \in (xR)^2$. If R is commutative then the concepts of regular and right weakly regular coincides. It is proved in [2].

Theorem 2. [2] The following conditions are equivalent for a hemiring R with 1.

- (1) *R* is right weakly regular.
- (2) $A \cap B = AB$ for all right ideals A and two-sided ideals B of R.
- (3) $A^2 = A$ for every right ideal A of R.
 - If R is commutative, then the above conditions are equivalent to
- (4) R is regular.

Let X be a non-empty fixed set. An intuitionistic fuzzy subset A of X is an object having the form

$$A = \{ \langle x, \mu_A(x), \lambda_A(x) : x \in X \rangle \}$$

where the functions $\mu_A : X \longrightarrow [0,1]$ and $\lambda_A : X \longrightarrow [0,1]$ denote the degree of membership (namely $\mu_A(x)$) and the degree of nonmembership (namely $\lambda_A(x)$) of each element of $x \in X$ to A, respectively, and $0 \le \mu_A(x) + \lambda_A(x) \le 1$ for all $x \in X$. For the sake of simplicity, we use the symbol $A = (\mu_A, \lambda_A)$ for the intuitionistic fuzzy subset (briefly, IFS) $A = \{\langle x, \mu_A(x), \lambda_A(x) : x \in X \rangle\}$. If $A = (\mu_A, \lambda_A)$ and $B = (\mu_B, \lambda_B)$ are intuitionistic fuzzy subsets of X, then

- (1) $A \subseteq B \iff \mu_A(x) \le \mu_B(x)$ and $\lambda_A(x) \ge \lambda_B(x) \quad \forall x \in X$
- (2) $A = B \iff A \subseteq B$ and $B \subseteq A$.
- (3) $\overline{A} = (\lambda_A, \mu_A)$. More generally if $\{A_i : i \in I\}$ is a family of intuitionistic fuzzy subset of *X*, then by the union and intersection of this family we mean an intuitionistic fuzzy subsets
- (4) $\bigcup_{i\in I} A_i = \left(\bigvee_{i\in I} \mu_{A_i}, \bigwedge_{i\in I} \lambda_{A_i}\right).$

(5) $\bigcap_{i \in I} A_i = \left(\bigwedge_{i \in I} \mu_{A_i}, \bigvee_{i \in I} \lambda_{A_i} \right).$ Let *a* be a point in a non-empty set *X*. If $\alpha \in (0, 1]$ and $\beta \in [0, 1)$ are two real numbers such that $0 \le \alpha + \beta \le 1$ then IFS.

$$a(\alpha,\beta) = \langle x, a_{\alpha}, 1 - a_{1-\beta} \rangle$$

is called an intuitionistic fuzzy point(IFP) in X, where α and β is the degree of membership and nonmembership of $a(\alpha, \beta)$ respectively and $a \in X$ is the support of $a(\alpha, \beta)$.

Let $a(\alpha, \beta)$ be an IFP in *X*, and $A = (\mu_A, \lambda_A)$ be an IFS in *X*. Then $a(\alpha, \beta)$ is said to belong to *A*, written $a(\alpha, \beta) \in A$, if $\mu_A(a) \ge \alpha$ and $\lambda_A(a) \le \beta$ and quasi-coincident with *A*, written $a(\alpha, \beta)qA$, if $\mu_A(a) + \alpha > 1$, and $\lambda_A + \beta < 1$. $a(\alpha, \beta) \in \lor qA$, means that $a(\alpha, \beta) \in A$ or $a(\alpha, \beta)qA$ and $a(\alpha, \beta) \in \land qA$, means that $a(\alpha, \beta) \in A$ and $a(\alpha, \beta)qA$ and $a(\alpha, \beta) \in \lor qA$, means that $a(\alpha, \beta) \in \lor qA$ doesn't hold.

Let x(t, s) be an IFP in X, and $A = (\mu_A, \lambda_A)$ be an IFS in R, Then for all $x, y \in R$ and $t \in (0, 1]$, $s \in [0, 1)$, we define the following:

- (i) $x(t,s)q_kA$ if $\mu_A(x) + t + k > 1$ and $\lambda_A(x) + s + k < 1$.
- (ii) $x(t,s) \in \forall q_k A \text{ if } x(t,s) \in A \text{ or } x(t,s)q_k A.$
- (iii) $x(t,s) \in \wedge q_k A$ if $x(t,s) \in A$ and $x(t,s)q_k A$.
- (iv) $x(t,s) \in \forall q_k A$ means that $x(t,s) \in \forall q_k A$ doesn't hold, where $k \in [0,1)$.

3 (α, β) -intuitionistic fuzzy ideals

Throughout the remaining paper $k \in [0,1)$, α any one of \in , q_k , $\in \lor q_k$ and β any one of \in , q_k , $\in \lor q_k$, $\in \land q_k$ unless otherwise specified.

Definition 1. An IFS $A = (\mu_A, \lambda_A)$ of a hemiring R is called an (α, β) -intuitionistic fuzzy sub-hemiring of R, if $\forall x, y \in R$ and $t_1, t_2 \in (0, 1], s_1, s_2 \in [0, 1)$,

(1) $x(t_1,s_1), y(t_2,s_2)\alpha A \Rightarrow (x+y)(\min(t_1,t_2),\max(s_1,s_2))\beta A,$ (2) $x(t_1,s_1), y(t_2,s_2)\alpha A \Rightarrow (xy)(\min(t_1,t_2),\max(s_1,s_2))\beta A.$

Definition 2. An IFS $A = (\mu_A, \lambda_A)$ of a hemiring R is called an (α, β) -intuitionistic fuzzy left (right) ideal of R, if $\forall x, y \in R$ and $t_1, t_2 \in (0, 1], s_1, s_2 \in [0, 1)$,

(1) $x(t_1,s_1), y(t_2,s_2)\alpha A \Rightarrow (x+y)(\min(t_1,t_2),\max(s_1,s_2))\beta A$ (2) $y(t_1,s_1)\alpha A, x \in R \Rightarrow (xy)(t_1,s_1)\beta A$ ((yx)(t_1,s_1) βA).

An IFS $A = (\mu_A, \lambda_A)$ of a hemiring R is called an (α, β) -intuitionistic fuzzy ideal of R, if it is both (α, β) -intuitionistic fuzzy left ideal and (α, β) -intuitionistic fuzzy right ideal of R.

Theorem 3. Let $A = (\mu_A, \lambda_A)$ be an (α, β) -intuitionistic fuzzy ideal of R. Then the set

$$R_{(0,1)} = \{x \in R : \mu_A(x) > 0 \text{ and } \lambda_A(x) < 1\} \neq \phi$$

is an ideal of R.

Proof. Let $x, y \in R_{(0,1)}$. Then $\mu_A(x) > 0$ and $\lambda_A(x) < 1$, $\mu_A(y) > 0$ and $\lambda_A(y) < 1$. Assume that $\mu_A(x+y) = 0$ or $\lambda_A(x+y) = 1$. If $\alpha \in \{\in, \in \lor q_k\}$, then, $x(\mu_A(x), \lambda_A(x)) \alpha A$ and $y(\mu_A(y), \lambda_A(y)) \alpha A$ but $(x+y)(\min\{\mu_A(x), \mu_A(y)\})$, $\max\{\lambda_A(x), \lambda_A(y)\})\overline{\beta}A$, for every $\beta \in \{\in, q_k, \in \lor q_k, \in \lor q_k\}$, a contradiction. Also $x(1,0)q_kA$ and $y(1,0)q_kA$ but $(x+y)(1,0)\overline{\beta}A$ for every $\beta \in \{\in, q_k, \in \lor q_k\}$, a contradiction. Thus $\mu_A(x+y) > 0$ and $\lambda_A(x+y) < 1$. Therefore, $x+y \in R_{(0,1)}$.

Let $x \in R_{(0,1)}$ and $y \in R$. Then $\mu_A(x) > 0$ and $\lambda_A(x) < 1$. suppose that $\mu_A(xy) = 0$ or $\lambda_A(xy) = 1$. If $\alpha \in \{\in, \in \lor q_k\}$, then $x(\mu_A(x), \lambda_A(x)) \alpha A$ but $(xy)(\mu_A(x), \lambda_A(x)) \overline{\beta} A$ for every $\beta \in \{\in, q_k, \in \lor q_k, \in \lor q_k\}$, a contradiction. Also $x(1,0)q_kA$ but $(xy)(1,0)\overline{\beta}A$ for every $\beta \in \{\in, q_k, \in \lor q_k\}$, a contradiction. Thus $\mu_A(xy) > 0$ and $\lambda_A(xy) < 1$. Therefore, $xy \in R_{(0,1)}$. Similarly $yx \in R_{(0,1)}$. This completes the proof.

Theorem 4. Let $A = (\mu_A, \lambda_A)$ be an (α, β) -intuitionistic fuzzy sub-hemiring of R. Then the set

$$R_{(0,1)} = \{ x \in R : \mu_A(x) > 0 \text{ and } \lambda_A(x) < 1 \} \neq \phi$$

is a sub-hemiring of R.

Proof. Let $x, y \in R_{(0,1)}$. Then $\mu_A(x) > 0$ and $\lambda_A(x) < 1$, $\mu_A(y) > 0$ and $\lambda_A(y) < 1$. Assume that $\mu_A(x+y) = 0$ or $\lambda_A(x+y) = 1$. If $\alpha \in \{\in, \in \lor q_k\}$, then, $x(\mu_A(x), \lambda_A(x)) \alpha A$ and $y(\mu_A(y), \lambda_A(y)) \alpha A$ but, $(x+y)(\min\{\mu_A(x), \mu_A(y)\})$, $\max\{\lambda_A(x), \lambda_A(y)\})\overline{\beta}A$, for every $\beta \in \{\in, q_k, \in \lor q_k, \in \land q_k\}$, a contradiction. Also $x(1,0)q_kA$ and $y(1,0)q_kA$ but $(x+y)(1,0)\overline{\beta}A$ for every $\beta \in \{\in, q_k, \in \lor q_k, \in \land q_k\}$, a contradiction. Thus $\mu_A(x+y) > 0$ and $\lambda_A(x+y) < 1$. Therefore, $x+y \in R_{(0,1)}$.

Let $x, y \in R_{(0,1)}$. Then $\mu_A(x) > 0$ and $\lambda_A(x) < 1$, $\mu_A(y) > 0$ and $\lambda_A(y) < 1$. Suppose that $\mu_A(xy) = 0$ or $\lambda_A(xy) = 1$. If $\alpha \in \{ \in, \in \forall q_k \}$, then $x(\mu_A(x), \lambda_A(x)) \alpha A$ and $y(\mu_A(y), \lambda_A(y)) \alpha A$ but, $(xy) (\min\{\mu_A(x), \mu_A(y)\}, \max\{\lambda_A(x), \lambda_A(y)\}) \overline{\beta}A$ for every $\beta \in \{ \in, q_k, \in \forall q_k, \in \land q_k \}$, a contradiction. Also $x(1,0)q_kA$ and $y(1,0)q_kA$ but $(xy)(1,0)\overline{\beta}A$ for every $\beta \in \{ \in, q_k, \in \lor q_k, \in \land q_k \}$, a contradiction. Thus $\mu_A(xy) > 0$ and $\lambda_A(xy) < 1$. Therefore, $xy \in R_{(0,1)}$. This completes the proof.

4 $(\in, \in \lor q_k)^*$ -intuitionistic fuzzy ideals

Definition 3. An IFS $A = (\mu_A, \lambda_A)$ of a hemiring R is called an $(\in, \in \lor q_k)$ -intuitionistic fuzzy sub-hemiring of R, if $\forall x, y \in R$ and $t_1, t_2 \in (0, 1], s_1, s_2 \in [0, 1),$

(1a) $x(t_1,s_1), y(t_2,s_2) \in A \Rightarrow (x+y)(\min(t_1,t_2),\max(s_1,s_2)) \in \forall q_k A.$ (2a) $x(t_1,s_1), y(t_2,s_2) \in A \Rightarrow (xy)(\min(t_1,t_2),\max(s_1,s_2)) \in \forall q_k A.$

Definition 4. An IFS $A = (\mu_A, \lambda_A)$ of a hemiring R is called an $(\in, \in \lor q_k)$ -intuitionistic fuzzy left (right) ideal of R, if $\forall x, y \in R$ and $t_1, t_2 \in (0, 1]$, $s_1, s_2 \in [0, 1)$,

(1a) $x(t_1,s_1), y(t_2,s_2) \in A \Rightarrow (x+y)(\min(t_1,t_2),\max(s_1,s_2)) \in \lor q_k A.$ (3a) $y(t_1,s_1) \in A, x \in R \Rightarrow (xy)(t_1,s_1) \in \lor q_k A ((yx)(t_1,s_1) \in \lor q_k A).$

An IFS $A = (\mu_A, \lambda_A)$ of a hemiring R is called an $(\in, \in \lor q_k)$ -intuitionistic fuzzy ideal of R, if it is both $(\in, \in \lor q_k)$ -intuitionistic fuzzy left ideal and $(\in, \in \lor q_k)$ -intuitionistic fuzzy right ideal of R.

Theorem 5. Let A be an intuitionistic fuzzy subset of a hemiring R. Then $(1a) \implies (1b)$, $(2a) \implies (2b)$, $(3a) \implies (3b)$, where $\forall x, y \in R$ and $k \in [0, 1)$,

(1b) $\mu_A(x+y) \ge \min \{\mu_A(x), \mu_A(y), \frac{1-k}{2}\}$ and $\lambda_A(x+y) \le \max \{\lambda_A(x), \lambda_A(y), \frac{1-k}{2}\}$.

(2b) $\mu_A(xy) \ge \min \{ \mu_A(x), \mu_A(y), \frac{1-k}{2} \}$ and $\lambda_A(xy) \le \max \{ \lambda_A(x), \lambda_A(y), \frac{1-k}{2} \}$.

(3b) $\mu_A(xy) \ge \min \{\mu_A(y), \frac{1-k}{2}\}$ and $\lambda_A(xy) \le \max \{\lambda_A(y), \frac{1-k}{2}\}$.

Proof. $(1a) \Rightarrow (1b)$ Let A be an intuitionistic fuzzy subset of a hemiring R, and (1a) holds. Suppose that (1b) doesn't hold then there exist $x, y \in R$ such that $\mu_A(x+y) < \min \left\{ \mu_A(x), \mu_A(y), \frac{1-k}{2} \right\}$ or $\lambda_A(x+y) > \max \left\{ \lambda_A(x), \lambda_A(y), \frac{1-k}{2} \right\}$. So there exits three possible cases.

- $\begin{array}{ll} \text{(i)} & \mu_A(x+y) < \min\left\{\mu_A(x), \mu_A(y), \frac{1-k}{2}\right\} \text{ and } & \lambda_A(x+y) \leq \max\left\{\lambda_A(x), \lambda_A(y), \frac{1-k}{2}\right\},\\ \text{(ii)} & \mu_A(x+y) \geq \min\left\{\mu_A(x), \mu_A(y), \frac{1-k}{2}\right\} \text{ and } & \lambda_A(x+y) > \max\left\{\lambda_A(x), \lambda_A(y), \frac{1-k}{2}\right\},\\ \text{(iii)} & \mu_A(x+y) < \min\left\{\mu_A(x), \mu_A(y), \frac{1-k}{2}\right\} \text{ and } & \lambda_A(x+y) > \max\left\{\lambda_A(x), \lambda_A(y), \frac{1-k}{2}\right\}. \end{array}$

For the first case, there exist $t \in (0,1]$ such that $\mu_A(x+y) < t < \min\{\mu_A(x), \mu_A(y), \frac{1-k}{2}\}$. Now choose s = 1-t, then clearly $x(t,s) \in A$ and $y(t,s) \in A$ but $(x+y)(t,s) \in \sqrt{q_k}A$. Which is a contradiction. Second case is similar to this case.

Now consider case (*iii*), *i.e* $\mu_A(x+y) < \min\left\{\mu_A(x), \mu_A(y), \frac{1-k}{2}\right\}$ and $\lambda_A(x+y) > \max\left\{\lambda_A(x), \lambda_A(y), \frac{1-k}{2}\right\}$. Then there exist $t \in (0,1]$ and $s \in [0,1)$, such that $\mu_A(x+y) < t \le \min\left\{\mu_A(x), \mu_A(y), \frac{1-k}{2}\right\}$ and $\lambda_A(x+y) > s \geq \max \left\{ \lambda_A(x), \lambda_A(y), \frac{1-k}{2} \right\}$

 $\implies x(t,s) \in A$ and $y(t,s) \in A$ but $(x+y)(t,s) \in \forall q_k A$. Which is again a contradiction. So our supposition is wrong. Hence (1b) holds.

Similarly we can prove $(2a) \implies (2b), (3a) \implies (3b)$.

Definition 5. Let $A = (\mu_A, \lambda_A)$ be an IFS of a hemiring R. Then A is an $(\in, \in \lor q_k)^*$ -intuitionistic fuzzy sub-hemiring of R if it satisfies the conditions (1b) and (2b).

Definition 6. Let $A = (\mu_A, \lambda_A)$ be an IFS of a hemiring R. Then A is an $(\in, \in \lor q_k)^*$ -intuitionistic fuzzy left ideal of R if it satisfies the conditions (1b) and (3b).

Remark. Every $(\in, \in \lor q_k)^*$ -intuitionistic fuzzy left ideal (right ideal, sub-hemiring) $A = (\mu_A, \lambda_A)$ of R need not be an (\in, \downarrow) $\in \lor q_k$)-intuitionistic fuzzy left ideal (right ideal, sub-hemiring) of R.

Example 1. Let \mathbb{N} be the set of all non negative integers and $A = \langle \mu_A, \lambda_A \rangle$ be an IFS of \mathbb{N} defined as follows:

 $\mu_A(x) = \begin{cases} 1 & \text{if } x = 0\\ 0.5 & \text{if } 1 \le x \le 4, \\ 0.4 & \text{if } 4 \le x \end{cases} \qquad \lambda_A(x) = \begin{cases} 0 & \text{if } x = 0\\ 0.5 & \text{if } 1 \le x \le 4\\ 0.4 & \text{if } 4 \le x \end{cases}$

For all $x, y \in R$,

(1) $\mu_A(x+y) \ge \min \{\mu_A(x), \mu_A(y), 0.4\}$ and $\lambda_A(x+y) \le \max \{\lambda_A(x), \lambda_A(y), 0.4\}$,

- (2) $\mu_A(xy) \ge \min \{\mu_A(y), 0.4\} \text{ and } \lambda_A(xy) \le \max \{\lambda_A(y), 0.4\},\$
- (3) $\mu_A(xy) \ge \min \{\mu_A(x), 0.4\} \text{ and } \lambda_A(xy) \le \max \{\lambda_A(x), 0.4\}.$

Thus $A = (\mu_A, \lambda_A)$ is an $(\in, \in \forall q_{0,2})^*$ -intuitionistic fuzzy ideal of \mathbb{N} . But $2(0.45, 0.55), 3(0.45, 0.55) \in A \implies$ (2.3) $(0.45, 0.55) \in \forall q_{0,2}A$. Thus $A = (\mu_A, \lambda_A)$ is not an $(\in, \in \forall q_{0,2})$ -intuitionistic fuzzy ideal of \mathbb{N} .

Definition 7. For any intuitionistic fuzzy set $A = (\mu_A, \lambda_A)$ in R and $t \in (0,1]$, $s \in [0,1)$ and $k \in [0,1)$ we define $U_{(t,s)} = \{x \in R : x(t,s) \in A\}, A_{(t,s)_k} = \{x \in R : x(t,s)q_kA\} \text{ and } [A]_{(t,s)_k} = \{x \in R : x(t,s) \in \lor q_kA\}.$

Obviously, $[A]_{(t,s)_k} = A_{(t,s)_k} \cup U_{(t,s)}$, where $U_{(t,s)}$, $A_{(t,s)_k}$ and $[A]_{(t,s)_k}$ are called \in -level set, q_k -level set and $\in \lor q_k$ -level set of $A = (\mu_A, \lambda_A)$, respectively.

Lemma 1. Every intuitionistic fuzzy subset $A = (\mu_A, \lambda_A)$ of a hemiring R satisfies the following condition:

$$t \in (0, \frac{1-k}{2}], s \in [\frac{1-k}{2}, 1) \implies [A]_{(t,s)_k} = U_{(t,s)_k}$$

Proof. Let $t \in (0, \frac{1-k}{2}]$, and $s \in [\frac{1-k}{2}, 1)$. It is clear that $U_{(t,s)} \subseteq [A]_{(t,s)_k}$. Let $x \in [A]_{(t,s)_k}$. If $x \notin U_{(t,s)}$, then $\mu_A(x) < t$, or $\lambda_A(x) > s$ and so $\mu_A(x) + t < 2t \le 1-k$, or $\lambda_A(x) + s > 2s \ge 1-k$. This shows that $x(t,s)\overline{q_k}A.i.e., x \notin A_{(t,s)_k}$ and thus $x \notin U_{(t,s)} \cup A_{(t,s)_k} = [A]_{(t,s)_k}$. This is a contradiction. Thus $x \in U_{(t,s)}$. Therefore $[A]_{(t,s)_k} \subseteq U_{(t,s)}$.

Theorem 6. If A is an $(\in, \in \lor q_k)^*$ -intuitionistic fuzzy ideal of R, then the set $A_{(t,s)_k}$ is an ideal of R when it is non-empty for all $t \in (\frac{1-k}{2}, 1]$, $s \in [0, \frac{1-k}{2})$.

Proof. Assume that A is an $(\in, \in \lor q_k)^*$ -intuitionistic fuzzy ideal of R, and let $t \in (\frac{1-k}{2}, 1]$, $s \in [0, \frac{1-k}{2})$ be such that $A_{(t,s)_k} \neq \phi$. Let $x, y \in A_{(t,s)_k}$. Then $\mu_A(x) + t + k > 1$, $\lambda_A(x) + s + k < 1$ and $\mu_A(y) + t + k > 1$, $\lambda_A(y) + s + k < 1$. As $\mu_A(x+y) \ge \min\{\mu_A(x), \mu_A(y), \frac{1-k}{2}\}$, $\lambda_A(x+y) \le \max\{\lambda_A(x), \lambda_A(y), \frac{1-k}{2}\}$. We have $\mu_A(x+y) \ge \min\{1-t-k, \frac{1-k}{2}\}$, $\lambda_A(x+y) \le \max\{\lambda_A(x), \lambda_A(y), \frac{1-k}{2}\}$. We have $\mu_A(x+y) \ge \min\{1-t-k, \frac{1-k}{2}\}$, $\lambda_A(x+y) \le \max\{1-s-k, \frac{1-k}{2}\}$. Since $t \in (\frac{1-k}{2}, 1]$, and $s \in [0, \frac{1-k}{2})$, so $1-t-k < \frac{1-k}{2}$ and $1-s-k > \frac{1-k}{2}$, thus $\mu_A(x+y) > 1-t-k$ and $\lambda_A(x+y) < 1-s-k$. Hence $x+y \in A_{(t,s)_k}$. Let $x \in A_{(t,s)_k}$ and $y \in R$. Then $\mu_A(x) + t + k > 1$, $\lambda_A(x) + s + k < 1$. Then $\mu_A(x) > 1-t-k$, $\lambda_A(x) < 1-s-k$. Since A is an $(\in, \in \lor q)^*$ -intuitionistic fuzzy ideal of R, we have $\mu_A(xy) \ge \min\{\mu_A(x), \frac{1-k}{2}\}$, $\lambda_A(x+y) \le \max\{\lambda_A(x), \frac{1-k}{2}\}$. Implies that $\mu_A(xy) \ge \min\{1-t-k, \frac{1-k}{2}\}$, $\lambda_A(xy) \le \max\{1-s-k, \frac{1-k}{2}\}$. Since $t \in (\frac{1-k}{2}, 1]$, and $s \in [0, \frac{1-k}{2})$. Implies that $\mu_A(xy) \ge \min\{1-t-k, \frac{1-k}{2}\}$, $\lambda_A(xy) \le \max\{1-s-k, \frac{1-k}{2}\}$. Since $t \in (\frac{1-k}{2}, 1]$, and $s \in [0, \frac{1-k}{2})$, so $1-t-k < \frac{1-k}{2}$ and $1-s-k > \frac{1-k}{2}$, thus $\mu_A(xy) > 1-t-k$, and $\lambda_A(xy) < 1-s-k$. This implies $xy \in A_{(t,s)}$. Similarly $xy \in A_{(t,s)k}$. Hence $A_{(t,s)k}$ is an ideal of R.

Theorem 7. For any intuitionistic fuzzy subset A of R, the following are equivalent:

- (i) A is an $(\in, \in \lor q_k)^*$ -intuitionistic fuzzy ideal of R.
- (ii) For all $t \in (0, \frac{1-k}{2}]$, and $s \in [\frac{1-k}{2}, 1), U_{(t,s)} \neq \phi \implies U_{(t,s)}$ is an ideal of R.

Proof. Let *A* be an $(\in, \in \lor q_k)^*$ -intuitionistic fuzzy ideal of *R* and $x, y \in U_{(t,s)}$ for some $t \in (0, \frac{1-k}{2}]$, $s \in [\frac{1-k}{2}, 1)$. Then $\mu_A(x+y) \ge \min \{\mu_A(x), \mu_A(y), \frac{1-k}{2}\} \ge \min \{t, \frac{1-k}{2}\} = t$ and $\lambda_A(x+y) \le \max \{\lambda_A(x), \lambda_A(y), \frac{1-k}{2}\} \le \max \{s, \frac{1-k}{2}\} = s$, which implies $x + y \in U_{(t,s)}$. Now, if $x \in U_{(t,s)}$ and $y \in R$ then $\mu_A(xy) \ge \min \{\mu_A(x), \frac{1-k}{2}\} \ge \min \{t, \frac{1-k}{2}\} = t$ and $\lambda_A(xy) \le \max \{\lambda_A(x), \frac{1-k}{2}\} \ge \max \{s, \frac{1-k}{2}\} = s$, which implies $xy \in U_{(t,s)}$. Similarly $yx \in U_{(t,s)}$. This shows that $U_{(t,s)}$ is an ideal of *R*.

Conversely, assume that for every $t \in (0, \frac{1-k}{2}]$, and $s \in [\frac{1-k}{2}, 1)$, each non-empty $U_{(t,s)}$ is an ideal of *R*. Suppose *A* is not an $(\in, \in \lor q_k)^*$ -intuitionistic fuzzy ideal of *R*, then there exist $x, y \in R$ such that one of the following three cases is true.

- (i) $\mu_A(x+y) < \min\left\{\mu_A(x), \mu_A(y), \frac{1-k}{2}\right\}$ and $\lambda_A(x+y) \le \max\left\{\lambda_A(x), \lambda_A(y), \frac{1-k}{2}\right\}$.
- (ii) $\mu_A(x+y) \ge \min\left\{\mu_A(x), \mu_A(y), \frac{1-k}{2}\right\}$ and $\lambda_A(x+y) > \max\left\{\lambda_A(x), \lambda_A(y), \frac{1-k}{2}\right\}$.
- (iii) $\mu_A(x+y) < \min\left\{\mu_A(x), \mu_A(y), \frac{1-k}{2}\right\}$ and $\lambda_A(x+y) > \max\left\{\lambda_A(x), \lambda_A(y), \frac{1-k}{2}\right\}$.

For the first case, $t \in (0, \frac{1-k}{2}]$ such that $\mu_A(x+y) < t \le \min \{\mu_A(x), \mu_A(y), \frac{1-k}{2}\}$. Now choose s = 1-t, then clearly x, $y \in U_{(t,s)}$ but $x + y \notin U_{(t,s)}$. Which is a contradiction. Case (*ii*) is similar to the case (*i*).

Now consider case (*iii*), then there exist $t \in (0, \frac{1-k}{2}]$, and $s \in [\frac{1-k}{2}, 1)$, such that $\mu_A(x+y) < t \le \min \{\mu_A(x), \mu_A(y), \frac{1-k}{2}\}$ and $\lambda_A(x+y) > s \ge \max \{\lambda_A(x), \lambda_A(y), \frac{1-k}{2}\} \implies x, y \in U_{(t,s)}$ but $x+y \notin U_{(t,s)}$. Which is a contradiction. So our supposition is wrong, hence $\mu_A(x+y) \ge \min \{\mu_A(x), \mu_A(y), \frac{1-k}{2}\}$ and $\lambda_A(x+y) \le \max \{\lambda_A(x), \lambda_A(y), \frac{1-k}{2}\}$ for all

 $x, y \in R$.

In a similar way we can show that $\mu_A(xy) \ge \min\left\{\mu_A(x), \frac{1-k}{2}\right\}$ and $\lambda_A(xy) \le \max\left\{\lambda_A(x), \frac{1-k}{2}\right\}$, $\mu_A(xy) \ge \min\left\{\mu_A(y), \frac{1-k}{2}\right\}$ and $\lambda_A(xy) \le \max\left\{\lambda_A(y), \frac{1-k}{2}\right\}$ for all $x, y \in R$.

Theorem 8. Let $\{A_i : i \in I\}$ be a family of $(\in, \in \lor q_k)^*$ -intuitionistic fuzzy sub-hemiring of R. Then $A = \bigcap_{i \in I} A_i$ is an $(\in, \in \lor q_k)^*$ -intuitionistic fuzzy sub-hemiring of R.

Proof. Straightforward.

Theorem 9. Let $\{A_i : i \in I\}$ be a family of $(\in, \in \lor q_k)^*$ -intuitionistic fuzzy left (right) ideals of R. Then $A = \cap_{i \in I} A_i$ is an $(\in, \in \lor q_k)^*$ -intuitionistic fuzzy left (right) ideal of R.

Proof. Straightforward.

5 Regular and idempotent hemirings

Definition 8. Let A and B be two intuitionistic fuzzy subsets of a hemiring R, then $A \cdot_k B$ is defined as, $A \cdot_k B = \langle \mu_A \cdot_k \mu_B, \lambda_A \cdot_k \lambda_B \rangle$ where

$$(\mu_A \cdot_k \mu_B)(x) = \begin{cases} \bigvee_{\substack{x = \sum_{i=1}^{p} y_i z_i \\ 0 \text{ if } x \text{ cannot be expressed as } x = \sum_{i=1}^{p} y_i z_i \end{cases}} \begin{bmatrix} \bigwedge_{1 \le i \le p} [\mu_A(y_i) \land \mu_B(z_i)] \end{bmatrix} \land \frac{1-k}{2} \\ (\lambda_A \cdot_k \lambda_B)(x) = \begin{cases} \bigwedge_{\substack{x = \sum_{i=1}^{p} y_i z_i \\ 1 \le i \le p}} \left[\bigvee_{1 \le i \le p} [\lambda_A(y_i) \lor \lambda_B(z_i)] \right] \lor \frac{1-k}{2} \\ 1 \text{ if } x \text{ cannot be expressed as } x = \sum_{i=1}^{p} y_i z_i \end{cases}$$

where $x \in R$.

Definition 9. *let* A *and* B *an intuitionistic fuzzy subsets of* R*. We define the intuitionistic fuzzy subsets* A_k , $A \cap_k B$, $A \cup_k B$ *and* $A \cdot_k B$ *of* R *as follows:*

$$A_{k} = \left(\mu_{A} \wedge \frac{1-k}{2}, \lambda_{B} \vee \frac{1-k}{2}\right),$$

$$A \cap_{k} B = (A \cap B)_{k} = (\mu_{A} \wedge_{k} \mu_{B}, \lambda_{A} \vee_{k} \lambda_{B}),$$

$$A \cup_{k} B = (A \cup B)_{k} = (\mu_{A} \vee_{k} \mu_{B}, \lambda_{A} \wedge_{k} \lambda_{B}).$$

Theorem 10. Let A be an $(\in, \in \lor q_k)^*$ -intuitionistic fuzzy sub-hemiring of R. Then A_k is an $(\in, \in \lor q_k)^*$ -intuitionistic fuzzy sub-hemiring of R.

Proof. Suppose A is an $(\in, \in \lor q_k)^*$ -intuitionistic fuzzy sub-hemiring of R and $x, y \in R$. Then

$$\begin{aligned} (\mu_A \wedge \frac{1-k}{2})(x+y) &= \mu_A(x+y) \wedge \frac{1-k}{2} \\ &\ge \left(\min\left\{ \mu_A(x), \mu_A(y), \frac{1-k}{2} \right\} \right) \wedge \frac{1-k}{2} \\ &= \min\left\{ \mu_A(x) \wedge \frac{1-k}{2}, \mu_A(y) \wedge \frac{1-k}{2}, \frac{1-k}{2} \right\} \\ &= \min\left\{ (\mu_A \wedge \frac{1-k}{2})(x), (\mu_A \wedge \frac{1-k}{2})(y), \frac{1-k}{2} \right\}, \end{aligned}$$

79

$$\begin{split} (\lambda_A \vee \frac{1-k}{2})(x+y) &= \lambda_A(x+y) \vee \frac{1-k}{2} \\ &\leq (\max\{\lambda_A(x), \lambda_A(y), \frac{1-k}{2}\}) \vee \frac{1-k}{2}. \\ &= \max\{\lambda_A(x) \vee \frac{1-k}{2}, \lambda_A(y) \vee \frac{1-k}{2}, \frac{1-k}{2}\}. \\ &= \max\{(\lambda_A \vee \frac{1-k}{2})(x), (\lambda_A(y) \vee \frac{1-k}{2})(y), \frac{1-k}{2}\}. \end{split}$$

Similarly we can show that

$$(\mu_A \wedge \frac{1-k}{2})(xy) \ge \min\left\{(\mu_A \wedge \frac{1-k}{2})(x), (\mu_A \wedge \frac{1-k}{2})(y), \frac{1-k}{2}\right\},\$$

and

$$(\lambda_A \vee \frac{1-k}{2})(xy) \leq \max\{(\lambda_A \vee \frac{1-k}{2})(x), (\lambda_A(y) \vee \frac{1-k}{2})(y), \frac{1-k}{2}\}.$$

This shows that $A_k = A \cap \frac{1-k}{2}$ is an $(\in, \in \lor q_k)^*$ -intuitionistic fuzzy sub-hemiring of R.

Theorem 11. Let A be an $(\in, \in \lor q_k)^*$ -intuitionistic fuzzy ideal of R. Then A_k is an $(\in, \in \lor q_k)^*$ -intuitionistic fuzzy ideal of R.

Proof. This proof is similar to the proof of the theorem 10,

Remark. let A and B be intuitionistic fuzzy subsets of R. Then the following hold.

- (i) $A \cap_k B = (A_k \cap B_k)$.
- (ii) $A \cup_k B = (A_k \cup B_k).$
- (iii) $A \cdot_k B = (A_k \cdot B_k).$

Proof. let $x \in R$,

(1)
$$(\mu_A \wedge_k \mu_B)(x) = (\mu_A \wedge \mu_B)(x) \wedge \frac{1-k}{2} = \mu_A(x) \wedge \mu_B(x) \wedge \frac{1-k}{2} = (\mu_A(x) \wedge \frac{1-k}{2}) \wedge (\mu_B(x) \wedge \frac{1-k}{2})$$

= $\mu_{A_k}(x) \wedge \mu_{B_k}(x) = (\mu_{A_k} \wedge \mu_{B_k})(x)$

and

 $\begin{aligned} (\lambda_A \lor_k \lambda_B)(x) &= (\lambda_A \lor \lambda_B)(x) \lor \frac{1-k}{2}) = \lambda_A(x) \lor \lambda_B(x) \lor \frac{1-k}{2} = (\lambda_A(x) \lor \frac{1-k}{2}) \lor (\lambda_B(x) \lor \frac{1-k}{2}) \\ &= \lambda_{A_k}(x) \lor \lambda_{B_K}(x) = (\lambda_{A_k} \lor \lambda_{B_K})(x). \end{aligned}$

Hence (1) holds. Similarly we can prove (2).

(3) If x is not expressible as $x = \sum_{i=1}^{p} y_i z_i$ where $y_i, z_i \in R$, then $(\mu_A \cdot \mu_B)(x) = 0$. Thus $(\mu_A \cdot_k \mu_B)(x) = (\mu_A \cdot \mu_B)(x) \wedge \frac{1-k}{2} = 0$. As x is not expressible as $x = \sum_{i=1}^{p} y_i z_i$ so $(\mu_{A_k} \cdot \mu_{B_k})(x) = 0 \implies \mu_A \cdot_k \mu_B = \mu_{A_k} \cdot \mu_{B_k}$ and $(\lambda_A \cdot \lambda_B)(x) = 1$, thus $(\lambda_A \cdot_k \lambda_B)(x) = (\lambda_A \cdot \lambda_B)(x) \vee \frac{1-k}{2} = 1$ as x is not expressible as $x = \sum_{i=1}^{p} y_i z_i$ so $(\lambda_{A_k} \cdot \lambda_{B_k})(x) = 1 \implies \lambda_A \cdot_k \lambda_B = \lambda_{A_k} \cdot \lambda_{B_k}$. Hence (3) holds.

Theorem 12. If A and B are $(\in, \in \lor q_k)^*$ -intuitionistic fuzzy ideals of R then $A \cdot_k B$ is an $(\in, \in \lor q_k)^*$ -intuitionistic fuzzy ideal of R.

Proof. Let $x, y \in R$ be such that $x = \sum_{i=1}^{p} a_i b_i$, and $y = \sum_{i=1}^{q} a'_i b'_i$. Then

$$(\mu_A \cdot_k \mu_B)(x) = \bigvee_{x = \sum_{i=1}^p a_i b_i} \left[\bigwedge_{1 \le i \le p} [\mu_A(a_i) \land \mu_B(b_i)] \right] \land \frac{1-k}{2}$$

$$(\mu_A \cdot_k \mu_B)(x') = \bigvee_{x' = \sum_{j=1}^q a'_i b'_i} \left[\bigwedge_{1 \le i \le p} [\mu_A(a'_i) \land \mu_B(b'_i)] \right] \land \frac{1-k}{2}.$$

Thus

$$\begin{aligned} (\mu_A \cdot_k \mu_B)(x) \wedge (\mu_A \cdot_k \mu_B)(x') \wedge \frac{1-k}{2} &= \begin{cases} \left[\bigvee_{x=\sum_{i=1}^p a_i b_i} \left[\bigwedge_{1 \le i \le p} [\mu_A(a_i) \wedge \mu_B(b_i)] \right] \wedge \frac{1-k}{2} \right] \wedge \\ \left[\bigvee_{x'=\sum_{j=1}^q a'_i b'_i} \left[\bigwedge_{1 \le i \le p} [\mu_A(a_i) \wedge \mu_B(b_i)] \right] \wedge \frac{1-k}{2} \right] \wedge \\ &= \begin{bmatrix} \bigvee_{x=\sum_{i=1}^p a_i b_i x'=\sum_{j=1}^q a'_i b'_i} \left[\begin{bmatrix} \bigwedge_{1 \le i \le p} [\mu_A(a_i) \wedge \mu_B(b_i)] \right] \wedge \\ \left[\bigwedge_{1 \le j \le q} [\mu_A(a'_i) \wedge \mu_B(b'_i)] \right] \right] \right] \wedge \frac{1-k}{2} \end{bmatrix} \\ &\leq \begin{bmatrix} \bigvee_{x+x'=\sum_{k=1}^s a'' b''} \left[\bigwedge_{1 \le k \le s} [\mu_A(a'') \wedge \mu_B(b'')] \right] \wedge \frac{1-k}{2} \right] \\ &= (\mu_A \cdot_k \mu_B)(x+x') \end{aligned}$$

and

$$(\lambda_A \cdot_k \lambda_B)(x) = \left[\bigwedge_{x = \sum_{i=1}^p a_i b_i} \left[\bigvee_{1 \le i \le p} [\lambda_A(a_i) \lor \lambda_B(b_i)] \right] \lor \frac{1-k}{2} \right],$$
$$(\lambda_A \cdot_k \lambda_B)(x') = \left[\bigwedge_{x' = \sum_{j=1}^q a'_i b'_i} \left[\bigvee_{1 \le i \le p} [\lambda_A(a'_i) \lor \lambda_B(b'_i)] \right] \lor \frac{1-k}{2} \right].$$

Thus

$$\begin{aligned} (\lambda_A \cdot_k \lambda_B)(x) \vee (\lambda_A \cdot_k \lambda_B)(x') \vee \frac{1-k}{2} &= \begin{cases} \left[\bigwedge_{x = \sum_{i=1}^p a_i b_i} \left[\bigvee_{1 \le i \le p} [\lambda_A(a_i) \vee \lambda_B(b_i)] \right] \vee \frac{1-k}{2} \right] \vee \\ \left[\bigwedge_{x' = \sum_{j=1}^q a'_i b'_i} \left[\bigvee_{1 \le i \le p} [\lambda_A(a'_i) \vee \lambda_B(b'_i)] \right] \vee \frac{1-k}{2} \right] \vee \frac{1-k}{2} \end{cases} \\ &= \begin{bmatrix} \bigwedge_{x = \sum_{i=1}^p a_i b_i x' = \sum_{j=1}^q a'_i b'_i} \left[\begin{bmatrix} \bigvee_{1 \le i \le p} [\lambda_A(a_i) \vee \lambda_B(b_i)] \right] \wedge \\ \left[\bigvee_{1 \le j \le q} [\lambda_A(a'_i) \vee \lambda_B(b'_i)] \right] \right] \vee \frac{1-k}{2} \end{bmatrix} \end{aligned}$$

$$\geq \left[\bigwedge_{x+x'=\sum_{k=1}^{s} a''b''} \left[\bigvee_{1 \leq k \leq s} \left[\lambda_{A}(a'') \lor \lambda_{B}(b'') \right] \right] \lor \frac{1-k}{2} \right]$$

$$= (\lambda_{A} \cdot_{k} \lambda_{B})(x+x')$$

$$\Longrightarrow \left\{ (\lambda_{A} \cdot_{k} \lambda_{B})(x) \lor (\lambda_{A} \cdot_{k} \lambda_{B})(x') \lor \frac{1-k}{2} \right\} \geq (\lambda_{A} \cdot_{k} \lambda_{B})(x+x'). \text{ Also, } (\mu_{A} \cdot_{k} \mu_{B})(x) \land \frac{1-k}{2}$$

$$= \left[\left[\bigvee_{x=\sum_{i=1}^{p} a_{i}b_{i}} \left[\bigwedge_{1 \leq i \leq p} \left[\mu_{A}(a_{i}) \land \mu_{B}(b_{i}) \right] \right] \right] \land \frac{1-k}{2} \right] \frac{1-k}{2}$$

$$= \left[\bigvee_{x=\sum_{i=1}^{p} a_{i}b_{i}} \left[\bigwedge_{1 \leq i \leq p} \left[\mu_{A}(a_{i}) \land \mu_{B}(b_{i}) \frac{1-k}{2} \right] \right] \land \frac{1-k}{2}$$

$$\le \left[\bigvee_{x=\sum_{i=1}^{p} a_{i}b_{i}} \left[\bigwedge_{1 \leq i \leq p} \left[\mu_{A}(a_{i}) \land \mu_{B}(b_{i}) \frac{1-k}{2} \right] \right] \land \frac{1-k}{2}$$

© 2016 BISKA Bilisim Technology

$$\leq \left[\bigvee_{xr=\sum_{j=1}^{q} a'_{i}b'_{i}} \left[\bigwedge_{1 \leq j \leq q} \left[\mu_{A}(a'_{i}) \wedge \mu_{B}(b'_{i}) \right] \right] \right] \wedge \frac{1-k}{2}$$
$$= (\mu_{A} \cdot_{k} \mu_{B})(xr).$$

Thus $\left\{(\mu_A \cdot_k \mu_B)(x) \wedge \frac{1-k}{2}\right\} \le (\mu_A \cdot_k \mu_B)(xr).$

SKA

Similarly we can prove $(\lambda_A \cdot_k \lambda_B)(xr) \leq \{(\lambda_A \cdot_k \lambda_B)(x) \lor \frac{1-k}{2}\} \implies A \cdot_k B$ is an $(\in, \in \lor q_k)^*$ -intuitionistic fuzzy right ideal of R. On the same line it can be proved that $\{(\mu_A \cdot_k \mu_B)(x) \land \frac{1-k}{2}\} \leq (\mu_A \cdot_k \mu_B)(rx)$ and $(\lambda_A \cdot_k \lambda_B)(rx) \leq \{(\lambda_A \cdot_k \lambda_B)(xr) \lor \frac{1-k}{2}\}$. Thus $A \cdot_k B$ is an $(\in, \in \lor q_k)^*$ -intuitionistic fuzzy ideal of R.

Theorem 13. If A and B are $(\in, \in \lor q)^*$ -intuitionistic fuzzy left(right) ideals of R, then so is $A \cap_k B$.

Proof. We only consider the case of $(\in, \in \lor q_k)^*$ -intuitionistic fuzzy left ideals.

Let $x, y \in R$. Then

$$\begin{aligned} (\mu_A \wedge_k \mu_B)(x+y) &= \min\{\mu_A(x+y), \mu_B(x+y), \frac{1-k}{2}\} \\ &\geq \min\left\{\min\{\mu_A(x), \mu_A(y), \frac{1-k}{2}\}, \min\{\mu_B(y), \mu_B(x), \frac{1-k}{2}\}, \frac{1-k}{2}\right\} \\ &= \min\left\{\min\{\mu_A(x), \mu_B(x), \frac{1-k}{2}\}, \min\{\mu_A(y), \mu_B(y), \frac{1-k}{2}\}, \frac{1-k}{2}\right\} \\ &= \min\left\{(\mu_A \wedge_k \mu_B)(x), (\mu_A \wedge_k \mu_B)(y), \frac{1-k}{2}\right\} \end{aligned}$$

and

81

$$\begin{split} (\lambda_A \lor_k \lambda_B)(x+y) &= \max\left\{\lambda_A(x+y), \lambda_B(x+y), \frac{1-k}{2}\right\} \\ &\leq \max\left\{\max\{\lambda_A(x), \lambda_A(y), \frac{1-k}{2}\}, \max\{\lambda_B(x), \lambda_B(y), \frac{1-k}{2}\}, \frac{1-k}{2}\right\} \\ &= \max\left\{\max\{\lambda_A(x), \lambda_B(x), \frac{1-k}{2}\}, \max\{\lambda_A(y), \lambda_B(y), \frac{1-k}{2}\}, \frac{1-k}{2}\right\} \\ &= \max\left\{(\lambda_A \lor_k \lambda_B)(x), (\lambda_A \lor_k \lambda_B)(y), \frac{1-k}{2}\right\}. \end{split}$$

Now

$$\begin{aligned} (\mu_A \wedge_k \mu_B)(x.y) &= \min\left\{\mu_A(x.y), \mu_B(x.y), \frac{1-k}{2}\right\} \\ &\geq \min\left\{\min\{\mu_A(y), \frac{1-k}{2}\}, \min\{\mu_B(y), \frac{1-k}{2}\}, \frac{1-k}{2}\right\} \\ &= \min\left\{\min\{\mu_A(y), \mu_B(y), \frac{1-k}{2}\}, \frac{1-k}{2}\right\} = \min\left\{(\mu_A \wedge_k \mu_B)(y), \frac{1-k}{2}\right\} \end{aligned}$$

$$\begin{aligned} (\lambda_A \lor_k \lambda_B)(x.y) &= \max\{\lambda_A(x.y), \lambda_B(x.y), \frac{1-k}{2}\} \\ &\leq \max\left\{\max\{\lambda_A(y), \frac{1-k}{2}\}, \max\{\lambda_B(y), \frac{1-k}{2}\}, \frac{1-k}{2}\right\} \\ &= \max\left\{\max\{\lambda_A(y), \lambda_B(y), \frac{1-k}{2}\}, \frac{1-k}{2}\right\} = \max\left\{(\lambda_A \lor_k \lambda_B)(y), \frac{1-k}{2}\right\}. \end{aligned}$$

Thus $A \cap_k B$ is an $(\in, \in \lor q_k)^*$ -intuitionistic fuzzy left ideal of R.

Theorem 14. If A is an $(\in, \in \lor q_k)^*$ -intuitionistic fuzzy right ideal, and B is an $(\in, \in \lor q_k)^*$ -intuitionistic fuzzy left ideal of R, then $A \cdot_k B \subseteq A \cap_k B$.

Proof. Let A and B be $(\in, \in \lor q_k)^*$ -intuitionistic fuzzy right and left ideals of R respectively. For any $x \in R$,

$$\begin{split} (\mu_A \cdot_k \mu_B)(x) &= \bigvee_{x = \sum_{i=1}^p a_i b_i} \left[\bigwedge_{1 \le i \le p} [\mu_A(a_i) \land \mu_B(b_i)] \right] \land \frac{1-k}{2} \\ &= \bigvee_{x = \sum_{i=1}^p a_i b_i} \left[\bigwedge_{1 \le i \le p} [\mu_A(a_i) \land \frac{1-k}{2}] \land [\mu_B(b_i) \land \frac{1-k}{2}] \right] \land \frac{1-k}{2} \\ &\leq \bigvee_{x = \sum_{i=1}^p a_i b_i} \left[\bigwedge_{1 \le i \le p} [\mu_A(a_i b_i) \land \mu_B(a_i b_i)] \right] \land \frac{1-k}{2} \\ &= \bigvee_{x = \sum_{i=1}^p a_i b_i} \left[\left(\bigwedge_{1 \le i \le p} \mu_A(a_i b_i) \right) \land \left(\bigwedge_{1 \le i \le p} \mu_B(a_i b_i) \right) \right] \land \frac{1-k}{2} \\ &\leq \left[\bigvee_{x = \sum_{i=1}^p a_i b_i} [\mu_A(x) \land \mu_B(x)] \right] \land \frac{1-k}{2} = (\mu_A \land_k \mu_B)(x), \end{split}$$

and

$$\begin{split} (\lambda_A \cdot_k \lambda_B)(x) &= \bigwedge_{x = \sum_{i=1}^p a_i b_i} \left[\bigvee_{1 \le i \le p} [\lambda_A(a_i) \lor \lambda_B(b_i)] \right] \lor \frac{1-k}{2} \\ &= \bigwedge_{x = \sum_{i=1}^p a_i b_i} \left[\bigvee_{1 \le i \le p} [\lambda_A(a_i) \lor \frac{1-k}{2}] \lor [\lambda_B(b_i) \lor \frac{1-k}{2}] \right] \lor \frac{1-k}{2} \\ &\ge \bigwedge_{x = \sum_{i=1}^p a_i b_i} \left[\bigvee_{1 \le i \le p} [\lambda_A(a_i b_i) \lor \lambda_B(a_i b_i)] \right] \lor \frac{1-k}{2} \\ &= \bigwedge_{x = \sum_{i=1}^p a_i b_i} \left[\left(\bigvee_{1 \le i \le p} \lambda_A(a_i b_i) \right) \lor \left(\bigvee_{1 \le i \le p} \lambda_B(a_i b_i) \right) \right] \lor \frac{1-k}{2} \\ &\ge \left[\bigwedge_{x = \sum_{i=1}^p a_i b_i} [\lambda_A(x) \lor \lambda_B(x)] \right] \lor \frac{1-k}{2} = (\lambda_A \lor_k \lambda_B)(x). \end{split}$$

Thus $A \cdot_k B \subseteq A \cap_k B$.

Definition 10. Let A and B be $(\in, \in \lor q_k)^*$ -intuitionistic fuzzy ideals of R. The intuitionistic fuzzy subset $A +_k B$ of R is defined by

$$A +_k B = (\mu_A +_k \mu_B, \lambda_A +_k \lambda_B)$$

where

$$(\mu_A +_k \mu_B)(x) = \bigvee_{x=y+z} [\mu_A(y) \wedge \mu_B(z)] \wedge \frac{1-k}{2},$$
$$(\lambda_A +_k \lambda_B)(x) = \bigwedge_{x=y+z} [\lambda_A(y) \vee \lambda_B(z)] \vee \frac{1-k}{2} \text{ for } x \in R.$$

Proposition 1. For $(\in, \in \lor q_k)^*$ -intuitionistic fuzzy ideals A and B of R, $A +_k B$ is an $(\in, \in \lor q_k)^*$ -intuitionistic fuzzy ideal of R.

Proof. For any $x, x' \in R$,

$$\begin{aligned} (\mu_{A} +_{k} \mu_{B})(x) \wedge (\mu_{A} +_{k} \mu_{B})(x') \wedge \frac{1-k}{2} &= \begin{bmatrix} [\bigvee_{x=y+z} [\mu_{A}(y) \wedge \mu_{B}(z)] \wedge \frac{1-k}{2}] \wedge \\ [\bigvee_{x'=y'+z'} [\mu_{A}(y') \wedge \mu_{B}(z')] \wedge \frac{1-k}{2}] \wedge \\ \end{bmatrix} \\ &= \begin{bmatrix} \bigvee_{x=y+z} \bigvee_{x'=y'+z'} \begin{bmatrix} [[\mu_{A}(y) \wedge \mu_{B}(z)] \wedge \frac{1-k}{2}] \wedge \\ [[\mu_{A}(y') \wedge \mu_{B}(z')] \wedge \frac{1-k}{2}] \end{bmatrix} \end{bmatrix} \wedge \frac{1-k}{2} \\ &= \begin{bmatrix} \bigvee_{x=y+z} \bigvee_{x'=y'+z'} \begin{bmatrix} [[\mu_{A}(y) \wedge \mu_{A}(y')] \wedge \frac{1-k}{2}] \wedge \\ [[\mu_{B}(z) \wedge \mu_{B}(z')] \wedge \frac{1-k}{2}] \end{bmatrix} \end{bmatrix} \wedge \frac{1-k}{2} \\ &\leq \bigvee_{x=y+z} \bigvee_{x'=y'+z'} \begin{bmatrix} [\mu_{A}(y+y') \wedge \mu_{B}(z+z')] \wedge \frac{1-k}{2} \\ \leq (\mu_{A} +_{k} \mu_{B})(x +_{k} x'), \end{aligned}$$

_

and

$$\begin{aligned} (\lambda_A +_k \lambda_B)(x) \lor (\lambda_A +_k \lambda_B)(x') \lor \frac{1-k}{2} &= \begin{bmatrix} [\bigwedge_{x=y+z} [\lambda_A(y) \lor \lambda_B(z)] \lor \frac{1-k}{2}] \lor \\ [\bigwedge_{x'=y'+z'} [\lambda_A(y') \lor \lambda_B(z')] \lor \frac{1-k}{2}] \lor \end{bmatrix} \\ &= \begin{bmatrix} \bigwedge_{x=y+z} \bigwedge_{x'=y'+z'} \begin{bmatrix} [[\lambda_A(y) \lor \lambda_B(z)] \lor \frac{1-k}{2}] \lor \\ [[\lambda_A(y') \lor \lambda_B(z')] \lor \frac{1-k}{2}] \end{bmatrix} \end{bmatrix} \lor \frac{1-k}{2} \\ &= \begin{bmatrix} \bigwedge_{x=y+z} \bigwedge_{x'=y'+z'} \begin{bmatrix} [[\lambda_A(y) \lor \lambda_A(y')] \lor \frac{1-k}{2}] \lor \\ [[\lambda_B(z) \lor \lambda_B(z')] \lor \frac{1-k}{2}] \end{bmatrix} \end{bmatrix} \lor \frac{1-k}{2} \\ &\geq \bigwedge_{x=y+z} \bigwedge_{x'=y'+z'} [\lambda_A(y+y') \lor \lambda_B(z+z')] \lor \frac{1-k}{2} \\ &\geq (\lambda_A +_k \lambda_B)(x+_k x'). \end{aligned}$$

$$\begin{aligned} (\mu_A +_k \mu_B)(x) \wedge \frac{1-k}{2} &= \left[\bigvee_{x=y+z} [\mu_A(y) \wedge \mu_B(z)] \wedge \frac{1-k}{2}\right] \wedge \frac{1-k}{2} \\ &= \left[\bigvee_{x=y+z} [(\mu_A(y) \wedge \frac{1-k}{2}) \wedge (\mu_B(z) \wedge \frac{1-k}{2})]\right] \\ &\leq \left[\bigvee_{x=y+z} [\mu_A(ya) \wedge \mu_B(za)]\right] \wedge \frac{1-k}{2} \\ &\leq \left[\bigvee_{xa=y'+z'} [\mu_A(y') \wedge \mu_B(z')]\right] \wedge \frac{1-k}{2} = (\mu_A +_k \mu_B)(xa) \end{aligned}$$

$$\begin{aligned} (\lambda_A +_k \lambda_B)(x) &\vee \frac{1-k}{2} = \left[\bigwedge_{x=y+z} [\lambda_A(y) \vee \lambda_B(z)] \vee \frac{1-k}{2} \right] \vee \frac{1-k}{2} \\ &= \left[\bigwedge_{x=y+z} [(\lambda_A(y) \vee \frac{1-k}{2}) \vee (\lambda_B(z)) \vee \frac{1-k}{2}] \right] \vee \frac{1-k}{2} \\ &\geq \left[\bigwedge_{x=y+z} (\lambda_A(ya) \vee \lambda_B(za)) \right] \vee \frac{1-k}{2} \\ &\geq \left[\bigwedge_{xa=y'+z'} (\lambda_A(y') \vee \lambda_B(z')) \right] \vee \frac{1-k}{2} = (\lambda_A +_k \lambda_B)(xa) \end{aligned}$$

Similarly we can prove

$$(\mu_A +_k \mu_B)(x) \wedge \frac{1-k}{2} \leq (\mu_A +_k \mu_B)(ax) \text{ and } (\lambda_A +_k \lambda_B)(x) \vee \frac{1-k}{2} \geq (\lambda_A +_k \lambda_B)(ax).$$

Hence $A +_k B$ is an $(\in, \in \lor q_k)^*$ -intuitionistic fuzzy ideal of R.

Definition 11.[18] If $S \subseteq R$, then intuitionistic characteristic function of S is denoted by $C_S = (\chi_S, \chi_S^c)$ and is defined by

 $\chi_{S}(x) = \begin{cases} 1 & if \ x \in S \\ 0 & if \ x \notin S \end{cases} \text{ and } \chi_{S}^{c}(x) = \begin{cases} 0 & if \ x \in S \\ 1 & if \ x \notin S \end{cases} \text{ In particular, we let } \overline{1} = (\chi_{R}, \chi_{R}^{c}) \text{ be the intuitionistic fuzzy set in } R.$

Lemma 2. A non-empty subset *L* of a hemiring *R* is a left ideal of *R* if and only if the intuitionistic characteristic function $C_L = (\chi_L, \chi_L^c)$ is an $(\in, \in \lor q_k)^*$ -intuitionistic fuzzy left ideal of *R*.

Proof. Let *L* be a left ideal of *R*, then obviously C_L is an $(\in, \in \lor q_k)^*$ -intuitionistic fuzzy left ideal of *R*.

Conversely assume that C_L is an $(\in, \in \lor q_k)^*$ -intuitionistic fuzzy left ideal of R. Let $x, y \in L$. Then $\chi_L(x) = 1$, $\chi_L^c(x) = 0$, and $\chi_L(y) = 1$, $\chi_L^c(y) = 0$ so $x(1,0), y(1,0) \in C_L$. Since C_L is an $(\in, \in \lor q_k)^*$ -intuitionistic fuzzy left ideal, so $(\chi_L)(x+y) \ge \min \{\chi_L(x), \chi_L(y), \frac{1-k}{2}\}$ and $(\chi_L^c)(x+y) \le \max \{\chi_L^c(x), \chi_L^c(y), \frac{1-k}{2}\}$ i.e $(\chi_L)(x+y) = 1$ and $(\chi_L^c)(x+y) = 0$. Thus $x+y \in L$.

Let $y \in L$ and $x \in R$. Then $\chi_L(y) = 1$, and $\chi_L(y) = 0$ so $y(1,0) \in C_L$. Since C_L is an $(\in, \in \lor q_k)^*$ -intuitionistic fuzzy left

ideal, so $(\chi_L)(xy) \ge \min\{\chi_L(y), \frac{1-k}{2}\}$ and $(\chi_L^c)(xy) \le \max\{\chi_L^c(y), \frac{1-k}{2}\}$. i.e. $(\chi_L)(xy) = 1$ and $(\chi_L^c)(xy) = 0$. Hence $xy \in L$. Thus L is a left ideal of R

Lemma 3. A non-empty subset L of a hemiring R is a left ideal of R if and only if the intuitionistic fuzzy set $(C_L)_k = (\chi_L \wedge \frac{1-k}{2}, \chi_L^c \vee \frac{1-k}{2})$ is an $(\in, \in \lor q_k)^*$ -intuitionistic fuzzy left ideal of R.

Proof.Straightforward.

Lemma 4. Let A and B be non-empty subsets of a hemiring R. Then the following hold: (1) $C_A \cap_k C_B = (C_{A \cap B})_k$ (2) $C_A \cdot_k C_B = (C_{A \cap B})_k$.

Proof.Straightforward.

Theorem 15. For a hemiring *R*, the following conditions are equivalent:

- (i) *R* is hemiregular.
- (ii) $A \cap_k B = A \cdot_k B$ for every $(\in, \in \lor q_k)^*$ -intuitionistic fuzzy right ideal A and every $(\in, \in \lor q_k)^*$ -intuitionistic fuzzy left ideal B of R.

Proof. Let *A* be an $(\in, \in \lor q_k)^*$ -intuitionistic fuzzy right ideal and *B* be an $(\in, \in \lor q_k)^*$ -intuitionistic fuzzy left ideal of *R* and $x \in R$. Then there exists $a \in R$, such that x = xax. Now

$$(\mu_A \cdot_k \mu_B)(x) = \left\{ \bigvee_{x = \sum_{i=1}^p y_i z_i} \left[\bigwedge_{1 \le i \le p} [\mu_A(y_i) \land \mu_B(z_i)] \right] \land \frac{1-k}{2} \right\} \ge \left[\mu_A(xa) \land \mu_B(x) \land \frac{1-k}{2} \right]$$
$$\ge \left[\mu_A(x) \land \mu_B(x) \land \frac{1-k}{2} \right] = (\mu_A \land_k \mu_B)(x)$$

and

$$\begin{aligned} (\lambda_A \cdot_k \lambda_B)(x) &= \left\{ \bigwedge_{x = \sum_{i=1}^p y_i z_i} \left[\bigvee_{1 \le i \le p} [\lambda_A(y_i) \lor \lambda_B(z_i)] \right] \lor \frac{1-k}{2} \right\} \le \left[\lambda_A(xa) \lor \lambda_B(x) \lor \frac{1-k}{2} \right] \\ &\le \left[\lambda_A(x) \lor \lambda_B(x) \lor \frac{1-k}{2} \right] = (\lambda_A \lor_k \lambda_B)(x). \end{aligned}$$

Thus $A \cap_k B \subseteq A \cdot_k B$.

By Theorem 14 $A \cdot_k B \subseteq A \cap_k B$. Hence $A \cdot_k B = A \cap_k B$.

 $(ii) \implies (i)$ Let A and B be right ideal and left ideal of R respectively. Then C_A is an $(\in, \in \lor q_k)^*$ -intuitionistic fuzzy right ideal and C_B is an $(\in, \in \lor q_k)^*$ -intuitionistic fuzzy left ideal of R, by assumption

$$C_A \cdot_k C_B = C_A \cap_k C_B \implies (C_A \cdot C_B)_k = (C_A \cap C_B)_k \implies (C_{AB})_k = (C_{A \cap B})_k \implies AB = A \cap B.$$

Thus by Theorem 1 R is regular.

Theorem 16. *The following assertions for a hemiring R with identity are equivalent:*

(1) *R* is fully idempotent.

- (2) Each $(\in, \in \lor q_k)^*$ -intuitionistic fuzzy ideal of R is idempotent. $(an (\in, \in \lor q_k)^*$ -intuitionistic fuzzy ideal A of R is called idempotent if $A \cdot_k A = A_k$.)
- (3) for each pair of $(\in, \in \lor q_k)^*$ -intuitionistic fuzzy ideals A and B of $R, A \cap_k B = A \cdot_k B$.
- (4) If R is assumed to be commutative, then the above assertions are equivalent to R is regular.

Proof. (1) \implies (2). Let $A = (\mu_A, \lambda_A)$ be an $(\in, \in \lor q_k)^*$ -intuitionistic fuzzy ideal of R. For any $x \in R$, by Theorem 14 $A \cdot_k A \subseteq A_k$.

Since each ideal of *R* is idempotent, therefore, $(x) = (x)^2$ for each $x \in R$. Since $x \in (x)$ it follows that $x \in (x)^2 = RxRxR$. Hence $x = \sum_{i=1}^{q} a_i x a'_i b_i x b'_i$ and $q \in N$. Now,

$$\begin{pmatrix} \mu_A \wedge \frac{1-k}{2} \end{pmatrix} (x) = \mu_A(x) \wedge \mu_A(x) \wedge \frac{1-k}{2} = \begin{bmatrix} \mu_A(x) \wedge \frac{1-k}{2} \end{bmatrix} \wedge \begin{bmatrix} \mu_A(x) \wedge \frac{1-k}{2} \end{bmatrix} \wedge \frac{1-k}{2} \\ \leq \mu_A(a_i x a'_i) \wedge \mu_A(b_i x b'_i) \wedge \frac{1-k}{2}, \ (1 \le i \le q).$$

Therefore,

$$\begin{split} \left(\mu_A \wedge \frac{1-k}{2}\right)(x) &\leq \bigwedge_{1 \leq i \leq q} \left[\mu_A(a_i x a_i') \wedge \mu_A(b_i x b_i')\right] \wedge \frac{1-k}{2} \\ &\leq \bigvee_{x = \sum_{i=1}^q a_i x a_i' b_i x b_i'} \left[\bigwedge_{1 \leq i \leq q} \left[\mu_A(a_i x a_i') \wedge \mu_A(b_i x b_i')\right]\right] \wedge \frac{1-k}{2} \\ &\leq \bigvee_{x = \sum_{j=1}^r a_j b_j} \left[\bigwedge_{1 \leq j \leq r} \left[\mu_A(a_j) \wedge \mu_A(b_j)\right]\right] \wedge \frac{1-k}{2} = (\mu_A \cdot_k \mu_A)(x) \end{split}$$

and

$$\begin{pmatrix} \lambda_A \vee \frac{1-k}{2} \end{pmatrix} (x) = \lambda_A(x) \vee \lambda_A(x) \vee \frac{1-k}{2} \\ = \left[\lambda_A(x) \vee \frac{1-k}{2} \right] \vee \left[\lambda_A(x) \vee \frac{1-k}{2} \right] \vee \frac{1-k}{2} \\ \ge \lambda_A(a_i x a'_i) \vee \lambda_A(b_i x b'_i) \vee \frac{1-k}{2}, \ (1 \le i \le q).$$

Therefore,

$$\begin{split} \left(\lambda_{A} \vee \frac{1-k}{2}\right)(x) &\geq \bigvee_{1 \leq i \leq q} \left[\lambda_{A}(a_{i}xa_{i}') \vee \lambda_{A}(b_{i}xb_{i}')\right] \vee \frac{1-k}{2} \\ &\geq \bigwedge_{x = \sum_{i=1}^{q} a_{i}xa_{i}'b_{i}xb_{i}'} \left[\bigvee_{1 \leq i \leq q} \left[\lambda_{A}(a_{i}xa_{i}') \vee \lambda_{A}(b_{i}xb_{i}')\right]\right] \vee \frac{1-k}{2} \\ &\geq \bigwedge_{x = \sum_{j=1}^{r} a_{j}b_{j}} \left[\bigvee_{1 \leq j \leq r} \left[\lambda_{A}(a_{j}) \vee \lambda_{A}(b_{j})\right]\right] \vee \frac{1-k}{2} = (\lambda_{A} \cdot \lambda_{A})(x). \end{split}$$

Thus $A \cdot_k A = A_k$.

(2) \implies (1). Let *I* be an ideal of *R*. Then C_I , the intuitionistic characteristic function of *I*, is an $(\in, \in \lor q_k)^*$ -intuitionistic

fuzzy ideal of *R*. Hence, $C_I \cdot_k C_I = (C_I \cdot C_I)_k = (C_{I^2})_k = (C_I)_k$. It follows that $I^2 = I$.

(1) \implies (3). Let A and B be $(\in, \in \lor q_k)^*$ -intuitionistic fuzzy ideals of R.

By Theorem 14 $A \cdot_k B \subseteq A \cap_k B$. Again since *R* is fully idempotent, $(x) = (x)^2$, for any $x \in R$. Hence, as argued in the first part of the proof of this theorem, we have

$$(\mu_A \wedge_k \mu_B)(x) = (\mu_A)(x) \wedge (\mu_B)(x) \wedge \frac{1-k}{2}$$

$$\leq \bigvee_{x = \sum_{i=1}^p a_i b_i} \left[\bigwedge_{1 \le i \le r} [\mu_A(a_i) \wedge \mu_B(b_i)] \right] \wedge \frac{1-k}{2} = (\mu_A \cdot_k \mu_B)(x)$$

and

$$\begin{aligned} (\lambda_A \lor_k \lambda_B)(x) &= \lambda_A(x) \lor \lambda_B(x) \lor \frac{1-k}{2} \\ &\geq \bigwedge_{x = \sum_{i=1}^p a_i b_i} \left[\bigvee_{1 \le i \le r} [\lambda_A(a_i) \lor \lambda_B(b_i)] \right] \lor \frac{1-k}{2} = (\lambda_A \cdot_k \lambda_B)(x). \end{aligned}$$

Thus $A \cdot_k B = A \cap_k B$.

(3) \implies (1). Let *A* and *B* be any pair of $(\in, \in \lor q_k)^*$ -intuitionistic fuzzy ideals of *R*. We have $A \cdot_k B = A \cap_k B$. Take A = B. Thus $A \cdot_k A = A \cap_k A = A_k$, where *A* is any $(\in, \in \lor q_k)^*$ -intuitionistic fuzzy ideal of *R*. Hence, (3) \implies (2). Since we already proved that (1) and (2) are equivalent, hence (3) \implies (1) and so (1) \Leftrightarrow (3). This establishes (1) \Leftrightarrow (2) \Leftrightarrow (3). Finally, If *A* is commutative then it is easy to verify that (1) \Leftrightarrow (4).

Theorem 17. For a hemiring R with 1, the following conditions are equivalent.

- (1) *R* is right weakly regular hemiring.
- (2) All $(\in, \in \lor q_k)^*$ -intuitionistic fuzzy right ideals of *R* are idempotent.
- (3) $A \cdot_k B = A \cap_k B$ for $(\in, \in \lor q_k)^*$ -intuitionistic fuzzy right ideal A and all $(\in, \in \lor q_k)^*$ -intuitionistic fuzzy two-sided ideals B of R.

Proof. (1) \implies (2) Let A be an $(\in, \in \lor q_k)^*$ -intuitionistic fuzzy right ideal of R. Then we have $A \cdot_k A \subseteq A_k$.

For the reverse inclusion, let $x \in R$. Since *R* is right weakly regular, so there exist $a_i, b_i \in R$ such that $x = \sum_{i=1}^{q} x a_i x b_i$. Now we have

$$\begin{pmatrix} \mu_A \wedge \frac{1-k}{2} \end{pmatrix} (x) = \mu_A(x) \wedge \mu_A(x) \wedge \frac{1-k}{2}$$

$$= \left[\mu_A(x) \wedge \frac{1-k}{2} \right] \wedge \left[\mu_A(x) \wedge \frac{1-k}{2} \right] \wedge \frac{1-k}{2}$$

$$\leq \mu_A(xa_i) \wedge \mu_A(xb_i) \wedge \frac{1-k}{2}, \ (1 \leq i \leq q).$$

Therefore,

$$\begin{pmatrix} \mu_A \wedge \frac{1-k}{2} \end{pmatrix} (x) \leq \bigwedge_{1 \leq i \leq q} [\mu_A(xa_i) \wedge \mu_A(xb_i)] \wedge \frac{1-k}{2} \\ \leq \bigvee_{x = \sum_{i=1}^q xa_i xb_i} \left[\bigwedge_{1 \leq i \leq q} [\mu_A(xa_i) \wedge \mu_A(xb_i)] \right] \wedge \frac{1-k}{2} \\ \leq \bigvee_{x = \sum_{j=1}^r a_j b_j} \left[\bigwedge_{1 \leq j \leq r} [\mu_A(a_j) \wedge \mu_A(b_j)] \right] \wedge \frac{1-k}{2} = (\mu_A \cdot_k \mu_A)(x).$$

and

$$\begin{split} \left(\lambda_A \vee \frac{1-k}{2}\right)(x) &= \lambda_A(x) \vee \lambda_A(x) \vee \frac{1-k}{2} \\ &= \left[\lambda_A(x) \vee \frac{1-k}{2}\right] \vee \left[\lambda_A(x) \vee \frac{1-k}{2}\right] \vee \frac{1-k}{2} \\ &\geq \lambda_A(xa_i) \vee \lambda_A(xb_i) \vee \frac{1-k}{2}, \ (1 \leq i \leq q). \end{split}$$

Therefore,

$$\begin{split} \left(\lambda_A \vee \frac{1-k}{2}\right)(x) &\geq \bigvee_{1 \leq i \leq q} [\lambda_A(xa_i) \vee \lambda_A(xb_i)] \vee \frac{1-k}{2} \\ &\geq \bigwedge_{x = \sum_{i=1}^q xa_i xb_i} \left[\bigvee_{1 \leq i \leq q} [\lambda_A(xa_i) \vee \lambda_A(xb_i)] \right] \vee \frac{1-k}{2} \\ &\geq \bigwedge_{x = \sum_{j=1}^r a_j b_j} \left[\bigvee_{1 \leq j \leq r} [\lambda_A(a_j) \vee \lambda_A(b_j)] \right] \vee \frac{1-k}{2} = (\lambda_A \cdot_k \lambda_A)(x). \end{split}$$

Thus $A \cdot_k A = A_k$

(2) \implies (3) Let A and B be $(\in, \in \lor q_k)^*$ -intuitionistic fuzzy right ideal and $(\in, \in \lor q_k)^*$ -intuitionistic fuzzy two-sided ideal of R respectively. Then $A \cap_k B$ is an $(\in, \in \lor q_k)^*$ -intuitionistic fuzzy right ideal of R. By Theorem 14 $A \cdot_k B \subseteq A \cap_k B$. By hypothesis,

$$(A \cap_k B) = (A \cap_k B) \cdot_k (A \cap_k B) \subseteq A \cdot_k B$$

Hence $A \cdot_k B = A \cap_k B$.

(3) \implies (1) Let *B* be a right ideal of *R* and *A* be two sided-ideal of *R*. Then the intuitionistic characteristic function C_A and C_B are $(\in, \in \lor q_k)^*$ -intuitionistic fuzzy two-sided ideal and $(\in, \in \lor q_k)^*$ -intuitionistic fuzzy right ideal of *R*, respectively. Hence by hypothesis

$$C_B \cdot_k C_A = C_B \cap_k C_A \implies (C_{B \cdot A})_k = (C_{A \cap B})_k \implies B \cdot A = B \cap A.$$

Thus by Theorem 2, R is right weakly regular hemiring.

References

- [1] J. Ahsan, fully Idempotent Semirings, Proc. Japan Acad. 69, Ser. A (1993), 185-188.
- [2] J. Ahsan, Semirings Characterized by Their Fuzzy Ideals, J. Fuzzy Math. 6 (1998), 181-192.
- [3] J. Ahsan, K. Saifullah, M. F. Khan, Fuzzy semirings, Fuzzy Sets and Systems 60 (1993) 309-320.
- [4] K. Atanassov; Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986) 87-96.
- [5] S.K. Bhakat, P. Das, $(\in, \in \lor q)$ -fuzzy subgroups, Fuzzy Sets and Systems 80 (1996) 359-368.
- [6] D. Coker, M. Demirci, On intuitionistic fuzzy points, Notes IFS 1 (2) (1995) 79-84.
- [7] W.A. Dudek, Special types of intuitionistic fuzzy left h-ideals of hemirings, Soft Comput. 12 (2008) 359-364.
- [8] W.A. Dudek, M. Shabir, I. Ali, (α, β) -fuzzy ideals of hemirings, Comput. Math. Appl. 58 (2) (2009) 310-321.
- [9] J. S. Golan, Semirings and their Applications, Kluwer Acad. Publ., 1999
- [10] U. Hebisch, H.J. Weinert, Semirings: Algebraic Theory and Applications in the Computer Science, World Scientific, 1998.
- [11] A. Hussain, M. Shabir, Soft Finite State Machine, Journal of Intelligent and Fuzzy System, 2015, (Accepted).
- [12] A. Hussain, M. Shabir, Cubic Finite State Machine, Annals of Fuzzy Mathematics and Informatics, 2015, (Accepted).
- [13] Y.B. Jun, Generalization of $(\in, \in \lor q)$ -fuzzy subalgebras in BCK/BCI-algebras, Comput. Math. Appl. 58 (2009) 1383-1390.
- [14] Y.B. Jun, On (ϕ , ψ)-intuitionistic fuzzy fubgroups, KYUNGPOOK Math. J. 45 (2005) 87-94.
- [15] Y.B. Jun, W.A. Dudek, M. Shabir, Generalizations of (α, β) -fuzzy ideals of hemirings.
- [16] A. Khan, M. Shabir, (α, β) -fuzzy interior ideals in ordered semigroups, Lobachevskii J. Math. 30 (2009) 30-39.
- [17] A. Khan, Y.B Jun, N.H. Sarmin, F.M. Khan, Ordered semigroups characterized by $(\in, \in \lor q_k)$ -fuzzy generalized bi-ideals, Neural Comput & Applic (2011).
- [18] V.N. Mishra, Some Problems on Approximations of Functions in Banach Spaces, Ph.D. Thesis (2007), Indian Institute of Technology, Roorkee - 247 667, Uttarakhand, India.
- [19] J.N. Mordeson, D.S. Malik, Fuzzy Automata and Languages, Theory and Applications, in: Computational Mathematics Series, Chapman and Hall/CRC, Boca Raton, 2002.
- [20] V. Murali, Fuzzy points of equivalent fuzzy subsets, Information Science 158 (2004) 277-288.
- [21] P.M. Pu, Y.M. Liu, Fuzzy topology I, neighborhood structure of a fuzzy point and Moore–Smith convergence, J. Math. Anal. Appl. 76 (1980) 571-599.
- [22] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971) 512-517.
- [23] M. Shabir, Y.B. Jun, Y. Nawaz, Characterizations of regular semigroups by (α, β) -fuzzy ideals, Comput. Math. Appl. 59 (2010) 161-175.
- [24] M. Shabir, Y.B. Jun, Y. Nawaz, Semigroups characterized by $(\in, \in \lor q_k)$ -fuzzy ideals, Comput. Math. Appl. 60 (2010) 1473-1493.
- [25] H.S. Vandiver, Note on a simple type of algebra in which cancellation law of addition does not hold, Bull. Amer. Math. Soc. 40 (1934) 914-920.
- [26] L. A. Zadeh, Fuzzy sets, Inform. Control 8 (1965) 338-353.