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Abstract: In the present article, a numerical method is proposed for the numerical solution of the Hirota equation by using collocation
method with the quinticB-spline. The method is shown to be unconditionally stable using von-Neumann technique. To test accuracy
the error normsL2, L∞ are computed. Two invariants of motion are predestined to determine the conservation properties of the problem,
and the numerical scheme leads to careful and active results. Furthermore, interaction of two and three solitary waves is shown. These
results show that the technique introduced here is plain to apply.
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1 Introduction

The purpose of this article is to apply quinticB-Splines method to the Hirota equation. The Hirota equationin the form
[1]

ut +3α|u|2ux + γuxxx = 0, (1)

whereu is a complex valued function of the spatial assortmentx and the timet and α,γ are positive real constants.
Boundary conditions

u(x, t) = ux(x, t) = 0, |x| → ∞, 0≤ t ≤ T. (2)

And initial conditions
u(x,0) = f (x), −∞ < x < ∞. (3)

The exact solution of Hitora equation (1) is

u(x, t) = β sech[κ(x− s− vt)]exp(iϕ),

β =

√

2γ
α

κ , ϕ = a(x− bt− s),

v = γ(κ2−3a2), b = γ(3κ3− a2),

(4)

whereβ is the amplitude of the wave,κ is related to the width of the wave envelope andv is the velocity. The parameter
a is the wave number of the phase andb is related to the frequency of the phase. We assume that [2, 3].

u(x, t) = u1(x, t)+ iu2(x, t), i2 =−1, (5)
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whereu1(x, t) andu2(x, t) are real functions. By substituting in Eq. (1) we will reduce Hirota equation to the coupled
system in this form

(u1)t +3α(u2
1+ u2

2)(u1)x + γ(u1)xxx = 0,

(u2)t +3α(u2
1+ u2

2)(u2)x + γ(u2)xxx = 0.
(6)

We can write this system in this form
(u)t +3αz(u)(u)x + γ(u)xxx = 0, (7)

where
z(u) = (u2

1+ u2
2), u = [u1,u2]

T
.

The Eq. (1) is an integrable equation and it is important because it hasmany physical implementation, such as the spread
of optical pluses in nematic liquid crystal waveguides. TheHirota equation is regarding to both the nonlinear
Schrodinger equation and modified Korteweg-de Vries (mKdV)equations, as it is complex popularization of the mKdV
equation. In addition; the soliton solution of this equation has a very comparable form to the nonlinear Schrodinger
equation soliton. The Eq. (1) has two-parameter soliton family, with amplitude and velocity.

The Hirota equation has been studied numerically by HoseiniS. M. and Marchant T. R. [1] and the Eq. (1) has been
solved by W. G. Al. Harbi [4]. The numerical solution of nonlinear wave equations has been the subject of many studies
in recent years. Such as the Korteweg-de Vries (KdV) equation has been studied by [5, 6, 7, 8] and the nonlinear
Schrodinger equation has been solved by [9, 10]. Numerical solution of coupled partial differential equations, as an
example, the coupled nonlinear Schrodinger equation admits soliton solution and it has many applications in
communication, this system has been studied numerically byIsmail [11,12,13,14] and the coupled Korteweg-de Vries
equation has been discussed numerically [15, 16, 17, 18]. The complex nonlinear partial differential equations have been
studied in [2, 3, 19, 20].

The paper is marshaled as follows. In section 2, we have introduced dissection of our method. In section 3, we have been
studied the stability for our scheme. In section 4, numerical results for problem and some related figures are given in
order to show the efficiency as well as the accuracy of the proposed method and we introduced the interaction of two and
three solitary waves. Finally, conclusions are followed insection 5.

2 Quintic B-spline functions

To construct numerical solution, consider nodal points(x j, tn) defined in the region[a,b]× [0,T ] where

a = x0 < x1 < · · ·< xN = b, h = x j+1− x j =
b− a

N
, j = 0,1, · · · ,N.

0= t0 < t1 < · · ·< tn < · · ·< T, t j+1− t j = ∆ t, tn = n∆ t, n = 0,1, · · · .

The quinticB-spline basis functions at knots are given by:

B j(x) =
1
h5







































(x− x j−3)
5
, x j−3 ≤ x ≤ x j−2

(x− x j−3)
5−6(x− x j−2)

5, x j−2 ≤ x ≤ x j−1

(x− x j−3)
5−6(x− x j−2)

5+15(x− x j−1)
5, x j−1 ≤ x ≤ x j

(−x+ x j+3)
5+6(x− x j+2)

5−15(x− x j+1)
5, x j ≤ x ≤ x j+1

(−x+ x j+3)
5+6(x− x j+2)

5, x j+1 ≤ x ≤ x j+2

(−x+ x j+3)
5, x j+2 ≤ x ≤ x j+3

0, otherwise.

(8)

Using quinticB-spline basis function (8) the values ofB j(x) and its derivatives at the knots points can be calculated, which
are tabulated in Table 1.
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3 Solution of the Hirota equation

To apply the proposed method, we rewrite (6) as

(u1)t +3α(u2
1+ u2

2)(u1)x + γ(u1)xxx = 0,

(u2)t +3α(u2
1+ u2

2)(u2)x + γ(u2)xxx = 0.

we take the approximationsu1(x, t)= (U1)
n
j andu2(x, t)= (U2)

n
j , then from famous Cranckâ-Nicolson scheme and forward

finite difference approximation for the derivativet [21], we get

[

(U1)
n+1
xxx j +(U1)

n
xxx j

2

]

+
(U1)

n+1
j − (U1)

n
j

k
+3α

[

(z(U))n+1
j +(z(U))n

j

2

][

(U1)
n+1
x j +(U1)

n
x j

2

]

= 0, (9)

[

(U2)
n+1
xxx j +(U2)

n
xxx j

2

]

+
(U2)

n+1
j − (U2)

n
j

k
+3α

[

(z(U))n+1
j +(z(U))n

j

2

][

(U2)
n+1
x j +(U2)

n
x j

2

]

= 0, (10)

wherek = δ t is the time step.

In the Crankâ-Nicolson scheme, the time stepping process is half explicit and half implicit. So the method is better than
simple finite difference method.

ExpressingU1(x, t) andU2(x, t) by using quinticB-spline functionsB j(x) and the time dependent parametersc j(t) and
δ j(t) for U1(x, t) andU2(x, t) respectively, the approximate solution can be written as:

UN
1 (x, t) =

N+2

∑
j=−2

c j(t)B j(x), UN
2 (x, t) =

N+2

∑
j=−2

δ j(t)B j(x). (11)

Using approximate function (11) and quinticB-spline functions (8), the approximate valuesU1(x),U2(x) and their
derivatives up to second order are determined in terms of thetime parametersc j(t) andδ j(t), respectively, as

(U1) j = (U1)(x j) = c j−2+26c j−1+66c j +26c j+1+ c j+2,

(U ′
1) j = (U ′

1)(x j) =
5
h
(c j+2+10c j+1−10c j−1− c j−2),

(U ′′
1 ) j = (U ′′

1 )(x j) =
20
h2 (c j−2+2c j−1−6c j +2c j+1+ c j+2),

(U ′′′
1 ) j = (U ′′′

1 )(x j) =
60
h3 (c j−2+2c j−1−2c j+1+2c j+12),

(U2) j = (U2)(x j) = δ j−2+26δ j−1+66δ j +26δ j+1+ δ j+2,

(U ′
2) j = (U ′

2)(x j) =
5
h
(δ j+2+10δ j+1−10δ j−1− δ j−2),

(U ′′
2 ) j = (U ′′

2 )(x j) =
20
h2 (δ j−2+2δ j−1−6δ j +2δ j+1+ δ j+2),

(U ′′′
2 ) j = (U ′′′

2 )(x j) =
60
h3 (δ j−2+2c j−1−2δ j+1+2δ j+12).

(12)

On substituting the approximate solution for(U1),(U2) and its derivatives from Eq. (12) at the knots in Eqs. (9) and (10)
yields the following difference equation with the variablesc j(t) andδ j(t).

A1cn+1
j−2 +A2cn+1

j−1+A3cn+1
j +A4cn+1

j+1 +A5cn+1
j+2 =

A5cn
j−2+A4cn

j−1+A3cn
j +A2cn

j+1+A1cn
j+2,

(13)
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A1δ n
j−2+A2δ n

j−1+A3δ n
j +A4δ n

j+1+A5δ n
j+2 =

A5δ n
j−2+A4δ n

j−1+A3δ n
j +A2δ n

j+1+A1δ n
j+2,

(14)

where

A1 = 1− 30∆ t
h3 − 15α∆ t

5h
(z1)

n
j ,

A2 = 26+
60∆ t

h3 − 150α∆ t
5h

(z1)
n
j ,

A3 = 66,

A4 = 26− 60∆ t
h3 − 150α∆ t

5h
(z1)

n
j ,

A5 = 1+
30∆ t

h3 − 15α∆ t
5h

(z1)
n
j ,

(z1)
n
j =

(

(z(U))n+1
j +(z(U))n

j

2

)

.

The system thus obtained on simplifying Eqs. (13) and (14) consists of(2N + 2) linear equations in the(2N + 10)
unknowns (c−2,c−1,c0, · · ·cN , cN+1,cN+2), (δ−2,δ−1,δ0, · · ·δN ,δN+1,δN+2)

T . To obtain a unique solution to the
resulting system four additional constraints are required. These are obtained by imposing boundary conditions.
Eliminating c−2,c−1,c0, cN ,cN+1,cN+2 and δ−2,δ−1,δ0,δN ,δN+1,δN+2 the system get reduced to a matrix system of
dimension(2N +2)× (2N+2) which is the penta-diagonal system that can be solved by any algorithm.

4 Initial values

To find the initial parametersc0
j andδ 0

j , the initial conditions and the derivatives at the boundaries are used in the following
way

(U ′
1)(x0,0) =

5
h
(c2+10c1−10c−1− c−2) = 0,

(U ′′
1 )(x0,0) =

20
h2 (c−2+2c−1−6c0+2c j+1+ c j+2) = 0,

(U1)(x j,0) = c j−2+26c j−1+66c j+1+2c j+2 = 0,

(U ′
1)(xN ,0) =

5
h
(cN+2+10cN+1−10cN−1− cN−2) = 0,

(U ′′
1 )(xN ,0) =

20
h2 (cN−2+2cN−1−6cN +2cN+1+ cN+2) = 0,

(U ′
2)(x0,0) =

5
h
(δ2+10δ1−10δ−1− δ−2) = 0,

(U ′′
2 )(x0,0) =

20
h2 (δ−2+2δ−1−6δ0+2δ j+1+ δ j+2) = 0,

(U2)(x j,0) = δ j−2+26δ j−1+66δ j+1+2δ j+2 = 0,

(U ′
2)(xN ,0) =

5
h
(δN+2+10δN+1−10δN−1− δN−2) = 0,

(U ′′
2 )(xN ,0) =

20
h2 (δN−2+2δN−1−6δN +2δN+1+ δN+2) = 0.

Which forms a linear block pintadiagonal system for unknowninitial conditionsc0
j and δ 0

j , of order(2N + 2) after
eliminating the functions values ofc andδ . This system can be solved by any algorithm. Once the initialvectors of
parameters have been calculated, the numerical solution ofthe Hirota equationU1 andU2 can be determined from the
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time evaluation of the vectorscn
j andδ n

j , by using the recurrence relations

(U1)(x j, tn) = cn
j−2+26cn

j−1+66cn
j +26cn

j+1+ cn
j+2,

(U2)(x j, tn) = δ n
j−2+26δ n

j−1+66δ n
j +26δ n

j+1+ δ n
j+2.

5 Stability analysis of the method

The stability analysis of nonlinear partial differential equations is not easy task to undertake. Most researchers copy with
the problem by linearizing the partial differential equation. Our stability analysis will be based on the Von-Neumann
concept in which the growth factor of a typical Fourier mode defined as

cn
j = Aξ n exp(i jφ),

δ n
j = Bξ n exp(i jφ),

g =
ξ n+1

ξ n ,

(15)

whereA andB are the harmonics amplitude,φ = kh, k is the mode number,i =
√
−1 andg is the amplification factor

of the schemes. We will be applied the stability of the quintic schemes by assuming the nonlinear term as a constants
(z1)

n
j = λ1. At x = x j system (13) can be written as

a1cn+1
j−2 + a2cn+1

j−1 + a3cn+1
j + a4cn+1

j+1+ a5cn+1
j+2 =

a5cn
j−2+ a4cn

j−1+ a3cn
j + a2cn

j+1+ a1cn
j+2,

(16)

where

a1 = 1− 30∆ t
h3 − 15α∆ t

2h
λ1,

a2 = 26+
60∆ t

h3 − 150α∆ t
2h

λ1,

a3 = 66,

a4 = 26− 60∆ t
h3 − 150α∆ t

2h
λ1,

a5 = 1+
30∆ t

h3 +
15ℵ∆ t

2h
λ1,

Substituting (15) into the difference (16), we get

ξ n+1











[2cos2φ +62cosφ +66]+

i

((

60∆ t
h3 +

30α∆ t
2h

λ1

)

sin2φ +

(

−120∆ t
h3 +

300α∆ t
2h

λ1

)

sinφ
)











=

ξ n











[2cos2φ +62cosφ +66]−

i

((

60∆ t
h3 +

30α∆ t
2h

λ1

)

sin2φ +

(

−120∆ t
h3 +

300α∆ t
2h

λ1

)

sinφ
)











,

we get

g =
X + iY
X − iY

, (17)
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where
X = [2cos2φ +62cosφ +66] ,

Y =

((

60∆ t
h3 +

30α∆ t
2h

λ1

)

sin2φ +

(

−120∆ t
h3 +

300α∆ t
2h

λ1

)

sinφ
)

.

From (17) we get ,|g| = 1 hence the scheme is unconditionally stable. It means that there is no restriction on the grid
size, i.e. onh and∆ t, but we should choose them in such a way that the accuracy of the scheme is not degraded.

Similar results can be obtained from the difference (14), due to symmetricu1 andu2.

6 Numerical Tests and Results of Hirota equation

In this section, we present numerical example to test validity of our scheme for solving Hirota equation. The norms
L2-norm andL∞-norm are used to compare the numerical solution with the analytical solution [22].

L2 = ‖uE − uN‖=
√

h
N

∑
i=0

(uE
j − uN

j )
2,

L∞ = max
j

|uE
j − uN

j |, j = 0,1,2, · · · ,N,

(18)

whereuE is the exact solutionu anduN is the approximation solutionUN . And the quantitiesI1 and I2 are shown to
measure conservation for the schemes.

I1 =
∫ ∞

−∞
|u(x, t)|2 dx|2 ∼= h

N

∑
j=0

|Un
j |2,

I2 =
∫ ∞

−∞

(

|u(x, t)|4−|ux(x, t)|2
)

dx ∼= h
N

∑
j=0

(α
2
(|U |4)n

j − (|Ux|2)n
j

)



































, (19)

where
u(x, t) = u1(x, t)+ iu2(x, t), (U)n

j = (U1)
n
j + i(U2)

n
j .

Now we consider this test problem.

6.1 Test problem:

We assume that the solution of the Hirota equation is negligible outside the interval[xL,xR] together with all itsx
derivatives tend to zero at the boundaries. Therefore, in our numerical study we replace Eq. (1) by

ut +3α|u|2ux + γuxxx = 0, xL < x < xR, (20)

whereu is a complex valued function of the spatial coordinatex and the timet and α,γ are positive real constants.
Boundary conditions

u(xL, t) = u(xR, t) = 0

ux(xL, t) = ux(xR, t) = 0, 0≤ t ≤ T.
(21)

And initial conditions.
u(x,0) = f (x), xL < x < xR. (22)

c© 2016 BISKA Bilisim Technology



NTMSCI 1, No. 1, 1-12 (2016) /http://www.ntmsci.com/jacm 7

For our numerical work, we decompose the complex functionu into their real and imaginary parts by writing

u(x, t) = u1(x, t)+ iu2(x, t), i2 =−1, (23)

whereu1(x, t)andu2(x, t) are real functions. This will reduce Hirota equation to the coupled system

(u1)t +3α(u2
1+ u2

2)(u1)x + γ(u1)xxx = 0,

(u2)t +3α(u2
1+ u2

2)(u2)x + γ(u2)xxx = 0.

(24)

Then the exact solutions of system (24) is

u1(x, t) = β sech[κ(x− s− vt)]cos(φ),

u2(x, t) = β sech[κ(x− s− vt)]sin(φ),

β =

√

2γ
α

κ , ϕ = a(x− bt− s),

v = γ(κ2−3a2) b = γ(3κ3− a2),

(25)

β is the amplitude of the wave,κ is related to the width of the wave envelope andv is the velocity. The parametera is
the wave number of the phase and bis related to the frequency of the phase. As well the solution is atx = s at t = 0.In
order to derive a numerical method for solving the system given in (24). The regionR = [xL < x < xR]× [t > 0] with its
boundary consisting of the ordinatesx0 = xL,xN = xR and the axist = 0 is covered with a rectangular mesh of points with
coordinates

x = x j = xL + jh, j = 0,1,2, · · · ,N,

t = tn = nk, n = 0,1,2, · · · ,

whereh andk are the space and time increments, respectively.

To investigate the performance of the proposed schemes we consider solving the following problem.

6.2 Single soliton

In previous section, we have provided four finite differenceschemes for the Hirota equation, and we can take the following
as an initial condition.

u(x,0) = β sech[κ j(x− s j)]exp(iϕ),

β =

√

2γ
α

κ j, ϕ = a j(x− bt − s j),

v = γ(κ2
j −3a2

j) b = γ(3κ3
j − a2

j).

(26)

The normsL2 andL∞ are used to compare the numerical results with the analytical values and the quantitiesI1 andI2 are
shown to measure conservation for the schemes.
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Now, we consider two different cases to study the motion of single soliton.

Case 1. In this case we study the motion of single soliton by our scheme. In this case, we chooseh = 0.05,α = 2,γ =

1,a = 0.5,κ = 0.5,xL = −30,xR = 30, with different values ofk = 0.05,0.1 the simulations are done up tot = 5. The
invariantsI1 and I2 approach to zero percent, respectively atk = 0.05,0.1 . Errors, also, are satisfactorily smallL2-
error=2.91598×10−5 andL∞-error=1.55616×10−5, percent, respectively atk = 0.05. The invariantsI1 andI2 approach
to zero percent, respectively. Errors, also, are satisfactorily smallL2-error= 1.16219×10−4 andL∞-error=6.22412×10−5,
percent, respectively atk = 0.1. Our results are recorded in Table 2 and the motion of solitary wave is plotted at different
time levels in Fig 1.

h,k T I1 I2 L2-norm L∞-norm
h = 0.05 0.0 1.0000 -0.166667 0.0 0.0
k = 0.05 1.0 1.0000 -0.166666 5.14542E-6 3.86206E-6

2.0 1.0000 -0.166664 1.12435E-5 6.96387E-6
3.0 1.0000 -0.166663 1.76432E-5 1.09366E-5
4.0 1.0000 -0.166661 2.37519E-5 1.35187E-5
5.0 1.0000 -0.166661 2.91598E-5 .55616E-5

h = 0.05 0.0 1.0000 -0.166667 0.0 0.0
k = 0.1 1.0 1.0000 -0.166664 2.04474E-5 1.55067E-5

2.0 1.0000 -0.166657 4.48723E-5 3.08141E-5
3.0 1.0000 -0.166651 7.04433E-5 4.35989E-5
4.0 1.0000 -0.166644 9.48952E-5 5.43264E-5
5.0 1.0000 -0.166639 1.16219E-4 6.22412E-5

Table 1: Invariants and errors for single solitary wave ,h = 0.05,α = 2,γ = 1a = 0.5,κ = 0.5,xL =−30,xR = 30.

Fig. 1: Single solitary wave withh = 0.05,k = 0.05,α = 2,γ = 1 anda = 0.5,κ = 0.5,xL = −30,xR = 30, t = 0,3,5
respectively.

Case 2. In this case we study the motion of single soliton by our scheme. In this case, we choose
h = 0.1,α = 2,γ = 1,a = 0.5,κ = 0.5,xL =−30,xR = 30, with different values ofk = 0.05,0.1 the simulations are done
up tot = 5. The invariantsI1 andI2 approach to zero percent, respectively atk = 0.05,0.1 . Errors, also, are satisfactorily
smallL2-error=2.76053×10−5 andL∞-error=1.47542×10−5, percent, respectively atk = 0.05, t = 5. The invariantsI1
and I2 approach to zero percent, respectively. Errors, also, are satisfactorily smallL2-error= 1.14654× 10−4 and
L∞-error=6.14564×10−5, percent, respectively atk = 0.1. Our results are recorded in Table 3 and the motion of solitary
wave is plotted at different time levels in Fig 2.
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h,k T I1 I2 L2-norm L∞-norm
h = 0.1 0.0 1.0000 -0.166667 0.0 0.0
k = 0.05 1.0 1.0000 -0.166666 4.79837E-6 3.60953E-6

2.0 1.0000 -0.166664 1.05554 E-5 7.24351E-6
3.0 1.0000 -0.166663 1.66413E-5 1.03781E-5
4.0 1.0000 -0.166661 2.24578E-5 1.26539E-5
5.0 1.0000 1.47542E-5 2.76053E-5 .55616E-5

h = 0.1 0.0 1.0000 -0.166667 0.0 0.0
k = 0.1 1.0 1.0000 -0.166664 2.00874E-5 1.52293E-5

2.0 1.0000 -0.166657 4.41756 E-5 3.03681E-5
3.0 1.0000 -0.166651 5.94371E-5 4.32478E-5
4.0 1.0000 -0.166644 9.35896E-5 5.24549E-5
5.0 1.0000 -0.166641 1.14654E-4 6.14564E-5

Table 2: Invariants and errors for single solitary wave by the scheme, α = 2,γ = 1a = 0.5,κ = 0.5,xL =−30,xR = 30.

Fig. 2: Single solitary wave by our scheme withh = 0.1,k = 0.05,α = 2,γ = 1 anda = 0.5,κ = 0.5,xL = −30,xR =
30, t = 0,3,5 respectively.

In the next table we make comparison between the results of our scheme and the results have been published in Search
[4].

Method I1 I2 L2-norm L∞-norm
Analyticalh = 0.1 1.0000 -0.166676 0.0 0.0

Our schemeh = 0.1 1.0000 -0.166661 2.24578E-5 0.00001
[4]a h = 0.05 1.0000 -0.166648 - 0.00001
[4]b h = 0.05 1.0000 -0.166648 - 0.00001
[4]c h = 0.05 1.0000 -0.166648 0.00014

Table 3: Invariants and errors for single solitary wave ,k = 0.05,α = 2,γ = 1a = 0.5,κ = 0.5,xL =−30,xR = 30.

The results of our scheme are related with the results in [4].

6.3 Interaction of two solitary waves

The interaction of two solitary waves having different amplitudes and traveling in the same direction is illustrated. We
consider Hirota equation with initial conditions given by the linear sum of two well separated solitary waves of various
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amplitudes

u(x,0) = β sech[κ j(x− s j)]exp(iϕ),

β =

√

2γ
α

κ j, ϕ = a j(x− bt − s j),

v = γ(κ2
j −3a2

j) b = γ(3κ3
j − a2

j),

(27)

where,j = 1,2,a j ands j,κ j are arbitrary constants. In our computational work.

Now, we chooses1 = −5,s2 = 15,a1 = 0.3,a2 = 0.8,κ1 = 0.2,κ2 = 0.7,γ = 1,α = 2,h = 0.05,k = 0.05 with interval
[-30, 30]. In Fig. 3, the interactions of these solitary waves are plotted at different time levels. We also, observe an
appearance of a tail of small amplitude after interaction and the three invariants for this case are shown in Table 5. The
invariantsI1 andI2 are changed by less than 8.5×10−4 and 2.23×10−3, respectively for the scheme.

T I1 I2
0 1.82793 0.488457
3 1.82793 0.488535
5 1.82794 0.488411
8 1.82806 0.487765
22 1.82849 0.486227
25 1.82878 0.486362

Table 4: Invariants of interaction two solitary waves of Hirota equation s1 = −10,s2 = 10,a1 = 0.3,a2 = 0.8,κ1 =
0.2,κ2 = 0.7,γ = 1,α = 2,−30< x < 30,h = 0.05,k = 0.05.

Fig. 3: interaction two solitary waves withs1 =−10,s2 = 10,a1 = 0.3,a2 = 0.8,κ1 = 0.2,κ2 = 0.7,γ = 1,α = 2,−30<
x < 30,h = 0.05,k = 0.05 at timet = 0,15 respectively.

6.4 Interaction of three solitary waves

The interaction of three solitary waves having different amplitudes and traveling in the same direction is illustrated. We
consider the Hirota equation with initial conditions givenby the linear sum of three well separated solitary waves of
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various amplitudes:

u(x,0) = β sech[κ j(x− s j)]exp(iϕ),

β =

√

2γ
α

κ j, ϕ = a j(x− bt − s j),

v = γ(κ2
j −3a2

j) b = γ(3κ3
j − a2

j),

(28)

where,j = 1,2,3,a j ands j ,κ j are arbitrary constants. In our computational work.

Now, we choose
s1 = −5,s2 = 10,a1 = 0.2,a2 = 0.4,a3 = 0.7,κ1 = 0.3,κ2 = 0.7,κ3 = 1,γ = 1,α = 2,h = 0.05,k = 0.05 with interval
[-30, 30]. In Fig. 4, the interactions of these solitary waves are plotted at different time levels. We also, observe an
appearance of a tail of small amplitude after interaction and the three invariants for this case are shown in Table 5. The
invariantsI1 andI2 are changed by less than 7.6×10−4 and 8.5×10−4, respectively for the scheme.

T I1 I2
0 3.51709 1.57696
2 3.51785 1.57611
4 3.51771 1.57667
6 3.51777 1.57633
12 3.51716 1.57613
10 3.51784 1.57623

Table 5: Invariants of interaction two solitary waves of Hirota equation s1 =−5,s2 = 10,a1 = 0.2,a2 = 0.4,a3 = 0.7κ1 =
0.3,κ2 = 0.7,κ3 = 1,γ = 1,α = 2,h = 0.05,k = 0.05,−30< x < 30.

Fig. 4: interaction three solitary waves withs1 =−5,s2 = 5,s3 = 10,a1 = 0.2,a2 = 0.4,a3 = 0.7,κ1 = 0.3,κ2 = 0.7,κ3 =
1,γ = 1,α = 2,−30< x < 30,h = 0.05,k = 0.05 at timet = 0,14 respectively.

7 Conclusions

In this paper a numerical treatment for the nonlinear Hirotaequation is proposed using a collection method with the
quintic B-splines. We show that the schemes are unconditionally stable. We tested our schemes through a single solitary
wave in which the analytic solution is known, then extend it to study the interaction of solitons where no analytic solution
is known during the interaction and its accuracy was shown bycalculating error normsL2 andL∞.

c© 2016 BISKA Bilisim Technology

http://www.ntmsci.com/jacm


12 K. R. Raslan, et al.: Collocation Method with QuinticB-Spline Method for Solving the Hirota equation

References

[1] S. M. Hoseini and T. R. Marchant, Solitary wave interaction and evolution for Higher order Hirota equation, Wave Motion. Vol.
44, pp. 92-106, 2006.

[2] G. M. Muslu and H. A.Erlbay, A split-Step Fourier Method for the Complex Modif- ied Korteweg-de Vries Equation, Comput.
Math Applic.Vol.45, pp. 503-514, 2003.

[3] R. T. Taha, Numerical Simulations of complex Modified Korteweg-de Vries equa- tion, Math. comput. Simul. Vol. 37, pp.461-467,
1994.

[4] W. G. Al.Harbi, Numerical Solution of Hirota Equation, M.S.C., KAU, 2009.
[5] I. Christie, D. Griffiths, A. Mitchell, and J. M. Sanz-Serna, Product Approximation for non-linear problems in the finite element

method, IMA J. N. A. Vol. 1, pp. 253- 266, 1981.
[6] J. M. Sanz-Serna and I. Christsie, Petrov- Galerkin methods for nonlinear dispersive waves, J. Comp. Phys. Vol. 39, pp. 94-103,

1981.
[7] R.T. Taha and M. J. Ablowitz, Analytical and numerical aspects of certain Nonlinear evolution equations. IV. Numerical, Korteweg-

de Vries equation, J. Comput. Phys. Vol. 55, pp. 231-253, 1984.
[8] R. T. Taha and M. J. Ablowitz, Analytical and numerical aspects of certain Nonlinear evolution equation. IV. Numerical, Modi.ed

Korteweg-de Vries equation, J. Comput. Phys. Vol. 77, pp. 540-548, 1988.
[9] S. S. Al.Sairy, A Linearly Implicit schemes for the coupled nonlinear Schrodinger Equation, M. S.C., KAU, 2006.

[10] R. T. Taha and M. J. Ablowitz, Analytical and numerical aspects of certain Nonlinear evolution equation. II. Numerical, nonlinear
Schrodinger equation, J. Comput. Phys. Vol. 55, pp. 203-230, 1984.

[11] M.S. Ismail and R.T. Taha, Numerical Simulation of Coupled Nonlinear Schrodinger equation, Math. Comp. Simul. Vol. 56, pp.
547-562, 2001.

[12] M. S. Ismail and S. Z. Alamri, Highly Accurate Finite Difference Method for Cou- pled Nonlinear Schrodinger equation, Int. J.
Comp. Math. Vol. 81(3), pp. 303-351, 2004.

[13] M. S. Ismail and R. T. Taha, A Linearly Implicit Conservative Scheme for the Cou- pled Nonlinerar Schrodinger equation, Math.
Comp. Simul. Vol. 74, pp. 302-311, 2007.

[14] M. S. Ismail, Numerical solution of coupled nonlinear Schrodinger equation by Galerkin method, Math. Comp. Simul.Vol. 78,
pp. 532-547, 2008.

[15] A. A. Halim S. B. Kshevetskii and S. B. Leble, Numerical integration of a Coupled Korteweg-de Vries System, Comput. And
Math Applic. Vol.45, pp.581-591, 2003.

[16] A. A. Halim and S. B. Leble, Analytical and numerical solution of coupled KdV- MKdV system, Chaos, Solitons, Fractals. Vol.
19, pp. 99-108, 2004

[17] M. S. Ismail, Numerical solution of Coupled Korteweg-de Vries equation by Collo- cation method, NMPDE. Vol. 25, pp.275-291,
2009.

[18] S. Zhu, A difference scheme for the coupled KdV Equation, Communication in Nonlinear Science and Numerical Simulation Vol.
4 (1), pp. 69-63, 1999.

[19] M. S. Ismail, Numerical solution of Complex Modified Korteweg-de Vries equation by collocation method, CNSNS. Vol.14, pp.
749-759, 2009.

[20] M. S. Ismail, Numerical solution of Complex Modified Korteweg-de Vries equation by Petrov-Galerkin method, App. math and
comput. Vol. 202, pp. 520- 531, 2008.

[21] T. S. EL-Danaf, K. R. Raslan and Khalid K. Ali,” collocation method with cubic B- Splines for solving the GRLW equation”, Int.
J. of Num. Meth. and Appl. Vol. 15 (1), pp. 39-59, 2016.

[22] T. S. EL-Danaf, K. R. Raslan and Khalid K. Ali,”New Numerical treatment for the Generalized Regularized Long Wave Equation
based on finite difference scheme”, Int. J. of S. Comp. and Eng. (IJSCE), Vol. 4, pp. 16-24, 2014.

c© 2016 BISKA Bilisim Technology


	Introduction
	Quintic B-spline functions
	Solution of the Hirota equation
	Initial values
	Stability analysis of the method
	Numerical Tests and Results of Hirota equation
	Conclusions

