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Abstract: In this study, the sensitivity of Schur stability of systems of linear difference equations with periodic coefficients has been
examined. The modified continuity theorems based on the parameters ω1 and ω2 have been given for Schur stability of linear difference
equations with periodic coefficients. Also, new results have been obtained for sensitivity of ω∗−Schur stability based on the parameters
ω1 and ω2. All the results have been applied to linear difference equations with periodic coefficients with order k. kD−ball regions of
Schur stability and ω∗−Schur stability have been determined. In addition, the results related to kD−ball regions have been given.
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1 Introduction

Let A(n) is a T−periodic matrix with N ×N dimension and x(n) is an N dimensional vector. Consider the following
difference equation system:

x(n+1) = A(n)x(n), x(0) = x0, n ∈ Z. (1)

Letting T = 1, the coefficient A(n) reduces to the constant coefficient A(n+1) = A(n) = A. In the present case, the Cauchy
problem (1) becomes a Cauchy problem with constant coefficients as follows,

x(n+1) = Ax(n), x(0) = x0, n ∈ Z. (2)

The stability property of the Cauchy problem (2) with constant coefficients is well-known in the literature (see, for
example, [1,2,3]). According to the spectral criterion, if all eigenvalues of the matrix A belong to the unit disc, i.e.
|λi(A)| < 1 (i = 1,2, . . . ,N), then the matrix A is called to be an discrete−asymptotic stable matrix. Therefore, the
system (2) is also called as discrete−asymptotic stable system (see, for example, [1,2,3,4]).

However, in the plane C, define the region CS = {z ∈C : |z|< 1}. If σ(A)⊂CS then A ∈ RN×N is said to be Schur stable
matrix, where σ(A) is the spectrum of A ([5]).

According to these statements, Schur stability and discrete−asymptotically stability are the equivalent concepts. Because
of this equivalence, we will prefer to use the concept of Schur stability in this paper.
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It is well-known in the literature that eigenvalue problem of non-self-adjoint matrices is an ill-possed problem (see, for
example, [4,6]). For this reason, the parameters revealing the quality of the stability obtained by avoiding calculation of
eigenvalues are preferred to investigate stability.

Schur stability parameter ω(A) for the systems (2) is defined as:

ω(A) = ||H||; H =
∞

∑
k=0

(A∗)k Ak, H = H∗ > 0, A∗HA−H + I = 0,

where I is unit matrix, A∗ is adjoint of the matrix A, ||A||= max∥x∥=1 ∥Ax∥ is the spectral norm of the matrix A, the norm
∥x∥ is Euclidean norm for the vector x = (x1,x2, ...,xN)

T . Linear difference system (2) is Schur stable if and only if
ω(A) < ∞ holds [7]. Let 1 < ω∗ ∈ R be the practical Schur stability parameter of the system (1). Then the matrix A is
called as practically Schur stable (ω∗−Schur stable) if ω(A) ≤ ω∗ holds. Otherwise the matrix A is called as ω∗−Schur
unstable matrix (see, for example, [1,4,7]). We should note here that the ω∗ practical Schur stability parameter
determined by the user according to their physical problem.

We shall be focused on the sensitivity of Schur stability of the linear difference equation system with periodic
coefficients. The solution X(n) of the equation

X(n+1) = A(n)X(n), X(0) = I,n = 0,1,2, ...

is called a fundamental matrix of (1), where A(n) = A(n+T ) and the X(T ) is called a monodromy matrix defined as

X(T ) =
T−1

∏
j=0

A( j) = A(T −1)A(T −2)...A(1)A(0)

(see, for example, [1,2,8]).

Similar to determinating the Schur stability of the coefficient matrix A of the systems with constant coefficients given
above, spectral criterion for Schur stability of monodromy matrix X(T ) of the system (1) is as follow.

If |λi(X(T ))| < 1 (i = 1,2, . . . ,N) (σ(X(T ))⊂CS) then the monodromy matrix X(T ) is Schur stable. Schur stability of
the monodromy matrix X(T ) implies that the linear difference Cauchy problem with periodic coefficients (1) is Schur
stable (see, for example, [2,8]). Schur stability parameters for the systems with periodic coefficients consist of two
different parameters. First of the parameters is ω1(A,T ) which is given by

ω1(A,T ) = ||F ||; F =
∞

∑
k=0

(X∗(T ))k (X(T ))k , F = F∗ > 0.

If the Lyapunov difference matrix equation (LDME) X∗(T )FX(T )−F + I = 0 has a positive defined symmetric solution
F = F∗ > 0 then the linear difference system with periodic coefficients (1) is Schur stable (ω1(A,T )< ∞), otherwise the
system is not Schur stable.

Second of the parameters is ω2(A,T ) is given by

ω2(A,T ) = ||Φ ||; Φ =
∞

∑
k=0

X∗(k)X(k), Φ = Φ∗ > 0.
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Here Φ is given as follows,

Φ =
∞

∑
k=0

(X∗(T ))k C (X(T ))k , C =
T−1

∑
i=0

X∗(i)X(i), X∗(T )ΦX(T )−Φ +C = 0.

The linear difference system with periodic coefficients (1) is Schur stable if and only if the LDME X∗(T )ΦX(T )−Φ +

C = 0 has a positive defined symmetric solution Φ = Φ∗ > 0 [8]. Furthermore, the system (1) is called as practically
Schur stable by providing that ωi(A,T )≤ ω∗, i = 1,2. Otherwise, the system (1) is called as ω∗−Schur unstable [9].

2 Sensitivity of Schur stability of systems of linear difference equations

It is important to predict the behaviour of solutions of a problem and to know under which conditions similar properties
are protected under perturbations to avoid the problem causes any chaos. The question ”how much perturbation is
ignorable for preserving the characteristic properties?” is known as the sensitivity problem.

In this section, we give some results in the literature on the sensitivity of the Schur stability of the systems with constant
and periodic coefficients.

2.1 Symbols

Before introducing our theorems, we need to give the following definitions

α =
T−1
∑

i=0
∥X(i)∥2 , Q(n,s) =

n−1
∏
j=s

A( j), Ψ(n,s) =
n−1
∏
j=s

B( j), γ = (T −1) max
1≤k≤T

∥Q(T,k)∥ ,

β = max
1≤k≤T

∥Q(T,k)∥
(

1+(T −1) max
1≤k≤T−1

∥Q(k,0)∥
)
,

µ = max
1≤k≤T

∥Q(T,k)∥×


max

0≤k≤T−2
∥A( j)∥ ; max

0≤k≤T−2
∥A( j)∥ ≤ 1(

max
0≤k≤T−2

∥A( j)∥
)T−2

; max
0≤k≤T−2

∥A( j)∥> 1
,

∆ = Y (T )−X(T ), ∆1 =
√

∥X(T )∥2 + 1
ω1(A,T )

−∥X(T )∥ , ∆2 =
√

∥X(T )∥2 + α
ω2(A,T )

−∥X(T )∥ ,

∆3 = max
0≤k≤T−1

∥B(k)∥
[

β + γ max
1≤k≤T−1

∥Ψ(T,k)∥+µ max
1≤k≤T

∥Q(T,k)∥
T−1
∑

k=2

k−1
∑

l=1

(
k!

l!(k−l)!

(
max

0≤ j≤k−1
∥B( j)∥

)l
)]

,

∆4 =
max

1≤ j,k≤T
∥Q( j,k)∥

(
1+(T−1) max

1≤k≤T−1
∥X(k)∥

)
1−(T−1) max

1≤ j,k≤T
∥Q( j,k)∥ max

0≤k≤T−1
∥B(k)∥ max

0≤k≤T−1
∥B(k)∥ , ∆5 =

√
∥X(T )∥2 + 1

ω2(A,T )
−∥X(T )∥ ,

∆ ∗
1 =

√
∥X(T )∥2 + ω∗−ω1(A,T )

ω∗ω1(A,T )
−∥X(T )∥ , ∆ ∗

2 =
√
∥X(T )∥2 + ω∗−ω2(A,T )

ω∗ω2(A,T )
−∥X(T )∥ .
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2.2 Sensitivity of Schur stability of systems with constant coefficients

Let us give the following result which shows us how much perturbation is permissible for the autonomous difference
equation system

y(n+1) = (A+B)y(n), n ∈ Z, (3)

where B is a constant matrix with N ×N dimensional. The system (3) is perturbated system of (2).

Theorem 1.Suppose that A is a Schur stable matrix, that is ω(A)<∞. If the matrix B satisfies ∥B∥<
√
∥A∥2 + 1

ω(A)−∥A∥,
then A+B is Schur stable. Moreover, the inequality

|ω(A+B)−ω(A)| ≤ (2∥A∥+∥B∥)∥B∥ω2(A)
1− (2∥A∥+∥B∥)∥B∥ω(A)

,

holds ([10]; Theorem 4).

2.3 Sensitivity of Schur stability of systems with periodic coefficients

In the literature, some results are given under which conditions the perturbated system

y(n+1) = (A(n)+B(n))y(n), B(n+T ) = B(n), n ∈ Z, (4)

preserves the Schur stability when the system (1) is Schur stable (see, for example, [11,12]). Some of these results give
explicit conditions for bounds of the Schur stability parameters of the system (1) and its perturbated system (4), while
some of the results provide bounds for the difference between the monodromy matrices Y (T ) and X(T ) of the systems
(1) and (4), respectively. Such theorems in general known as the continuity theorems.

In this section, we give some continuity theorems of the system with periodic coefficients.

Theorem 2. Let the system (1) is Schur stable, X(T ) and Y (T ) be the monodromy matrices of (1) and (4), respectively.If
the matrix B(n) satisfies

∥Y (T )−X(T )∥<

√
∥X(T )∥2 +

1
ω1(A,T )

−∥X(T )∥ ,

then the system (4) is Schur stable ([11]; Theorem 2). Moreover, the inequality

∥∥∥F̃ −F
∥∥∥≤

(
2∥X(T )∥∥Y (T )−X(T )∥+∥Y (T )−X(T )∥2

)
∥F∥

1−
(

2∥X(T )∥∥Y (T )−X(T )∥+∥Y (T )−X(T )∥2
)
∥F∥

ω1(A,T )

holds, where F̃ =
∞
∑

k=0
(Y ∗(T ))k (Y (T ))k ([11]; Theorem 3).

Theorem 3. Let X(T ) and Y (T ) be the monodromy matrices of the systems (1) and (4), respectively, then
∥Y (T )−X(T )∥ ≤ ∆3. Moreover, if (1) is Schur stable, then for the perturbation matrix B(n) satisfying ∆3 < ∆1, the
system (4) is Schur stable too ([13]; Theorem 3).

Theorem 4. Let X(T ) and Y (T ) be the monodromy matrices of the systems (1) and (4), respectively, and
(T − 1) max

1≤ j,k≤T
∥Q( j,k)∥ max

0≤k≤T−1
∥B(k)∥ < 1, then we have ∥Y (T )−X(T )∥ ≤ ∆4. Moreover, if (1) is Schur stable

c⃝ 2016 BISKA Bilisim Technology



163 A. Duman, G. Celik Kizilkan and K. Aydin: Sensitivity of Schur stability of systems of linear difference...

system,then (4) is Schur stable too provided that B(n) satisfies

∥B(n)∥< ∆1

max
1≤ j,k≤T

∥Q( j,k)∥
[

1+(T −1)
(

max
1≤k≤T−1

∥X(k)∥+∆1

)]
([13]; Theorem 4).

Theorem 5. Let the system (1) be Schur stable, and B(n) be a perturbation matrix satisfying each of the following
conditions.

(i) ∆3 < ∆2,

(ii) ∥B(n)∥< ∆2

max
1≤ j,k≤T

∥Q( j,k)∥
[

1+(T−1)
(

max
1≤k≤T−1

∥X(k)∥+∆2

)] ,
then the perturbated system (4) is Schur stable too ([13]; Theorem 5).

3 Main results

3.1 Sensitivity of linear difference equations systems with periodic coefficients

In this part, we give upper bounds for difference between Schur stability parameters of the systems (1) and (4), upper
bounds for Schur stability parameters of the system (4). In addition to the following lemma give a symmetric positive
difinite matrix C =C∗ > 0 which satisfies LDME for Schur stable matrix X(T ) ( or Y (T ) ).

Lemma 1. Let the systems (1) and (4) be Schur stable.

(i) LDME of the system (1) is satisfied by symmetric positive matrix

C =C2 +∆ ∗F̃X(T )+X∗(T )F̃∆ +∆ ∗F̃∆ ,

where the positive definite matrix F̃ is solution of LDME of the system (4) for any a matrix C2 =C∗
2 > 0,

(ii) For any matrix C1 = C∗
1 > 0, in correspondence to the solution F = F∗ > 0 which satisfies LDME of system (1),

the symmetric positive definite matrix satisfing LDME of the system (4) is

C =C1 +∆ ∗F∆ −∆ ∗FY (T )−Y ∗(T )F∆ .

Proof. (i) Since the system (1) is Schur stable, that is monodromy matrix X(T ) is Schur stable, there is a positive definite
solution of LDME

X∗(T )FX(T )−F +C1 = 0; C1 =C∗
1 > 0

which is F = F∗ > 0 and since the system (4) is also Schur stable, there is a positive definite solution of LDME

Y ∗(T )F̃Y (T )− F̃ +C2 = 0; C2 =C∗
2 > 0, (5)

which is F̃ = F̃∗ > 0. Lets seek the matrix C satisfying

X∗(T )F̃X(T )− F̃ +C = 0; C =C∗ > 0
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for X(T ) and F̃ = F̃∗ > 0 which is the solution of (5). In equation (5), if we replace Y (T ) by X(T )+∆ , it yields
the following equation

(X(T )+∆)∗F̃(X(T )+∆)− F̃ =−C2

and we have
X∗(T )F̃X(T )− F̃ =−

(
C2 +∆ ∗F̃X(T )+X∗(T )F̃∆ +∆ ∗F̃∆

)
.

Thus we obtain LDME of the system (1) satisfied by symmetric positive matrix

C =C2 +∆ ∗F̃X(T )+X∗(T )F̃∆ +∆ ∗F̃∆ .

(ii) The proof is similar to Lemma 1 (i) proof.

Example 1. Let A(n) =

(
0.99 0

0
(−1

2

)n

)
for the system (1). Perturbate the system (1) with

B(n) =

(
0.0099 0

0 (−1)n 0.0099

)
.

(i) According to Lemma 1 (i) C =C∗ =

(
197.03 0

0 1.26689

)
is obtained which satisfies LDME of the system (1) for

the symmetric positive definite matrix C2 =

(
1.9998 0

0 1.26

)
which satisfies LDME of the system (4),

(ii) According to Lemma 1 (ii), C =C∗ =

(
0.02009749 0

0 1.2432

)
is obtained which satisfies LDME of the system (4)

for the symmetric positive definite matrix C1 =

(
1.9801 0

0 1.25

)
which satisfies LDME of the system (1).

Now lets re-express Continuity Theorem given with Theorem 2 for the parameter ω1(A,T ) by considering Theorem 3 and
4.

Theorem 6. Let the system (1) be Schur stable, ( i.e. ω1(A,T )< ∞ ). For the matrix B(n) that satisfies the inequality

∥B(n)∥< ∆1

max
1≤ j,k≤T

∥Q( j,k)∥
[

1+(T −1)
(

max
1≤k≤T−1

∥X(k)∥+∆1

)]
following inequalities hold

ω1(A+B,T )≤ ω1(A,T )
1−(2∥X(T )∥+∆4)∆4ω1(A,T )

;
∥∥∥F̃ −F

∥∥∥≤ (2∥X(T )∥+∆4)∆4ω1(A,T )2

1−(2∥X(T )∥+∆4)∆4ω1(A,T )
.

Proof. The proof is similar to that of Theorem 2 and is obtained by replacing ∥Y (T )−X(T )∥ by ∆4, so we omit the details.

Remark 1. In Theorem 2, the upper bounds in obtained inequalities depend on ∥Y (T )−X(T )∥, thereby depends on the

uncalculated matrix Y (T ) of perturbed system. On the other hand, in Theorem 6, these upper bounds totally depend on the
perturbation matrix B(n) which guarantees the Schur stability of system (1). Therefore, the calculation of upper bounds
in inequalities in Theorem 6 is more adventageous than that in Theorem 2. Furthermore, for perturbation matrix B(n) that
satisfies the boundary condition in the inequality ∥Y (T )−X(T )∥ < ∆1 in Theorem 2, if one uses ∆1 without calculating
the matrix Y (T ) in inequalities in Theorem 6, then the following equation is obtained:

(
2∆1 ∥X(T )∥+∆ 2

1
)

ω1(A,T ) = 1.
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In that case, inequalities in Theorem 2 would be meaningless.

Remark 2. For the perturbation matrix B(n) which satisfies the condition ∆3 < ∆1, the inequalities in Theorem 6 are

also valid for ∆3.

Example 2. Let us consider the equation

x(n+1) =

(
0.99 0

0
(−1

2

)n

)
x(n).

The monodromy matrix of the system is

X(2) =

(
0.9801 0

0 −0.25

)
,

and its condition number is ω1(A,2) = 25.3781. Perturbation boundary whose Schur stability is guaranteed by Theorem
6 of given Schur stable system is ∥B(n)∥< 0.000990101. However, an obvious boundary like this cannot be given using
Theorem 2. For the perturbation matrix

B(n) =

(
0.0099 0

0 (−1)n 0.0099

)
, max

0≤k≤1
∥B(k)∥= 0.0099,

ω1(A+B,2) = 2500.38 and |ω1(A+B,2)−ω1(A,2)| = 2475.0019. Using Theorem 6 without calculating matrix Y (T )
and only depending on the arguments of the system and matrix B(n), right hand side of the first inequality is calculated
as 244924.38 and right hand side of the second inequality is calculated as 244899.002378. In contrast to that, to calculate
the right hand sides of inequalities in Theorem 2, the matrix Y (T ) must be calculated first.

Expression of Theorem 6 for T = 1.

Corollary 1. Suppose that the system (1)(the system (2)) is Schur stable. If the matrix B satisfies ∥B∥<
√
∥A∥2 + 1

ω(A) −
∥A∥ , then the system (4)(the system (3)) is Schur stable too. Moreover, the inequalities

ω(A+B)≤ ω(A)
1−(2∥A∥+∥B∥)∥B∥ω(A) ;

∥∥∥F̃ −F
∥∥∥≤ (2∥A∥+∥B∥)∥B∥ω2(A)

1−(2∥A∥+∥B∥)∥B∥ω(A)

hold.

Proof. For systems with periodic coefficients, in case of T = 1, we have A(n) = A, B(n) = B, X(T )|T=1 = A,
ω1(A,T )|T=1 = ω(A), ∆1|T=1 =

√
∥A∥2 + 1

ω(A) − ∥A∥ and ∆4|T=1 = ∥B∥ . Here, for convenience, we assume that

max
i≤k≤ j, j<i

{.}= 0 and
j

∑
k=i, j<i

(.) = 0. Thus the proof is completed.

It is clear that, Corollary 1 is completely the same as Theorem 1. This shows us that Theorem 6 is compatible with the
results in literature. Now let us give a variant, in terms of the parameter ω2 of Theorem 6.

Theorem 7. Let the system (1) be Schur stable, ( i.e. ω2(A,T ) < ∞ ). For a perturbation matrix B(n) which satisfies the
inequality

∥B(n)∥< ∆5

max
1≤ j,k≤T

∥Q( j,k)∥
[

1+(T −1)
(

max
1≤k≤T−1

∥X(k)∥+∆5

)]
c⃝ 2016 BISKA Bilisim Technology
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the system (4) is Schur stable. Moreover, the following inequalities hold

ω2(A+B,T )≤ ω2(A,T )
1−(2∥X(T )∥+∆4)∆4ω2(A,T )

;
∥∥∥F̃ −F

∥∥∥≤ (2∥X(T )∥+∆4)∆4ω2(A,T )2

1−(2∥X(T )∥+∆4)∆4ω2(A,T )
.

Proof. The proof is easily obtained by considering the inequalities ω1(A,T ) ≤ ω2(A,T ), 1/ω1(A,T ) ≤ α/ω2(A,T ) and
using Theorem 6.

Remark 3. For perturbation matrix B(n) which satisfies the condition ∆3 < ∆5, inequalities given in Theorem 7 is also
valid for ∆3. For T = 1, the statement of Theorem 7 is the same as the statement of Corollary 1. Indeed, in case of T = 1,
we have

A(n) = A, B(n) = B, X(T )|T=1 = A, ω2(A,T )|T=1 = ω(A),

∆5

max
1≤ j,k≤T

∥Q( j,k)∥
[

1+(T −1)
(

max
1≤k≤T−1

∥X(k)∥+∆5

)]
∣∣∣∣∣∣∣∣
T=1

=

√
∥A∥2 +

1
ω(A)

−∥A∥ ,

ω2(A,T )
1− (2∥X(T )∥+∆4)∆4ω2(A,T )

∣∣∣∣
T=1

=
ω(A)

1− (2∥A∥+∥B∥)∥B∥ω(A)
,

(2∥X(T )∥+∆4)∆4ω2(A,T )2

1− (2∥X(T )∥+∆4)∆4ω2(A,T )

∣∣∣∣
T=1

=
(2∥A∥+∥B∥)∥B∥ω2(A)

1− (2∥A∥+∥B∥)∥B∥ω(A)
.

Thus Corollary 1 is obtained.
Theorem 7, like Theorem 6, is also compatible with the results in literature.

Example 3. Let’s consider the system x(n+1) = Ai(n)x(n), (i = 1,2) and

A1(n) =

(
(−1)n

4 0.2

0.4 (−1)n

5

)
, A2(n) =

(
0.99 3

2

0 (−1)n

2

)
.

For these systems we obtain ω1(A1,2) = 1.002, ω1(A2,2) = 107.377 and ω2(A1,2) = 1.30124, ω2(A2,2) = 213.775.
These systems are Schur stable. Let’s apply a perturbation to the system which has coefficient matrix A1(n) using following
matrices

B1
1(n) =

(
(−1)n 0.2 0

0 0.2

)
, B2

1(n) =

(
(−1)n 0.2 0

0.1 0

)
.

and apply another perturbaton to the system which has coefficient matrix A2(n) using following matrices

B1
2(n) =

(
0.0001 0

0 (−1)n 0.0001

)
, B2

2(n) =

(
0 0.0001
0 (−1)n 0.0001

)
.

According to these matrices, following results are obtained.

ω1(A1 +B1
1,2) = 1.05289, ω1(A1 +B2

1,2) = 1.03229,
ω1(A2 +B1

2,2) = 108.446, ω1(A2 +B2
2,2) = 107.377,

ω2(A1 +B1
1,2) = 1.5941, ω2(A1 +B2

1,2) = 1.56593,
ω2(A2 +B1

2,2) = 215.913, ω2(A2 +B2
2,2) = 213.773.

Now, let us write some symbolic definitions for the difference between Schur stability parameters and the right hand sides
of inequalities given in Theorem 6 and Theorem 7 for simplicity in notation.
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(1) M = |ω1(A+B,T )−ω1(A,T )|
(2) N = |ω2(A+B,T )−ω2(A,T )|
(3) Mi =

(2∥X(T )∥+∆i)∆iω1(A,T )2

1−(2∥X(T )∥+∆i)∆iω1(A,T )
, (i = 3,4)

(4) Ni =
(2∥X(T )∥+∆i)∆iω2(A,T )2

1−(2∥X(T )∥+∆i)∆iω2(A,T )
, (i = 3,4)

(5) Pi =
ω1(A,T )

1−(2∥X(T )∥+∆i)∆iω1(A,T )
, (i = 3,4)

(6) Ti =
ω2(A,T )

1−(2∥X(T )∥+∆i)∆iω2(A,T )
, (i = 3,4).

Now considering the given data, let’s comment on Theorems 6 and 7 using the Table 1 and Table 2.

A(n) B(n) M M3 M4 N N3 N4

A1
B1

1 0.05089 0.181966 0.226854 0.29286 0.324478 0.410326

B2
1 0.03029 0.239043 0.314567 0.26469 0.434065 0.585393

A2
B1

2 1.069 41.0627 41.0711 2.138 262.058 262.145

B2
2 0 41.3465 41.3551 0.002 264.987 265.076

Table 1: This table illustrates the upper bounds of M and N in Theorem 6 and Theorem 7.

As seen in Table 1, Mi and Ni (i = 3,4) which are the upper bounds of differences of condition numbers of perturbed and
non perturbed systems given in Theorem 6 and Theorem 7, are affected by perturbation and therefore when perturbation
is changed, healthy information can be obtained about the change of difference between Schur stability parameters of
system (1) and system (4). As seen in the table, the upper bounds Mi and Ni (i = 3,4) of the differences M and N give
closer results to occuring differences when the quality of Schur stability is stronger (i.e. the parameter value is smaller).
For example, for the coefficient matrix A1(n) and the perturbation matrix B2

1(n), the occuring differences are M = 0.03029
and N = 0.26469 which has upper bounds M3 = 0.239043, M4 = 0.314567 and N3 = 0.434065, N4 = 0.585393 which are
closer to occuring differences. However, for the coefficient matrix A2(n), which has lower quality of Schur stability with
compare to A1(n), the upper bounds are much greater than differences occured.

A(n) B(n) ω1(A+B,T ) P3 P4 ω2(A+B,T ) T3 T4

A1
B1

1 1.05289 1.18397 1.22885 1.5941 1.62572 1.71157

B2
1 1.03229 1.24104 1.31657 1.56593 1.73531 1.88663

A2
B1

2 108.446 148.44 148.448 215.913 475.833 475.92

B2
2 107.377 148.723 148.732 213.773 478.762 478.851

Table 2: This table illustrates the upper bounds of ω1(A+B,T ) and ω2(A+B,T ) in Theorem 6 and Theorem 7.

As seen in Table 2, Pi and Ti (i = 3,4) which are the upper bounds of parameters of Schur stability of the perturbation
system given in Theorem 6 and Theorem 7, are affected by the perturbation, so when perturbation changes, healthy
information can be obtained about Schur stability parameters of the system (4). As seen in the table, Pi and Ti (i = 3,4),
which are upper bounds of ω1(A+B,T ) and ω2(A+B,T ) give results which are quite closer to the value occured while
the quality of Schur stability is strong. Indeed, for the coefficient matrix A1(n) and the perturbation matrix B1

1(n), the
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values are ω1(A1 +B1
1,2) = 1.05289 and ω2(A1 +B1

1,2) = 1.5941. The upper bounds P3 = 1.18397, P4 = 1.22885 and
T3 = 1.62572, T4 = 1.71157 of these values are closer to these values. However, for the coefficient matrix A2(n) which
has lower quality of Schur stability, the upper bounds are much greater than the values occured.

3.2 ω∗−Schur stability of linear difference equation systems with periodic coefficients

In this section, some results on the sensitivity of the ω∗−Schur stability are investigated.

Theorem 8. Let the system (1) be ω∗−Schur stable ( i.e.ωi(A,T ) ≤ ω∗, i = 1,2 ), and B(n) be a perturbation matrix
satisfying each of the following conditions:

(i) ∆3 ≤ ∆ ∗
i ; i = 1,2,

(ii) ∥B(n)∥ ≤ ∆∗
i

max
1≤ j,k≤T

∥Q( j,k)∥
[

1+(T−1)
(

max
1≤k≤T−1

∥X(k)∥+∆∗
i

)] ; i = 1,2,

then the perturbated system (4) is ω∗−Schur stable too.

Proof. (i) Since ω∗−ωi(A,T )
ω∗ωi(A,T )

< 1
ωi(A,T )

≤ α
ωi(A,T )

, the inequality ∆3 ≤ ∆ ∗
i < ∆i (i = 1,2) is hold. Thus the perturbated

system (4) is Schur stable according to Theorem 3 and 5. Therefore if the inequality

∆3 ≤ ∆ ∗
i =

√
∥X(T )∥2 +

ω∗−ωi(A,T )
ω∗ωi(A,T )

−∥X(T )∥ , i = 1,2

is solved for ω∗, the inequality

ωi(A,T )
1− (2∥X(T )∥+∆3)∆3ωi(A,T )

≤ ω∗, i = 1,2

is obtained. Thus the system (4) is ω∗−Schur stable from Theorem 6 and 7 and Remark 1. and 2.

(ii) If the inequality ∥B(n)∥ ≤ ∆∗
i

max
1≤ j,k≤T

∥Q( j,k)∥
[

1+(T−1)
(

max
1≤k≤T−1

∥X(k)∥+∆∗
i

)] is solved for ∆ ∗
i , i = 1,2, the inequality

∆4 ≤ ∆ ∗
i , i = 1,2

is obtained. Since ω∗−ωi(A,T )
ω∗ωi(A,T )

< 1
ωi(A,T )

≤ α
ωi(A,T )

, the inequality ∆4 ≤ ∆ ∗
i < ∆i (i= 1,2) is hold. Thus the perturbated

system (4) is Schur stable. Therefore if the inequality

∆4 ≤ ∆ ∗
i =

√
∥X(T )∥2 +

ω∗−ωi(A,T )
ω∗ωi(A,T )

−∥X(T )∥ , i = 1,2

is solved for ω∗, the inequality

ωi(A,T )
1− (2∥X(T )∥+∆4)∆4ωi(A,T )

≤ ω∗, i = 1,2

is obtained. Thus the system (4) is ω∗−Schur stable from Theorem 6 and 7.

Example 4. For the system (1) let A(n) =

(
0.9 0.1

0 (−1)n

10

)
and ω∗ = 10. Since ω1(A,2) = 2.93644 ≤ ω∗ and ω2(A,2) =

5.32484 ≤ ω∗, the system (1) is ω∗−Schur stable. For perturbation matrix B(n) satisfying the inequalities ∥B(n)∥ ≤
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0.0647958, ∥B(n)∥ ≤ 0.0269713 and ∥B(n)∥ ≤ 0.0666285, ∥B(n)∥ ≤ 0.0266247 which are obtained using Theorem 8
(i) and Theorem 8 (ii), respectively, the system (4) is ω∗−Schur stable. For example, let the perturbation matrix be

B(n) =

(
0.026 0

0 (−1)n 0.026

)
, then ∥B(n)∥ = 0.026. Indeed for the system (4), A(n)+B(n) =

(
0.926 0.1

0 (−1)n 0.126

)
and it can be seen that ω1(A+B,2) = 3.81806 ≤ ω∗ and ω2(A+B,2) = 7.10177 ≤ ω∗.

3.3 Application of the results on the sensitivity of linear difference equations with order k

Consider the following linear difference equations with order k

x(n+1)−a0(n)x(n)− . . .−ak−1(n)x(n− k+1) = 0 (6)

for n ≥ 0 and ai(n) = ai(n+T ), i = 0,1,2, ...,k− 1, T > 0. By taking x(n− k+ 1) = y1(n), x(n− k+ 2) = y2(n), ... ,
x(n) = yk(n) the equation (6) can be written as

y(n+1) =C(n)y(n), n ≥ 0 and C(n+T ) =C(n) (7)

in matrix-vector form, where the matrix C(n) is companion matrix as follows

C(n) =



0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
ak−1(n) ak−2(n) ak−3(n) · · · a0(n)


.

Thus, the results on the sensitivity of Schur stability which are given for the system (1) can easily be used for the
sensitivity of Schur stability of the linear difference equations with order k (6).

Consider the perturbation of the equation (6), and so, of the system (7)

z(n+1) = (C(n)+D(n))z(n), n ≥ 0, D(n+T ) = D(n), (8)

where

D(n) =



0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0
dk−1(n) dk−2(n) dk−3(n) · · · d0(n)


,

di(n) = di(n+T ), T ≥ 0, i = 0,1,2, ...,k−1.

The set Bδ called as the kD−ball, i.e. the k−dimensional ball [14], and defined as
Bδ = {x = (x1,x2, . . . ,xk)| ∥x(n)∥< δ}. Let

• d(n) = (dk−1(n),dk−2(n), . . . ,d1(n),d0(n)),

• δi =
∆i

max
1≤ j,k≤T

∥Q( j,k)∥
[

1+(T−1)
(

max
1≤k≤T−1

∥X(k)∥+∆i

)] , i = 1,2,
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• δ ∗
i =

∆∗
i

max
1≤ j,k≤T

∥Q( j,k)∥
[

1+(T−1)
(

max
1≤k≤T−1

∥X(k)∥+∆∗
i

)] , i = 1,2.

For the system (7), the variant of Theorem 4 is as follows.

Theorem 9. Let the system (7) be Schur stable. If the k−tuple d(n) ∈ Bδi (i = 1,2), then the perturbed system (8) is Schur
stable.

Proof. Since d(n) ∈ Bδi , we obtain ∥D(n)∥ = ∥d(n)∥ < δi. Therefore, if the system (7) is Schur stable, the condition
∥D(n)∥< δi; i = 1,2 in Theorems 4 and 5 guarantees the Schur stability of the perturbed system (8).

Remark 4. The kD−ball Bδ occurs as a region of Schur stability for the perturbation matrix D(n). The 1D−ball Bδ is an

interval, the 2D−ball Bδ is a disc, and the 3D−ball Bδ is the interior of a sphere, i.e. a solid ball.

Theorem 10. Let the system (7) be ω∗−Schur stable. If the k-tuple d(n) ∈ Bδ ∗
i
(i = 1,2), then the perturbed system (8) is

also ω∗−Schur stable.

Proof. The proof is easily obtained from Theorems 8 (ii) and 9.

Example 5. Consider the delay difference equation

x(n+1)− 1
4

cos(nπ)x(n) =− 1
100

x(n−1), n ≥ 0. (9)

For the companion matrix C(n), it is easy to check that ω1(C,2) = 1.06833 and ω2(C,2) = 2.13647. Therefore, the
equation (9) is Schur stable.

• δ1 = 0.259469, δ2 = 0.263176,
• for ω∗

1 = 3; δ ∗
1(3)

= 0.209221 and δ ∗
2(3)

= 0.0828397,
• for ω∗

2 = 10; δ ∗
1(10)

= 0.246093 and δ ∗
2(10)

= 0.159556.

Consider the perturbed equation

y(n+1)−
(

1
4

cos(nπ)+d0(n)
)

y(n) =
(
− 1

100
+d1(n)

)
y(n−1), (10)

where n ≥ 0 and di(n) = di(n+2), i = 0,1.

• The equation (10) for all elements of the set Bδi (i = 1,2) is Schur stable,
• The equation (10) for all elements of the set Bδ ∗

i(3)
(i = 1,2) is 3−Schur stable,

• The equation (10) for all elements of the set Bδ ∗
i(10)

(i = 1,2) is 10−Schur stable.

For d(n) =
(
(−1)n+10.183,(−1)n0.183

)
, perturbate matrix

D(n) =

(
0 0

(−1)n+10.183 (−1)n0.183

)
, max

0≤k≤1
∥D(k)∥= 0.258801.

While the system is perturbated by D(n) we have ω1(C+D,2) = 1.24149 and ω2(C+D,2) = 2.09479 hence it is Schur
stable.
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Fig. 1: Schur stability region of Bγ∗1(3)
,Bγ∗1(10)

and Bγ1 .

Fig. 2: Schur stability region of Bγ∗2(3)
,Bγ∗2(10)

and Bγ2 .
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Schur stability region Bδi , 3−Schur stability region Bδ ∗
i(3)

and 10−Schur stability region Bδ ∗
i(10)

of the equation (10) have

been given with Figure 1 and Figure 2. As it is clearly seen from Figure 1 and Figure 2, Bδ ∗
i(3)

⊂ Bδ ∗
i(10)

⊂ Bδi (i = 1,2).

Theorem 11. (i) limωi→∞ Bδi =∅, i = 1,2,

(ii) limωi→ω∗
i

Bδ ∗
i
=∅, i = 1,2,

(iii) limω∗
i →∞ Bδ ∗

i
= Bδi , i = 1,2.

Proof. (i) The equality limωi→∞ δi = 0 holds, where limωi→∞ ∆i = 0, i = 1,2. Therefore,
limωi→∞ {x = (x1,x2, . . . ,xn)| ∥x(n)∥< δi}=∅,

(ii) limωi→ω∗
i

Bδ ∗
i
=∅ for limωi→ω∗

i
δ ∗

i = 0, i = 1,2,

(iii) limωi→ω∗
i

Bδ ∗
i
=∅ for limωi→ω∗

i
δ ∗

i = 0, i = 1,2,
so the proof is obtained.

Theorem 12. (i) The sequence of set
{

Bδi

}
is increasing according to δi, i = 1,2,

(ii) The sequence of set
{

Bδ ∗
i

}
, i = 1,2 is bounded.

Proof. (i) Let x(n+ 1) = C1(n)x(n) and y(n+ 1) = C2(n)y(n). It is clear that if δi(C2) < δi(C1) then the inclusion
Bδi(C2) ⊂ Bδi(C1) holds, i = 1,2,

(ii) ∅⊂ Bδ ∗
i
⊂ Bδi for 0 < δ ∗

i < ∆i

max
1≤ j,k≤T

∥Q( j,k)∥
[

1+(T−1)
(

max
1≤k≤T−1

∥X(k)∥+∆i

)] , i = 1,2.

Remark 5. The numerical examples have been computed by using matrix vector calculator MVC [15].

4 Conclusion

In this paper we have consider sensitivity problem for Schur stable linear difference equation system with periodic
coefficients. For this problem, the upper bounds in obtained inequalities which depends on ∥Y (T )−X(T )∥ in continuity
theorems in literature have depend on the uncalculated matrix Y (T ) of perturbed system. On the other hand, the similar
bounds in the continuity theorems in this study totally have depend on the perturbation matrix B(n) which guarantees the
Schur stability of system (1). Therefore, the calculation of upper bounds in inequalities in the continuity theorems have
been more adventageous than that in continuity theorems in literature.

In addition, some new results on the sensitivity of ω∗−Schur stability have obtained. All the results have applied to
linear difference equations with periodic coefficients with order k. kD−ball regions of Schur stability and ω∗−Schur
stability have determined. Also some examples illustrating the efficiency of the theorems have given.
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c⃝ 2016 BISKA Bilisim Technology


