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Abstract: This paper deals with fuzzy goal programming approach to solve fuzzy linear bilevel integer programming problems with
fuzzy probabilistic constraints following Pareto distribution and Frechet distribution. In the proposed approach a new chance constrained
programming methodology is developed from the view point ofmanaging those probabilistic constraints in a hybrid fuzzyenvironment.
A method of defuzzification of fuzzy numbers usingα−cut has been adopted to reduce the problem into a linear bilevel integer
programming problem. The individual optimal value of the objective of each DM is found in isolation to construct the fuzzy membership
goals. Finally, fuzzy goal programming approach is used to achieve maximum degree of each of the membership goals by minimizing
under deviational variables in the decision making environment. To demonstrate the efficiency of the proposed approach, a numerical
example is provided.
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1 Introduction

The concept of Bilevel Programming Problem (BLPP) was introduced by Candler and Townsley [1] in 1982. The BLPP
is considered as a hierarchical decision making problem with a structure of two levels in a highly conflicting decision
making situation. The executions of decisions are sequential from upper level to lower levels. In BLPP, a decision maker
(DM) at the upper level is termed as the leader and the lower level is termed as the follower [2]. In the context of BLPP,
the decisions maintain a hierarchy from leader to the follower. BLPPs have been successfully applied to various
hierarchical decision making situations such as traffic planning [3], pricing and fare optimization in the airline industry
[4], management of hazardous materials [5], aluminum production process [6], pollution control policy determination
[7], tax credits determination for biofuel producers [8], pricing in competitive electricity markets [9], supply chain
planning [10], facility location [11], defense problem [12] and so forth. Most of the developments on BLPPs are based
on vertex enumeration method [1] and transformation approaches [2] which are effective only for very simple types of
problems. The main pitfall of these methods is that the decision makers (DMs) have no cooperating attitude with each
other. So, these methods fail to give a decision acceptable to both the DMs. Also the above approaches give a
dissatisfactory solution to the DMs if the parameter valuescontain some degree of uncertainty.

Uncertainties that frequently occur in the real life decision making situations may be fuzzily or stochastically described.
The context that arises due to the simultaneous presence of randomness and fuzziness is known as hybrid fuzzy
environment. To resolve the randomness, Dantzig [13] introduced stochastic programming using the concept of
probability theory. There are two main approaches of stochastic programming, namely, chance constrained programming
(CCP) and two- stage programming. Charnes and Cooper [14] first developed the CCP models. The concept of CCP
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technique for solving different type of problems was further extended by several researchers [15,16] in recent past. With
this advancement in computational resources and scientificcomputing techniques many complicated optimization
models can now be solved efficiently.

The possibilistic uncertainty involved inherently with the DMs ambiguous understanding of the nature of parameters
associated with the problem. Fuzzy numbers, introduced by Zadeh [17], are used to handle fuzzy uncertainty.
Zimmermann [18] showed that the solutions obtained by fuzzylinear programming are always efficient. Sakawa et al.
[19] formulated cooperative fuzzy bilevel programming problems and proposed an interactive fuzzy programming
approach to solve the problems. Shih and Lee [20] applied fuzzy set theory to overcome the computational difficulties in
solving bilevel problems. Recently, Zhang et al. [21] studied fuzzy bilevel programming problem, which focuses on the
situation where the leader or the follower has multiple objectives with fuzzy parameters and all followers share their
decision variables. Moitra and Pal [22] adopted fuzzy goal programming (FGP) approach for solving linear BLPP.
Abo-Sinha [23] discussed multi-objective optimization for solving non-linear multi-objective bi-level programming
problems in fuzzy environment. Osman et al. [24] extended fuzzy approaches [23] for solving non-linear bi-level and
tri-level multi-objective decision making under fuzziness. Baky [25] studied FGP algorithm for solving decentralized
bi-level multi-objective programming problems. Arora andGupta [26] presented interactive FGP approach for linear
BLPP with the characteristics of dynamic programming. Satisfactory solution is derived by updating the satisfactory
degree of the decision makers with the consideration of overall satisfactory balance between both the levels. Deng et. al.
[27] developed a method for solving the fuzzy BLPP with multiple followers through structured element method.

Considering simultaneous occurrence of randomness and fuzziness in BLPP, Modak and Biswas [28] developed an FGP
approach for solving bilevel stochastic programming problems. But FGP approaches to fuzzy linear bilevel integer
programming problem (FLBLIPP) with Pareto distributed andFrechet distributed fuzzy random variables (FRVs) are yet
to appear in literature.

In the present study a methodology for solving FLBLIPP with Pareto distributed and Frechet distributed FRVs in right
hand side parameters of the constraints are developed. Alsothe parameter of the objectives and the left hand side
parameters of the constraints are taken as triangular fuzzynumbers. At first the probabilistic uncertainty is removed from
the constraints by applying CCP technique. Then using a method of defuzzification of triangular fuzzy numbers [29] the
problem is reduced to linear bilevel integer programming problem (LBLIPP). The individual optimal value of the
objective of each DM is found in isolation to construct the fuzzy membership goals of each of the DMs. Finally FGP
approach is used to achieve maximum degree of each of the membership goals of the DMs by minimizing
under-deviational variables in the decision making environment.

2 Basic concepts

The preliminary ideas such asα−cut of fuzzy set, fuzzy number, triangular fuzzy number, defuzzification method for
finding the expected value of fuzzy number, fuzzy random variable following Pareto distribution and Frechet distribution
which are necessary in the treatise of formulating the proposed model are described in this section.

Definition 1. α−cut of a fuzzy set̃A is a crisp set, denoted bỹA[α] and is defined bỹA[α] = {x : x∈ X andµÃ (x)≥ α},
(0< α ≤ 1), where X represents the set on which the fuzzy setÃ is defined.

Definition 2. A fuzzy set̃A defined on the set of real numbers,R, is said to be a fuzzy number if

(1) Ã is a normal fuzzy set. i.e., there exists a point x∈ R such thatµÃ (x) = 1.
(2) Theα−cut ofÃ i.e.Ã[α] is a convex set for allα ∈ (0,1].
(3) The support of̃A is a bounded set.
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Definition 3. A fuzzy number̃A is said to be a triangular fuzzy number if its membership function is expressed as

µÃ (x) =





x−aL

a−aL if aL ≤ x≤ a
aR−x
aR−a

if a≤ x≤ aR

0 otherwise

A triangular fuzzy number̃A is written in the formÃ= (aL,a,aR). Geometrically a triangular fuzzy number is presented
as,

Fig. 1

Definition 4. Let Ã= (aL,a,aR) be a triangular fuzzy number. Then the equivalent crisp value ofÃ is obtained by finding
the expected value using theα- cut of the triangular fuzzy number. The membership function of the triangular fuzzy
numberÃ= (aL,a,aR) is given by

µÃ (x) =





(x−aL)
(a−aL)

i f aL ≤ x≤ a
(aR−x)
(aR−a)

i f a ≤ x≤ aR

0 otherwise

.

Theα – cut of the triangular fuzzy numberÃ= (aL,a,aR) is written as

Ã[α] = [aL +
(
a−aL)α, aR− (aR−a)α].

Then the equivalent crisp value of the triangular fuzzy number Ã is calculated as

V
(
Ã
)
=

∫ 1

0

(
aL +

(
a−aL)α

)
αdα +

∫ 1

0
(aR− (aR−a)α)αdα

=

[
aL

2
+

(a−aL)

3
+

aR

2
−

(aR−a)
3

]

=

[
aL +4a+aR

]

6
.

Definition 5. Let X be a continuous random variable with probability density function f(x,θ ), whereθ is the parameter
of the probability density function. Ifθ is uncertain in nature, thenθ may be chosen as fuzzy number,θ̃ . Then a continuous
random variable with fuzzy number̃θ as parameter is known as continuous FRVX̃. The probability density function of
the continuous FRṼX is denoted by f(x ; θ̃ ).
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Fig. 2

2.1 Fuzzy Random Variable following Pareto Distribution

Let b̃i is a Pareto distributed FRV. Its probability density function is written as

f
(

bi ; β̃i , λ̃i

)
=

uivi
ui

bi
ui+1 ,ui ∈ λ̃i [α] , vi ∈ β̃i [α]

wherebi ≥ vi . Hereλ̃i [α] , β̃i [α] are theα–cut of fuzzy numbers̃λi , β̃i whose support are the set of positive real numbers.
The probability density curve of the Pareto distribution isshown in Figure 2.

2.2 Fuzzy Random Variable following Frechet Distribution

Let b̃i is a Frechet distributed FRV, its probability density function is written as

f
(

bi ; µ̃i , δ̃i , η̃i

)
=

r i

qi

(
bi −di

qi

)−1−r i

e
−
(

bi−di
qi

)−ri

, r i ∈ µ̃i [α] , qi ∈ δ̃i [α] , di ∈ η̃i [α]

wherebi ≥ di . Here µ̃i [α] , δ̃i [α] and η̃i [α] are theα–cut of fuzzy numbers̃µi , δ̃i and η̃i respectively. The support of
µ̃i , δ̃i are the set of positive real numbers and the support ofη̃i is the set of real numbers. The probability density curve of
the Frechet distribution is given in Figure 3.

3 Fuzzy linear BLICCP model

The general form of FLBLIP problem under probabilistic environment is expressed as
Find X(x1, x2, . . . , xn) so as to MaxX1 Z̃1 (X) = ∑n

j=1 c̃1 jx j (Leader’s Problem), where for givenX1 ; X2 solves

MaxX2 Z̃2 (X) = ∑n
j=1 c̃2 jx j (Follower’s Problem), subject to Pr

(
∑n

j=1 ãi j x j ≤ b̃i

)
≥ 1− pi ; i = 1,2, . . . , m

n

∑
j=1

ãt jx j ≤ b̃t ; t = 1,2, . . . ,s, x j ≥ 0 and are integers;j = 1,2, . . . , n. (1)
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Fig. 3

Here somẽbi (i = 1,2, .., l) represents Pareto distributed FRVs and the othersb̃i (i = l +1, l +2, . . . , m) follows Frechet
distributed FRVs. The coefficients of the objectives ˜ci j andc̃2 j are taken as triangular fuzzy numbers. The coefficients of
the constraints ˜ai j , ãt j , b̃t (i = 1,2, . . . , m ; j = 1,2, . . . , n ; t = 1,2, . . . , s) are also considered as triangular fuzzy
numbers. Again the parameters of the FRVs are triangular fuzzy numbers andpi ∈ [0,1] .

It is to be mentioned here that the decision vectorX1 = (x11, x12, . . . ., x1n1) is controlled by the leader and the decision
vectorX2 = (x21, x22, . . . ., x2n2) is controlled by follower. AlsoX1∪ X2 = X = (x1, x2, . . . ., xn) ∈ R

n with n1+n2 = n.

3.1 Chance Constrained Programming Technique

In this subsection CCP methodology is applied to convert theprobabilistic constraints into fuzzy constraints. There are l
constraints in which the FRVs follow Pareto distribution and the FRVs in the remainingm− l probabilistic constraints
follow Frechet distribution.

At first the CCP technique is applied to thel constraints involving Pareto distributed FRVs as follows

Pr

(
n

∑
j=1

ãi j x j ≤ b̃i

)
≥ 1− pi;(i = 1,2, .., l)

i.e., Pr
(
Ãi ≤ b̃i

)
≥ 1− pi , whereÃi =∑n

j=1 ãi j x j , i.e.,
∫ ∞

ki

uivi
ui

bi
ui+1 dbi ≥ 1− pi; ui ∈ λ̃i [α] , vi ∈ β̃i [α] , ki ∈ Ãi [α]andki ≥ vi ,

i.e.,ki ≤
vi

(1−pi)
1
ui

; ui ∈ λ̃i [α] , vi ∈ β̃i [α] , ki ∈ Ãi [α] andki ≥ vi .

Since, this inequality is true for allα ∈(0, 1], the expression can be written in terms ofα-cut as

Ãi [α]≤
β̃i [α]

(1− pi)
1

λ̃i [α]

and Ãi [α]≥ β̃i [α] ; (i = 1,2, .., l). (2)

Now, using first decomposition theorem, the above equation is reduced to the following form as

Ãi ≤
β̃i

(1− pi)
1
λ̃i

andÃi ≥ β̃i ; (i = 1,2, .., l). (3)

c© 2016 BISKA Bilisim Technology

www.ntmsci.com


185 A. Biswas and A. Kumar De: A new methodological development for solving linear bilevel...

Now, applying CCP technique in the remainingm− l probabilistic constraints involving Frechet distributedFRVs, the
constraints take the following form as

Pr

(
n

∑
j=1

ãi j x j ≤ b̃i

)
≥ 1− pi;(i = l +1, l +2, ..,m)

i.e., Pr
(
Ãi ≤ b̃i

)
≥ 1 − pi , where Ãi = ∑n

j=1 ãi j x j , i.e.
∫ ∞

hi

r i
qi

(
bi−di

qi

)−1−r i
e
−
(

bi−di
qi

)−ri

dbi ≥ 1 − pi ;

r i ∈ µ̃i [α] , qi ∈ δ̃i [α] , di ∈ η̃i [α] and hi ∈ Ãi [α] and hi ≥ di, i.e., hi ≤ di + qi
1

ln
(

1
pi

) 1
ri

;

r i ∈ µ̃i [α] , qi ∈ δ̃i [α] , di ∈ η̃i [α]andhi ∈ Ãi [α] andhi ≥ di .

Since, this inequality is true for allα ∈(0, 1], the expression can be written in terms ofα-cut as

Ãi [α]≤ η̃i [α]+ δ̃i [α]
1

ln
(

1
pi

) 1
µ̃i [α]

and Ãi [α]≥ η̃i [α] ; (i = l +1, l +2, ..,m). (4)

Now using first decomposition theorem, the above equation isreduced to the following form as

Ãi ≤ η̃i + δ̃i
1

ln
(

1
pi

) 1
µ̃i

and Ãi ≥ η̃i ; (i = l +1, l +2, ..,m). (5)

Hence the FLBLICCP model (1), is converted into the equivalent FLBLIPP problem by using the derived methodology
as; Find X(x1, x2, . . . , xn) so as to MaxX1 Z̃1 (X) = ∑n

j=1 c̃1 jx j (Leader’s Problem), where for givenX1; X2 solves
MaxX2 Z̃2 (X) = ∑n

j=1 c̃2 jx j (Follower’s Problem), subject to

n

∑
j=1

ãi j x j ≤
β̃i

(1− pi)
1
λ̃i

; i = 1,2, .., l

n

∑
j=1

ãi j x j ≥ β̃i i = 1,2, .., l

n

∑
j=1

ãi j x j ≤ η̃i + δ̃i
1

ln
(

1
pi

) 1
µ̃i

; i = l +1, l +2, ..,m

n

∑
j=1

ãi j x j ≥ η̃i ; i = l +1, l +2, ..,m

n

∑
j=1

ãt jx j ≤ b̃t ; t = 1,2, . . . ,s, x j ≥ 0 and are integers;j = 1,2, . . . , n. (6)

Herec̃1 j , c̃2 j , ãi j , ãt j , b̃t ( j = 1,2, . . . ,n; i = 1,2, . . . , m; t = 1,2, . . . ,s) are taken as triangular fuzzy numbers. Also the
parameters̃βi , λ̃i , η̃i , δ̃i , µ̃i of the Pareto and Frechet distributed FRVs are considered astriangular fuzzy numbers.
Then 1

λ̃i
and 1

µ̃i
are also taken as triangular fuzzy numbers. So, these triangular fuzzy numbers can be expressed as

c̃1 j =
(
cL

1 j , c1 j , cR
1 j

)
; c̃2 j =

(
cL

2 j , c2 j , cR
2 j

)
; ãi j =

(
aL

i j , ai j , aR
i j

)
; ãt j =

(
aL

t j , at j , aR
t j

)
;

b̃t =
(
bL

t , bt , bR
t

)
; β̃i =

(
β L

i , βi , β R
i

)
; η̃i =

(
ηL

i , ηi , ηR
i

)
; δ̃i =

(
δ L

i , δi , δ R
i

)
;

1

λ̃i

=

((
1
λi

)L

,
1
λi
,

(
1
λi

)R
)

;
1
µ̃i

=

((
1
µi

)L

,
1
µi
,

(
1
µi

)R
)
. (7)

c© 2016 BISKA Bilisim Technology



NTMSCI 4, No. 2, 180-192 (2016) /www.ntmsci.com 186

3.2 Fuzzy linear BLIPP model

The fuzzy numbers are defuzzified in this subsection to find anequivalent deterministic model of the given problem.
Defuzzification of fuzzy numbers is a process that maps a fuzzy number to a crisp number. The crisp values associated
with the fuzzy numbers of model (6) are obtained by the methodof defuzzification [29] of the triangular fuzzy number
usingα− cut are given as

V
(
c̃1 j
)
=

cL
1 j +4c1 j + cR

1 j

6
; V

(
c̃2 j
)
=

cL
2 j +4c2 j + cR

2 j

6
; V (ãi j ) =

aL
i j +4ai j + aR

i j

6
;

V (ãt j) =
aL

t j +4at j + aR
t j

6
; V

(
b̃t
)
=

bL
t +4bt + bR

t

6
; V

(
β̃i

)
=

β L
i +4βi + β R

i

6
;

V (η̃i) =
ηL

i +4ηi + ηR
i

6
; V

(
δ̃i

)
=

δ L
i +4δi + δ R

i

6
; V

(
1

λ̃i

)
=

(
1
λi

)L
+4 1

λi
+
(

1
λi

)R

6
;

V

(
1
µ̃i

)
=

(
1
µi

)L
+4 1

µi
+
(

1
µi

)R

6
; ( j = 1,2, . . . ,n; i = 1,2, . . . , m; t = 1,2, . . . ,s). (8)

Thus the equivalent deterministic model of the FLBLIPP (6) is stated as; Find X(x1, x2, . . . , xn) so as to
MaxX1 V(Z̃1 (X)) = ∑n

j=1V(c̃1 j)x j (Leader’s Problem), where for givenX1; X2 solves MaxX2 V(Z̃2 (X)) = ∑n
j=1V(c̃2 j)x j

(Follower’s Problem), subject to

n

∑
j=1

V(ãi j )x j ≤
V(β̃i)

(1− pi)
V

(
1
λ̃i

) ; i = 1,2, .., l

n

∑
j=1

V(ãi j )x j ≥V(β̃ i); i = 1,2, .., l

n

∑
j=1

V(ãi j )x j ≤V(η̃i)+V(δ̃i)
1

ln
(

1
pi

)V
(

1
µ̃i

) ; i = l +1, l +2, ..,m

n

∑
j=1

V(ãi j )x j ≥V(η̃i); i = l +1, l +2, ..,m

n

∑
j=1

V(ãt j )x j ≤V(b̃t); t = 1,2, . . . ,s; x j ≥ 0 and are integers;j = 1,2, . . . , n. (9)

4 Fuzzy goals and membership functions

In a bilevel system, it can reasonably be assumed that both the DMs are motivated to cooperate with each other and each
one tries to optimize his/her own benefit paying serious attention to the benefit of the others. Now, both the leader and
follower optimize their objective independently under thesame set of system constraints defined in (9). Let

[
xb

k ;V (Zk)
b
]
=
[
xb

k1,x
b
k2, ..,x

b
kn ;V (Zk)

b
]

and
[xw

k ;V (Zk)
w] = [xw

k1,x
w
k2, ..,x

w
kn ;V (Zk)

w] ,
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(k= 1,2) be the best and worst independent solutions of the objectives of the respective DMs. Hence, the fuzzy objective
goal for each of the corresponding DMs is expressed as:

V(Zk)&V(Zk)
b for k= 1,2. (10)

In a bilevel decision making context, it is to be realized that the full achievement of the respective goal values of the
DMs are not always possible due to conflicting nature of the objectives of the DMs and also due to the scarcity of limited
resources in the decision making context. Again values lower than the worst values of the objectives of the DMs are
completely unacceptable to the DMs. Hence the membership functions of the defined fuzzy goals are formulated as

µV(Zk(x)) =





0 if V(Zk)≤V(Zk)
w

V(Zk)−V(Zk)
w

V(Zk)
b−V(Zk)

w if V(Zk)
w ≤V(Zk)≤V (Zk)

b

1 if V(Zk)≥V(Zk)
b

(k= 1,2). (11)

The membership function defined above are now converted intothe membership goals by introducing under- and over-
deviational variables and assigning the highest membership value (unity) as the aspiration level to each of them.

5 FGP model

The FGP model of the corresponding linear bilevel integer programming problem (9) is presented as: FindX(x1,x2, . . . .xn)

so as to Min D =∑2
k=1wkd

−
k and satisfy

V(Z1)−V(Z1)
w

V(Z1)
b−V(Z1)

w
+d−

1 −d+
1 = 1,

V(Z2)−V(Z2)
w

V(Z2)
b−V(Z2)

w
+d−

2 −d+
2 = 1,

subject to

n

∑
j=1

V(ãi j )x j ≤
V(β̃i)

(1− pi)
V

(
1
λ̃i

) ; i = 1,2, .., l

n

∑
j=1

V(ãi j )x j ≥V(β̃ i); i = 1,2, .., l

n

∑
j=1

V(ãi j )x j ≤V(η̃i)+V(δ̃i)
1

ln
(

1
pi

)V
(

1
µ̃i

) ; i = l +1, l +2, ..,m

n

∑
j=1

V(ãi j )x j ≥V(η̃i); i = l +1, l +2, ..,m

n

∑
j=1

V(ãt j )x j ≤V(b̃t); t = 1,2, . . . ,s; x j ≥ 0 and are integers;j = 1,2, . . . , n

d−
1 ,d

+
1 ,d

−
2 ,d

+
2 ≥ 0 with d−

1 .d
+
1 = d−

2 .d
+
2 = 0 (12)

wherewk = 1/(V(Zk)
b−V(Zk)

w) (k = 1, 2) represents fuzzy weight corresponding to the membership goals of the DMs.

The derived model (12) is then solved usingminsumgoal programming to achieve most compromise solution in a decision
making context.
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The derived methodology for solving FLBLICCP model can be summarized by the following algorithm.

Step 1: Using CCP technique, the fuzzy probabilistic constraints are converted into constraints involving fuzzy numbers.

Step 2: Defuzzification of fuzzy number usingα−cut is applied to find the expected value of the fuzzy numbers.

Step 3: The individual optimal value of the objective of eachDMs is found in isolation.

Step 4: The fuzzy membership goals of each of each DMs are constructed.

Step 5: FGP approach is deployed to achieve maximum degree ofeach of the membership goals.

Step 6: Stop.

The solution process for solving FLBLICCP model can also be presented using the following flow chart.

To illustrate the proposed approach, a numerical example issolved in the next section.
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6 Numerical example

The following QFBLCCPP is considered to explore the application potentiality of the proposed approach: Find
X(x1,x2, . . . ,xn) so as to, Max̃Z1 = 9̃x1+ 1̃2x2+ 1̃x3, Max Z̃2 = 1̃1x2+ 1̃0x3. Subject to

Pr
(
3̃x1+ 6̃x2+ 4̃x3 ≤ b̃1

)
≥ 1− p1

Pr
(
2̃x1+ 3̃x2+ 1̃x3 ≤ b̃2

)
≥ 1− p2

9̃x1+ 1̃x2+ 1̃x3 ≤ 3̃2

x1, x2, x3 ≥ 0 and integers. (13)

Hereb̃1 represents Pareto distributed fuzzy random variable andb̃2 represents Frechet distributed fuzzy random variable.
The values of scale and shape parameter of the Pareto distribution are given as follows.

Scale Parameter Shape parameter Specific probability
level

β̃1 = 2̃3 1
λ̃1

= 3̃ p1 = 0.09

Table 1: Value of Scale and Shape parameter of the Pareto distribution.

Also, the values of scale, location and shape parameter of the Frechet distribution are presented as follows.

Scale parameter Location
Parameter

Shape
Parameter

Specific
probability
level

δ̃2 = 6̃ η̃2 = 1̃1 1
µ̃2

= 0̃.5 p2 = 0.20

Table 2: Value of Scale, location and Shape parameter of the Frechet distribution

The triangular fuzzy numbers related to the parameters of the distributions are taken with the form as

β̃1 = 2̃3= (22.5, 23, 23.5);
1

λ̃1

= 3̃= (2.95,3,3.05);

δ̃2 = 6̃= (5.8,6,6.2); η̃2 = 1̃1= (10,11,12);
1
µ̃2

= 0̃.5= (0.3,0.4,0.5).

Also the coefficients of the objectives and the constraints are also taken as triangular fuzzy number with the values

9̃= (8.5,9,9.5); 1̃2= (11,12,13); 1̃= (0.95,1,1.05); 1̃1= (10.6,11,11.4); 1̃0= (9,10,11)

3̃= (2.95,3,3.05); 2̃= (1.5,2,2.5); 6̃= (5,6,7); 4̃= (2,4,6); 3̃2= (31,32,33).

Now, applying CCP technique to the probabilistic constraints and then using the defuzzification technique of fuzzy number
to the objectives and modified constraints the model (13) reduces to:

MaxV(Z̃1) = 9x1+12x2+ x3, MaxV(Z̃2) = 11x2+10x3,
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Subject to

3x1+6x2+4x3 ≥ 23

3x1+6x2+4x3 ≤ 30.67

2x1+3x2+ x3 ≥ 11

2x1+3x2+ x3 ≤ 15.74

9x1+ x2+ x3 ≤ 32; x1, x2, x3 ≥ 0 and integers. (14)

Now each DM considers their objective independently and then solve with respect to the system constraints in (14) to
find the best and worst values of the objectives. The results are obtained asx1 = 3, x2 = 3 , x3 = 0 with V(Z̃1)

b
= 63;

andx1 = 0, x2 = 3 , x3= 3 with V(Z̃2)
b
= 63. The worst values of the objective of the respective DMs are calculated as

V(Z̃1)
w
= 39 andV(Z̃2)

w
= 33.

Thus the fuzzy goals of the objective of the DMs are found as:

V(Z̃1)
b
% 63

V(Z̃2)
b
% 63.

On the basis of the tolerance limits of the objective of the DMs, the membership functions of the leader and follower are
expressed as

µV(Z1(x)) =
9x1+12x2+ x3−39

24

µV(Z2(x)) =
11x2+10x3−33

30

Thus the FGP model is constructed, after converting the membership function into membership goals by assigning under
and over-deviational variables to the membership functions and by minimizing the under deviational variables as

Minimize D = 0.042d−
1 +0.033d−

2 , subject to

0.042(9x1+12x2+ x3−39)+d−
1 −d+

1 = 1

0.033(11x2+10x3−33)+d−
2 −d+

2 = 1

3x1+6x2+4x3 ≥ 23

3x1+6x2+4x3 ≤ 30.67

2x1+3x2+ x3 ≥ 11

2x1+3x2+ x3 ≤ 15.74

9x1+ x2+ x3 ≤ 32

x1, x2, x3 ≥ 0 and integers. (15)

Now the above FGP model is solved usingsoftwareLINGO (Ver. 11) to find the compromise solution in the decision
making context. The solutions which are achieved are present through the following Table.

Solution Expected value of
Objective

Membership Value

x1 = 0, x2 = 5, x3 = 0 V
(
Z̃1
)
= 60 µV(Z1(x)) = 0.875

V
(
Z̃2
)
= 55 µV(Z2(x)) = 0.733
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It is to be noted here that if the problem is solved without considering the integer programming, the achieved solutions
are almost the same as like this case. However, some situations arises in which the DMs concentrates on integer values.
From that point of view, the developed methodology has been presented.

7 Conclusions

In this paper an innovative technique for solving FLBLICCP model is discussed in a hierarchical decision making
environment for finding most satisfactory solution to all the DMs for overall benefit of the organization. The proposed
procedure can be extended to solve hierarchical decision making problems with quadratic, fractional type of objectives.
Also this methodology can be used to solve nonlinear decision making problems in a fully fuzzified domain. The
suggested technique can also be used to solve the FLBLICCP model with coefficients taken as trapezoidal fuzzy
numbers. The proposed methodology can be applied to different real life problems for obtaining most satisfactory
solution in a hierarchical decision making environment. However, it is hoped that the proposed procedure may open up
new vistas into the way of making decision in the decision making arena.
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