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Abstract: Inthe present article, a numerical method is proposed fonthmerical solution of the Hirota equation by using coltara
method with the quintid-spline. The method is shown to be unconditionally stablegigon-Neumann technique. To test accuracy
the error normé.,, L, are computed. Two invariants of motion are predestined terdene the conservation properties of the problem,
and the numerical scheme leads to careful and active reBulthermore, interaction of two and three solitary wageshiown. These
results show that the technique introduced here is plaipptya
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1 Introduction

The purpose of this article is to apply quinBeSplines method to the Hirota equation. The Hirota equatiche form

[1]
Ut 4 30 [u[2Uy + YU = O, (1)

whereu is a complex valued function of the spatial assortmeand the time and a,y are positive real constants.
Boundary conditions
u(x,t) = ux(x,t) =0, [X| » 0, O<t<T. 2

And initial conditions
u(x,0) = f(x), —00 < X < 00, (©)]

The exact solution of Hitora equatioh)(is

u(x,t) = Bsed[k(x—s—wt)]expi¢),

2
B= ?yK, ¢ =a(x—bt—s), (4)
V:y(K273a2)7 b:y(?)staz),
wheref is the amplitude of the wave, is related to the width of the wave envelope arid the velocity. The parameter
ais the wave number of the phase d@nid related to the frequency of the phase. We assume that.[2, 3]

u(x,t) = up(x,t) +iug(x,t), i2=-1, (5)
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whereu; (x,t) andux(x,t) are real functions. By substituting in EdL)(we will reduce Hirota equation to the coupled
system in this form

(1)t + 3a (U3 + U3) (ug)x + Y(Up)xx = O,

(U2)t + 30 (U2 + U3) (Uz)x + V(U2)xex = O. 6)

We can write this system in this form
(U +3az(u) (U)x+ V(U)xx =0, )

where
2(u) = (Ui +U5), u=[ug,uy.

The Eq. @) is an integrable equation and it is important because inesy physical implementation, such as the spread
of optical pluses in nematic liquid crystal waveguides. THiota equation is regarding to both the nonlinear
Schrodinger equation and modified Korteweg-de Vries (mKe§f)ations, as it is complex popularization of the mKdV
equation. In addition; the soliton solution of this equatitas a very comparable form to the nonlinear Schrodinger
equation soliton. The Eql) has two-parameter soliton family, with amplitude and eélp

The Hirota equation has been studied numerically by HosgiM. and Marchant T. R. [1] and the EdL) (has been
solved by W. G. Al. Harbi [4]. The numerical solution of namiar wave equations has been the subject of many studies
in recent years. Such as the Korteweg-de Vries (KdV) eqnati@s been studied by [5, 6, 7, 8] and the nonlinear
Schrodinger equation has been solved by [9, 10]. Numerimatisn of coupled partial differential equations, as an
example, the coupled nonlinear Schrodinger equation adsutiton solution and it has many applications in
communication, this system has been studied numericallgimail [11,12,13,14] and the coupled Korteweg-de Vries
equation has been discussed numerically [15, 16, 17, 1& cdmplex nonlinear partial differential equations haverbe
studied in [2, 3, 19, 20].

The paper is marshaled as follows. In section 2, we havedatred dissection of our method. In section 3, we have been
studied the stability for our scheme. In section 4, numériesults for problem and some related figures are given in
order to show the efficiency as well as the accuracy of theqseg method and we introduced the interaction of two and
three solitary waves. Finally, conclusions are followedéation 5.

2 Quintic B-spline functions

To construct numerical solution, consider nodal poimjst,) defined in the regiofa, b] x [0, T] where

b—a

j=0,1,---,N.
Na J = )

a=X <X <--<xXn=Db, h=Xi1-X=

O=to<ty<-<th<---<T, tj1—tj=A4At ty=nAt, n=0,1,---.

The quinticB-spline basis functions at knots are given by:

(X—x%j-3)°, Xj-3 <X < Xj-2
(X—Xj,:‘;)5—G(X—Xj,z)s7 Xj—2 < X< Xj-1
1 | (x=%1-3)° = B(x—xj_2)° + 15(x = X}_1)°,  Xj_1 <X <X
Bj (%) = 15 4 (=X4X13)°+6(x—Xj12)° = 15(x—Xj11)°, Xj S X< Xj41 (8)
(—X4Xj43)° + 6(X — X} 42)°, Xj+1 < X< Xj42
(—X+Xj+3)°, Xj+2 S X< Xji3
0 otherwise.

)

Using quinticB-spline basis functiors) the values oB;j(x) and its derivatives at the knots points can be calculateithwh
are tabulated in Table 1.

(© 2016 BISKA Bilisim Technology
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3 Solution of the Hirota equation

To apply the proposed method, we rewrig &s

(Un)t + 30 (UF + U3) (U )x + Y(Un)ox = O,
(U2)t + 30 (UF + U3) (U2)x + Y(Uz)xox = O

we take the approximations(x,t) = (U1)} anduz(x,t) = (U)}, then from famous Crancka-Nicolson scheme and forward
finite difference approximation for the derivativ§1], we get

[ (Un)ag + (Un)ig | N (Uy)j™ = (uy)] + 3a [(ZU))] ™+ @U)]] [ (o™ + U} ] 0, ©)
_ 2 | k i 2 11 2 ]
_(UZ)Q)&J;;(UZ)QM' . (UZ)T+1k (U2)! 30 _(z(U))’J.‘+12+ (2U))7] _(Uz)Qfl; (U2) | 0, (10)

wherek = 4t is the time step.

In the Cranka-Nicolson scheme, the time stepping proaelsalf explicit and half implicit. So the method is betterrtha
simple finite difference method.

ExpressindJ1(x,t) andUz(x,t) by using quinticB-spline functiond;(x) and the time dependent parameter@) and
o (t) for U1(x,t) andUx(x,t) respectively, the approximate solution can be written as:

N+2 N+2

U{\I(X,t) = Z Cj (t)BJ (X)7 UZN(Xat) = Z 5] (t)Bj (X) (11)

j=—2 j==2

Using approximate functionl@) and quinticB-spline functions §), the approximate valueld;(x),Uz(x) and their
derivatives up to second order are determined in terms dfntteeparameters; (t) andd; (t), respectively, as

(U1)j = (U1)(Xj) = ¢j—2+ 26¢j_1 + 66Cj + 26Cj 1+ Cj+2,
5
(Un)j = (U1)(xj) = £ (€j42+10¢j41— 10¢j-1 - ¢j-2),

20
(U1)j = (U1)(x)) = 1 (Cj-2+26j -1 — 6C} + 2Cj 11+ Cj2),

60
(U1 = U1 0) = 22
(U2)j = (U2)(xj) = j_2+ 260j_1 + 660 + 2601+ Oj 2,

5
(U2)j = (U2) (%)) = £ (8j 12+ 10041 — 10551 — &),

(Cj—2+2Cj_1— 2Cj41+ 2Cj112),
(12)

20
(U2)j = (U2) (%) = 15 (8j-2+25]-1— 63) + 2041+ Jj12),

60
(U2 = (U2")(X)) = 15 (8j-2+2¢j-1— 20141+ 20j412).
On substituting the approximate solution fth ), (Uz) and its derivatives from Eql@) at the knots in Eqs9) and (L0)
yields the following difference equation with the variabtg(t) andd;(t).

ALCT S + Aol T+ Agcl T 4 AucTt T + AsCl S = (13)
AsC] 5+ AuC]_1 +AgC] + AoCl 1+ AaCl o,

(© 2016 BISKA Bilisim Technology
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A1S] o+ A0l 1+ AS] + Asd]  + AsO = 14
A56jr172 + A46jrll + A351n + A2 jn+l + Alajn+27

where

304t 1504t

M=1T e B
60At  1500At
Ap =26+ W - T(Zl)?,
A3 = 66,
60At  1500At
Aa=26- "5~ g (@)
30At  15aAt
A=l ~—a @i
o (@) @V
()] = > .

The system thus obtained on simplifying Eq$3)(and (L4) consists of(2N + 2) linear equations in thé2N + 10)
unknowns (C_»,C_1,Co,"--CN, CN4+1,CNt2)s (0-2,0.1,80, - ON,On11,0ns2)". TO obtain a unique solution to the
resulting system four additional constraints are requirEdese are obtained by imposing boundary conditions.
Eliminating ¢c_»,¢_1,Cg, CN,CN-1,CN12 @and d_2,0_1, 00, 0N, Onr1, Ons2 the system get reduced to a matrix system of
dimension(2N 4 2) x (2N + 2) which is the penta-diagonal system that can be solved by lgoyithm.

4 Initial values

To find the initial parametexﬁ’ andd?, the initial conditions and the derivatives at the boureisaire used in the following

way

5
(U1)(%0,0) = H(CZ +10c;—10c_1—c_») =0,

20
(U7)(%0,0) = ﬁ(c,ﬁ 2c_1—6Cy+2Cj11+Cjy2) =0,
(U1)(xj,0) = Cj_2+26¢j_1+66Cj;1+2Cj,2=0,

5
(Up)(xn,0) = H(CN+2 +10cn+1—10cN-1 —Cn-2) =0,

20
(U1)(xn,0) = e (CN-2+2CN-1—6CN +2CN11+Cny2) =0,
5
20
(U2)(x0,0) = 15(8-2+ 251~ 609+ 2511+ 8j12) =0,
(U2)(xj,0) = &j_2+ 263 _1+ 660; 1+ 252 =0,

(U3)000.0) = (B2 + 10841~ 1081 — d2) =0,

20

(U2)(xn,0) = ﬁ(a\lfz +20y-1— 60N+ 20n+1+ Ony2) = 0.

Which forms a linear block pintadiagonal system for unknamwitial conditionsc? and 6J-° , of order (2N + 2) after
eliminating the functions values af and d. This system can be solved by any algorithm. Once the inigators of
parameters have been calculated, the numerical solutitimedflirota equatiotJ; andU, can be determined from the

(© 2016 BISKA Bilisim Technology
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time evaluation of the vect0[$ andd!, by using the recurrence relations
(Up)(Xj,tn) = €]+ 26¢]_4 4 66¢] 4-26¢7, 1 4], 5,

(Uz) (XJ ,tn) = 5]_!’172 + 265;1 1 + 665;1 + 265jn+1 + 5jn+2-

5 Stability analysis of the method

The stability analysis of nonlinear partial differentigjuations is not easy task to undertake. Most researcheysnitp
the problem by linearizing the partial differential eqoati Our stability analysis will be based on the Von-Neumann
concept in which the growth factor of a typical Fourier moeéimkd as

] =A"expijg),

5jn - Bfnexm J qo)v (15)
En+l
g= TEn

whereA andB are the harmonics amplitude,= kh, k is the mode number,= v/—1 andg is the amplification factor
of the schemes. We will be applied the stability of the guistthemes by assuming the nonlinear term as a constants
(z1)] = A1. At x = x;j system {3) can be written as

n+1 n+1 n+1 n+1 n+1
asC]_p + auC]_y + asC] +axCfy 1 +aC] 5,

where

304t _ 15a4t,
W 2n Y
60At  1500At
" 2h

aa=1-

a =26+ A1,

az = 66,
60At 1500 At
U =26-"5 o

a1, 304t 1504t
5= h3 2h 1,

/\15

Substituting 15) into the difference16), we get

[2cos2p+ 62cogp+ 66+

n+1 —

(800t 30ant, \ Lo (L1208t 300aat N NG
h3 2h 1 h3 2h "t ¢

[2cos2p+ 62cosp+ 66] —

)

(800t soant, \ o (120t 3000at, N\ o
3 on M 3 on /1)sihe

we get
X+iY
=T 17
Xy’ (17)

(© 2016 BISKA Bilisim Technology
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where
X =[2cos2p+62cogp+ 66,

v (8%, 30mat N 1204t+300aAt N
=\m 2h 3 on 1)sne)

From (17) we get ,|g| = 1 hence the scheme is unconditionally stable. It means lilea¢ tis no restriction on the grid
size, i.e. orh andAt, but we should choose them in such a way that the accuracg acteme is not degraded.

Similar results can be obtained from the different#(due to symmetric; andu,.

6 Numerical Tests and Results of Hirota equation

In this section, we present numerical example to test wglidi our scheme for solving Hirota equation. The norms
Lo-norm andL.-norm are used to compare the numerical solution with thé/goal solution [22].

N

h (u'E_uN)27
3

Lo = max|u —ul], j=0,1,2,--- N
i

Lo == —uN| =

(18)

whereuE is the exact solutiom anduN is the approximation solutioby. And the quantitied; andl, are shown to
measure conservation for the schemes.

o) N

= | uix 0P =h S U
. 2

, (19)

|2=/;(|u(x,t)|4_|ux(xt dx_hzo( (U197~ (ULP))

where
u(x,t) = ug(x,t) +iuz(x,t), (U) = (U) +i(Up)].

Now we consider this test problem.

6.1 Test problem:

We assume that the solution of the Hirota equation is ndgégoutside the intervalx ,xgr] together with all itsx
derivatives tend to zero at the boundaries. Therefore, imomerical study we replace Ed) by

U+ 3a|UUx+ Vo =0, XL < X< Xg, (20)

whereu is a complex valued function of the spatial coordinatend the timet and a,y are positive real constants.
Boundary conditions

u(x,t) =u(xg,t)=0

(21)
Ux(XL,t) = Ux(Xr,t) =0, 0<t<T.

And initial conditions.
u(x,0) = f(x), XL < X< XR. (22)

(© 2016 BISKA Bilisim Technology
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For our numerical work, we decompose the complex funatioro their real and imaginary parts by writing
u(x,t) = ug(xt) +iup(xt),  i2=-1, (23)
whereu; (x,t)anduy(x,t) are real functions. This will reduce Hirota equation to tbemled system

(up)t + 3ar (U + U3) (U )x + V(U1 ) = O,

(24)
(U2)t + 30 (Uf + UB) (U2)x + V(U2)ex = .
Then the exact solutions of systed is
Uy (x,t) = Bsed[k (x—s—w)]cog @),
Us(x,t) = Bsech[K (X—s— vt)] sin(@),
(25)

B= \/?K, ¢ =a(x—bt—s),

v=y(k’—3a%) b=y@Bk>—a?),

B is the amplitude of the wave, is related to the width of the wave envelope anid the velocity. The parameteris
the wave number of the phase and bis related to the frequdribg @hase. As well the solution is at= satt = 0.In
order to derive a numerical method for solving the systeremin 24). The regiorR =[x < X < Xg] x [t > 0] with its
boundary consisting of the ordinates= x_,Xny = Xg and the axi$ = 0 is covered with a rectangular mesh of points with
coordinates

x=Xj=x_+jh, j=0,1,2--- N,

t=ty=nk, n=0,12,---,
whereh andk are the space and time increments, respectively.

To investigate the performance of the proposed schemesngidar solving the following problem.

6.2 Sngle soliton

In previous section, we have provided four finite differeacikkemes for the Hirota equation, and we can take the follpwin
as an initial condition.

u(x,0) = Bsed[kj(x—sj)|exp(i¢),

B\/?KJ, ¢ =aj(x—bt—s), (26)

v=y(k?-3af)  b=y(3k}-ad).

The normd_; andL., are used to compare the numerical results with the analytdaes and the quantitids andl, are
shown to measure conservation for the schemes.

(© 2016 BISKA Bilisim Technology
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Now, we consider two different cases to study the motionmglsi soliton.

Case 1. In this case we study the motion of single soliton by our sahdm this case, we choose= 0.05,a0 =2,y =
1,a= 0.5k = 0.5,x. = —30,xgr = 30, with different values ok = 0.05,0.1 the simulations are done upte= 5. The
invariantsl, andl, approach to zero percent, respectivelykat 0.05,0.1 . Errors, also, are satisfactorily smay-
error=291598x 10~° andL.-error=155616x 10~°, percent, respectively &t= 0.05. The invariant$; andl, approach
to zero percent, respectively. Errors, also, are satisfigsmall Lo-error= 116219x 10~4 andLe-error=622412x 10>,
percent, respectively &t= 0.1. Our results are recorded in Table 2 and the motion of sglitave is plotted at different

time levels in Fig 1.

h,k T

I

I

L,-norm

Leo-norm

R=005] 0.0
1.0

k=0.05
2.0

3.0
4.0
5.0

1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

-0.166667
-0.166666
-0.166664
-0.166663
-0.166661
-0.166661

0.0
5.14542E-6
1.12435E-5
1.76432E-5
2.37519E-5
2.91598E-5

0.0
3.86206E-6
6.96387E-6
1.09366E-5
1.35187E-5

.55616E-5

h=0.05
k=0.1

0.0
1.0
2.0
3.0
4.0
5.0

1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

-0.166667
-0.166664
-0.166657
-0.166651
-0.166644
-0.166639

0.0
2.04474E-5
4.48723E-5
7.04433E-5
9.48952E-5
1.16219E-4

0.0
1.55067E-5
3.08141E-5
4.35989E-5
5.43264E-5
6.22412E-5

Table 1: Invariants and errors for single solitary wave= 0.05,a = 2,y = 1a= 0.5,k = 0.5,x_ = —30,xgr = 30.

]

20 30

Fig. 1. Single solitary wave witth = 0.05,k = 0.05,0 = 2,y =1 anda= 0.5,k = 0.5,x, = —30,xr = 30,t = 0,3,5
respectively.

Case 2. In this case we study the motion of single soliton by our somerin this case, we choose
h=01a0a=2y=1a=0.5«k =0.5x = —30,xr = 30, with different values ok = 0.05,0.1 the simulations are done
up tot = 5. The invariant$; andl, approach to zero percent, respectivelitat 0.05,0.1 . Errors, also, are satisfactorily
smallL,-error=276053x 10> andL.-error=147542x 10~5, percent, respectively &t= 0.05,t = 5. The invariants$;
and |, approach to zero percent, respectively. Errors, also, atisfactorily smallL,-error= 114654x 10~4 and
L.-error=614564x 10>, percent, respectively &t= 0.1. Our results are recorded in Table 3 and the motion of syplita
wave is plotted at different time levels in Fig 2.

(© 2016 BISKA Bilisim Technology
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h,k T I1 lo Lo-norm Le-norm
h=0.1 | 0.0 | 1.0000| -0.166667 0.0 0.0
k=0.05| 1.0| 1.0000| -0.166666 | 4.79837E-6| 3.60953E-6

2.0| 1.0000| -0.166664 | 1.05554 E-5| 7.24351E-6
3.0| 1.0000| -0.166663 | 1.66413E-5| 1.03781E-5
4.0 | 1.0000| -0.166661 | 2.24578E-5| 1.26539E-5
5.0 | 1.0000| 1.47542E-5| 2.76053E-5| .55616E-5
h=0.1 | 0.0 | 1.0000| -0.166667 0.0 0.0
k=01 | 1.0| 1.0000( -0.166664 | 2.00874E-5| 1.52293E-5
2.0| 1.0000| -0.166657 | 4.41756 E-5| 3.03681E-5
3.0| 1.0000| -0.166651 | 5.94371E-5| 4.32478E-5
4.0| 1.0000| -0.166644 | 9.35896E-5| 5.24549E-5
5.0 | 1.0000| -0.166641 | 1.14654E-4| 6.14564E-5

]

Table 2: Invariants and errors for single solitary wave by the scheme 2,y =1a= 0.5,k = 0.5,x. = —30,xg = 30.

Fig. 2: Single solitary wave by our scheme with= 0.1,k = 0.05 a0 =2,y =1 anda= 0.5,k = 0.5,x. = —30,xgr =
30,t = 0,3,5 respectively.

In the next table we make comparison between the resultsradaieme and the results have been published in Search

[4].

Method I1 lo Lo-norm Leo-norm
Analyticalh=10.1 | 1.0000( -0.166676 0.0 0.0
Our schemdén = 0.1 | 1.0000| -0.166661| 2.24578E-5 0.00001
[42h=0.05 1.0000| -0.166648 - 0.00001
[4]b h=0.05 1.0000| -0.166648 - 0.00001
[4]° h=0.05 1.0000| -0.166648 0.00014

Table 3: Invariants and errors for single solitary wave= 0.05,a =2,y =1a= 0.5,k = 0.5,x,. = —30,xg = 30.

The results of our scheme are related with the results in [4].

6.3 Interaction of two solitary waves

The interaction of two solitary waves having different aitygles and traveling in the same direction is illustrate@. W
consider Hirota equation with initial conditions given lhetlinear sum of two well separated solitary waves of various

(© 2016 BISKA Bilisim Technology
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amplitudes

u(x,0) = Bsedkj(x—sj) exp(i¢),

B\/?KJ, ¢ =aj(x—bt—sj), (27)

v=y(kf—3af) b=y(3k}-a),
where,j = 1,2,a; andsj, Kj are arbitrary constants. In our computational work.

Now, we chooses; = —5,5, = 15,a; = 0.3,a, = 0.8,k; = 0.2,k = 0.7,y = 1, a = 2,h = 0.05,k = 0.05 with interval
[-30, 30]. In Fig. 3, the interactions of these solitary waare plotted at different time levels. We also, observe an
appearance of a tail of small amplitude after interactiod thre three invariants for this case are shown in Table 5. The
invariantsl; andl, are changed by less tharb8 10~* and 223 x 103, respectively for the scheme.

I I
1.82793| 0.488457
1.82793| 0.488535
1.82794| 0.488411
1.82806| 0.487765
1.82849| 0.486227
1.82878| 0.486362

NN
BN wowolH

Table 4. Invariants of interaction two solitary waves of Hirota etioa s; = —10,s, = 10,a; = 0.3,a, = 0.8,k =
0.2,kp=0.7,y=1,0 =2,—30< x< 30,h=0.05,k = 0.05.

Fig. 3: interaction two solitary waves with = —10,5, =10,a; =0.3,a, =0.8,)k1 =02k, =0.7,y=1a =2,-30<
X < 30,h=0.05k=0.05 at timet = 0,15 respectively.
6.4 Interaction of three solitary waves

The interaction of three solitary waves having differenpéitndes and traveling in the same direction is illustratég
consider the Hirota equation with initial conditions given the linear sum of three well separated solitary waves of

(© 2016 BISKA Bilisim Technology
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various amplitudes:

u(x,0) = Bsed[kj(x—sj)|exp(i¢),

B\/?Kj, ¢ =aj(x—bt—sj), (28)

v=y(k?—3af) b=y(3k}—a),
where,j = 1,2,3,a; andsj, kj are arbitrary constants. In our computational work.

Now, we choose

5§ =-5%=10a=02a=04a3=0.7k, =03k, =07,k3=1y=1a =2 h=0.05k=0.05 with interval
[-30, 30]. In Fig. 4, the interactions of these solitary wawae plotted at different time levels. We also, observe an
appearance of a tail of small amplitude after interactioth e three invariants for this case are shown in Table 5. The
invariantsl; andl, are changed by less thar6 10~4 and 85 x 10~4, respectively for the scheme.

I I
3.51709| 1.57696
3.51785| 1.57611
3.51771| 1.57667
3.51777| 1.57633
3.51716| 1.57613
3.51784| 1.57623

=
ONCDAI\)O—|

Table 5: Invariants of interaction two solitary waves of Hirota etiaas; = —5,5, = 10,a; = 0.2,a, = 0.4,a3 = 0.7k1 =
0.3 kp=0.7,k3=1,y=1,a =2,h=0.05k=0.05-30< x < 30.

nz
s

na

Fig. 4: interaction three solitary waves with= —5,5, = 5,53 = 10,a; = 0.2,a, = 0.4,a3 =0.7,k1 = 0.3, K2 = 0.7,k3 =
Ly=10=2-30<x<30,h=0.05k=0.05 at timet = 0,14 respectively.

7 Conclusions

In this paper a numerical treatment for the nonlinear Hiexqaation is proposed using a collection method with the
quintic B-splines. We show that the schemes are unconditipstable. We tested our schemes through a single solitary
wave in which the analytic solution is known, then extend tudy the interaction of solitons where no analytic soluti

is known during the interaction and its accuracy was showeabgulating error normk; andLe.
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