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Abstract: In this paper, a matrix method based on Legendre collocationpoints on interval [-1, 1] is proposed for the approximate
solution of some second order nonlinear ordinary differential equations with the mixed nonlinear conditions in terms of Legendre
polynomials. The method, by means of collocation points, transforms the differential equation to a matrix equation which corresponds
to a system of nonlinear algebraic equations with unknown Legendre coefficients. The numerical results show the effectiveness of the
method for this type of equation. When this method is compared with the other usual techniques, results would be easier and have
higher accuracy.
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1 Introduction

Nonlinear ordinary differential equations are frequentlyused to model a wide class of problem in many areas of scientific
fields; chemical reactions, spring-mas systems bending of beams, resistor-capacitor-inductance circuits, pendulums, the
motion of a rotating mass around another body and so forth [1,2]. These equations have also demonstrated their
usefulness in ecology and economics. Thus, methods of solution for these equations are of great importance to engineers
and scientist. In spite of the fact that many important differential equations can be solved by well known analytical
techniques, a greater number of physically significant differential equations can not be solved [2,5].

In this research, we consider the second order nonlinear ordinary differential equation of the form

A0(x)y(x)+A1(x)y′(x)+A2(x)y′′(x)+A3(x)y2(x)+A4(x)y(x)y′(x)+

A5(x)[(y′(x))]
2+A6(x)y(x)y′′(x)+A7(x)y′(x)y′′(x)+A8(x)[(y′′(x))]

2 = g(x) , −1≤ x ≤ 1
(1)

under the mixed nonlinear conditions
[

1

∑
k=0

αiky(k)(ai)+
1

∑
l=0

βiky(k)(ai)y
(l)(ai)

]

= λ j ; i , j = 0, 1 (2)

and look for the approximate solution of (1) in the Legendre polynomial form

y(x) =
N

∑
n=0

ynPn(x) , −1≤ x ≤ 1 (3)
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whereyn , (n = 0, 1, 2, ..., N) are unknown Legendre coefficients. HerePn(x), n = 0, 1, 2, ..., N are unknown Legendre
polynomials defined by

Pn(x) =
1
2n

[ n
2 ]

∑
k=0

(−1)k

(

n

k

) (

2n−2k

n

)

xn−2k
, n = 0, 1, 2, ... ,

[n
2

]

=

{

n
2,n even

n−1
2 ,n odd

2 Fundamental matrix relations

Let us consider the nonlinear differential equation (1) andfind the matrix forms of each term in the equation. Firstly, we
consider the solutiony(x) defined by a truncates series (3) and then we can convert it to the matrix form

y(x) = P(x)Y (4)

where
P(x) = [P0(x) P1(x) ... PN(x) ]

Y = [y0 y1 ... yN ]T

If we differentiate Eq. (5) with respect tox, we obtain

y′(x) = P′(x)Y = P(x)Π TY (5)

y′′(x) = P′(x)Π T Y = P(x)
(

Π T
)2

Y

where ifn is even

Π =



























0 0 0 0 · · · 0 0 0
1 0 0 0 · · · 0 0 0
0 3 0 0 · · · 0 0 0
1 0 5 0 · · · 0 0 0
...

...
...

...
...

...
...

...
0 3 0 7 · · · 2N −3 0 0
1 0 5 0 · · · 0 2N −1 0



























(N+1)×(N+1)

if n is odd

Π =



























0 0 0 0 · · · 0 0 0
1 0 0 0 · · · 0 0 0
0 3 0 0 · · · 0 0 0
1 0 5 0 · · · 0 0 0
...

...
...

...
...

...
...

...
1 0 5 0 · · · 2N −3 0 0
0 3 0 7 · · · 0 2N −1 0



























(N+1)×(N+1)

By using (5) the matrix form of expressionsy2(x) is obtained as

y2(x) =
[

1 x 1
2

(

3x2−1
)

· · · · · ·
]













P(x) 0 · · · 0
0 P(x) · · · 0
...

...
.. .

...
0 0 · · · P(x)

























y0Y

y1Y
...

yNY













(6)
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or shortly

y2(x) = P(x) P̄(x)Ȳ

where

P̄(x) =













P(x) 0 · · · 0
0 P(x) · · · 0
...

...
.. .

...
0 0 · · · P(x)













, Ȳ =
[

y0Y y1Y · · · yNY
]T

.

By using the equ. (4), (5), and (6) we obtain

y(x)y′(x) = P(x) P̄(x)
(

Π̄ T )Ȳ (7)

Following a similar way to (6) we obtain

[(

y′(x)
)]2

= P(x)Π T P̄(x)
(

Π̄ T )Ȳ (8)

where

(

Π̄ T ) =













(

Π T
)

0 · · · 0
0

(

Π T
)

· · · 0
...

...
.. .

...
0 0 · · ·

(

Π T
)













.

Besides, applying a similar way to (4), (5) and (6), can be written, respectively

y(x)y′′(x) = P(x) P̄(x)
(

¯̄Π T
)

Ȳ (9)

y′(x)y′′(x) = P(x)Π T P̄(x)
(

¯̄Π T
)

Ȳ (10)

[(

y′′(x)
)]2

= P(x)
(

Π T )2
P̄(x)

(

¯̄Π T
)

Ȳ (11)

where

(

¯̄Π T
)

=













(

Π T
)2

0 · · · 0

0
(

Π T
)2

· · · 0
...

...
.. .

...

0 0 · · ·
(

Π T
)2













.

3 Matrix relations based on collocation points

Let us use the collocation points defined by

xi = a −
b− a

N
i , i = 0, 1, ..., N (12)

in order to
a = x0 〈x1 〈 ...〈xn = b .
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By using the collocation points (9) into Eq. (1), we get the equation

A0(xi)y(xi)+A1(xi)y
′(xi)+A2(xi)y

′′(xi)+A3(xi)y
2(xi)+A4(xi)y(xi)y

′(xi)+A5(xi)
[(

y′(xi)
)]2

+A6(xi)y(xi)y
′′(xi)+A7(xi)y

′(xi)y
′′(xi)+A8(xi)

[(

y′′(xi)
)]2

= g(xi), (i = 0, 1, ..., N); −1 ≤ xi ≤ 1. (13)

By using the relations (4), (5), (6), (7), (8), (9), (10) and (11); the system (13) can be written in the matrix form

[

A0(xi)P(xi) I + A1(xi)P(xi)Π T + A2(xi)P(xi)
(

Π T )2
]

Y +

+
[

A3(xi)P(xi)P̄(xi)+ A4(xi)P(xi)P̄(xi)
(

Π̄ T ) +A5(xi)P(xi)Π T P̄(xi)
(

Π̄ T )+ (14)

+A6(xi)P(xi)P̄(xi)
(

¯̄Π
T
)

+A7(xi)P(xi)Π T P̄(xi)
(

¯̄Π
T
)

+A8(xi)P(xi)
(

Π T )2
P̄(xi)

(

¯̄Π
T
)]

Ȳ = g(xi).

Consequently, the fundamental matrix equations of (14) canbe written in the following compact form

W (xi)Y + V (xi)Ȳ = g(xi)

where
W (xi) = A0(xi)P(xi) I + A1(xi)P(xi)Π T + A2(xi)P(xi)

(

Π T )2

and

V (xi) = A3(xi)P(xi)P̄(xi)+ A4(xi)P(xi)P̄(xi)
(

Π̄ T ) +A5(xi)P(xi)Π T P̄(xi)
(

Π̄ T )

+A6(xi)P(xi)P̄(xi)
(

¯̄Π
T
)

+A7(xi)P(xi)Π T P̄(xi)
(

¯̄Π
T
)

+A8(xi)P(xi)
(

Π T )2
P̄(xi)

(

¯̄Π
T
)

.

Above expression can be rewritten shortly as
WY ∗+VȲ∗= G (15)

where

W =













W (x0) 0 · · · 0
0 W (x1) · · · 0
...

...
.. .

0 0 · · · W (xN)













(N+1)× (N+1)2

,V =













V (x0) 0 · · · 0
0 V (x1) · · · 0
...

...
.. .

...
0 0 · · · V (xN)













(N+1)× (N+1)2

,

G =













g(x0)

g(x1)
...

g(xN)













(N+1)× 1

, I =













1 0 · · · 0
0 1 · · · 0
...

...
.. .

...
0 0 · · · 1













(N+1)× (N+1)

,Y∗ =













Y
Y
...
Y













(N+1)2 ×1

,Ȳ∗ =













Y∗
Y∗
...

Y∗













(N+1)3 ×1

.

4 Method of solution

The fundamental matrix equation (15) corresponding to Eq. (1) can be written as,

WY ∗ +VȲ∗ = G

or
[W ; V ; G (16)
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We can find to corresponding matrix equation for the conditions (2), using the relation (4),(5),(6),(7) and (8) as follows:

{α00P(a0)+α10P(a1)+α01P̄(a0)+α11P̄(a1)}Y +
{

β00P(a0)P̄(a0)+β10P(a1)P̄(a1)
(

Π̄ T )+β01P(a0) P̄(a0)
(

Π̄ T )+β11P(a1)Π T P̄(a1)
(

Π̄ T )}Ȳ = λ j , j = 0,1. (17)

or shortly
KiY + LiȲ = λi, i = 0, 1,

so that

Ki =
1

∑
k=0

[αikP(ai)]
(

Π T )k
Y , i = 0,1,

Li =
1

∑
k=0

βik
[

P(ai) P̄(ai)+P(ai) P̄(ai)
(

Π̄ T )+P(ai)Π T P̄(ai)
(

Π̄ T )]Ȳ , i = 0,1,

where

P(ai) =
[

P0(ai) P1 (ai) · · · PN (ai)
]

, P̄(ai) =













P(ai) 0 · · · 0
0 P(ai) · · · 0
...

...
.. .

...
0 0 · · · P(ai)













(N+1)×(N+1)2

, i = 0,1.

We can write the corresponding matrix form (17) for the mixednon-linear condition (2) in the augmented matrix form as

[K; L ; λ ] (18)

where

K =

[

k00 k01 . . . k0N 0
0 k10 k11 . . . k1N

]

=
1

∑
k=0

αik

[

P(ai)+ P(ai)
(

Π T )k
]

L =

[

l00 l01 . . . loN 0
0 l10 l11 . . . l1N

]

=
1

∑
l=0

βik
[

P(ai)P̄(ai)+P(ai)P̄(ai)
(

Π̄ T )+P(ai)Π T P̄(ai)Π̄ T ]

λ =

[

λ0

λ1

]

, 0 =
[

0 0 · · · 0
]

1× (N+1)
.

To obtain the approximate solution of Eq. (1) with the mixed non-linear condition (2) in the terms of Legendre
polynomials, by replacing the row matrix (18) by the last rowof the matrix (15), we obtain the required augmented
matrix:

[

W̃ ;Ṽ ;G̃
]

=













W (x0) 0 · · · 0 ; V (x0) 0 · · · 0 : g(x0)

0 W (x1) · · · 0 ; 0 V (x1) · · · 0 : g(x1)
...

...
. . .

... ;
... 0

...
... :

...
0 0 · · · K ; 0 0 · · · L : λ













or the corresponding matrix equation
W̃Y ∗ +Ṽ Ȳ∗ = G̃ (19)

where
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W̃ =













W (x0) 0 · · · 0
0 W (x1) · · · 0
...

...
.. .

...
0 0 · · · K













,Ṽ =













V (x0) 0 · · · 0
0 V (x1) · · · 0
...

...
.. .

...
0 0 · · · L













, G̃ =













g(x0)

g(x1)
...
λ













.

The unknown coefficients set{y0, y1, ..., yN} can be determined from the nonlinear system (19). As a result, we can obtain
approximate solution in the truncated series form (3).

5 Accuracy of solution

We can check the accuracy of the solution by following procedure [6 - 16]: The truncated Legendre series in (3) have to
be approximately satisfying Eq. (1); that is for eachx = xi ∈ [a,b] , i = 1, 2, ...

E(xi) =

∣

∣

∣

∣

∣

A0(xi)y(xi)+A1(xi)y′(xi)+ a2(xi)y′′(xi)+A3(xi)y2(xi)+A4(xi)y(xi)y′(xi)+

A5(xi)[(y′(xi))]
2+A6(xi)y(xi)y′′(xi)+A7(xi)y′(xi)y′′(xi)+A8(xi)[(y′′(xi))]

2− g(xi)

∣

∣

∣

∣

∣

∼= 0

andE (xi)≤ 10ki (k isany positive integer) is prescribed, then the truncation limit N is increased until the differenceE (xi)

at each of the pointsxibecomes smaller than the prescribed10−k.

6 Numerical examples

The method of this research is useful in finding the solutionsof second-order nonlinear ordinary differential equations in
terms of Legendre polynomials. We illustrate it by following examples.

Example 1. Let us first consider the second-order nonlinear differential equation

(x−1)y′′y − xy′y −2xy = −2x4 + 2 (20)

with conditions
y(0) = −1 , y′(0) = 0 , −1≤ x ≤ 1

and the approximate solutiony(x) by the truncated Legendre polynomial

y(x) =
3

∑
n=0

ynPn , −1 ≤ x ≤ 1

where
A0 (x) = −2x , A4(x) = −x , A6(x) = (x−1) , g(x) = −2x4+2.

For N = 3 the collocation points become

x0 = −1 , x1 =
−1
3

, x2 =
1
3
, x3 = 1.

The augmented matrix for the fundamental matrix equation iscalculated as

[

W̄ ; V̄ ; Ḡ
]

=











2 −2 2 −2 ; 0 1 −9 35 0−1 9 −35 0 1 −9 35 0−1 9 −35 : 0
2
3

−2
9

−2
9

22
81 ; 0 1

3
−13

3
55
9 0 −1

9
13
9

−55
27 0 −1

9
13
9

−55
27 0 11

81
−143

81
605
243 : 160

81

1 0 −1
2 0 ; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 :−1

0 1 0 −5
2 ; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 : 0










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From the obtained system, the coefficientsy0, y1, y2 andy3 are found as

y0, =−
2
3
, y1, = 0 , y2 =

2
3
, y3 = 0.

Hence we have the Legendre polynomial solution

y(x) = x2 − 1

which is the exact solution.

Example 2. Our last example is nonlinear differential equation

y′′+ xy − e−xy2 = xex (21)

with nonlinear conditions
y(0)+3y2(0) = 4, y′ (0)− y2(0) = 0, −1≤ x ≤ 1,

Following the procedure in Section 4, we find the approximatesolution of problem (21) forN = 3as

y(x) = 1+ x+
x2

2!
+

x3

3!
.

The solutions obtained forN = 3, 7 are compared with the exact solution isex, which are given in Figures 1, 2. We
compare the numerical solution and absolute errors forN = 3, 7 in Table 1.

Present method

xi Exact solution N = 3,y(x)
Absolute
errors for

N = 3
N = 7,y(x) Absolute

errors forN = 7

-1 0.3678794412 0.33333333 3.454661 E-1 0.3678571429 2.22983 E-5
-0.8 0.4493289641 0.43466666 1.466229 E-2 0.4493251454 3.8187 E-6
-0.6 0.5488116361 0.544000 4.811636 E-3 0.5488112457 3.904 E-7
-0.4 0.670320046 0.66933333 9.867127 E-4 0.6703200305 1.55 E-8
-0.2 0.8187307531 0.81866666 6.40864 E-5 0.818730753 1.000 E-10
0 1.0 1.0 0 1.0 0
0.2 1.221402758 1.22133333 6.9425 E-5 1.221401758 1.000 E-12
0.4 1.491824698 1.49666666 1.15831 E-3 1.491824681 1.700 E-8
0.6 1.8221188 1.816000 6.1188 E-3 1.822118354 4.46 E-7
0.8 2.225540928 2.205333 2.0207595 E-2 2.225536366 4.562 E-6
1.0 2.718281828 2.66666666 5.1615161 E-2 2.718225396 2.786 E-5

Table 1: Comparison of the absolute errors of Example 2.

7 Conclusion

A new technique, using the Legendre polynomial, to numerically solve the second order nonlinear differential equations
is presented. Nonlinear differential equations are usually difficult to solve analyticaly. Then it is required to obtain the
approximate solutions. For this reason, the present methodhas been proposed for approximate solution and also
analytical solution.
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Fig. 1: Numerical and exact solution of Example 2 forN = 3,7.

Fig. 2: Comparison of the absolute errors of Example 2 forN = 3,7.

On the other hand, from Table 1, it may be observed that the errors found for differentN show close agreement for
various values ofxi. Table and Figures indicate that asN increases, the errors decrease more rapidly; hence for better
results, using large numberN is recommended. Another considerable advantage of the method is that Legendre
coefficients of the solution are found very easily by using the computer programs. On the other hand ourNth order
approximation gives the exact solution when the solution ispolynomial of degree equal to or less thanN. If the solution
is not polynomial, Legendre series approximation converges to the exact solution asN increases.

The method can also be extended to the high order nonlinear differential equations with variable coefficients, but some
modifications are required.
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