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Abstract: In this paper, a matrix method based on Legendre collocg@nts on interval [-1, 1] is proposed for the approximate
solution of some second order nonlinear ordinary difféedrgquations with the mixed nonlinear conditions in ternid.egendre
polynomials. The method, by means of collocation pointmdforms the differential equation to a matrix equationchtdorresponds
to a system of nonlinear algebraic equations with unknowgrebdre coefficients. The numerical results show the effernéiss of the
method for this type of equation. When this method is congbavith the other usual techniques, results would be easighane
higher accuracy.
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1 Introduction

Nonlinear ordinary differential equations are frequengd to model a wide class of problem in many areas of scientifi
fields; chemical reactions, spring-mas systems bendingaifris, resistor-capacitor-inductance circuits, pends/uhe
motion of a rotating mass around another body and so fort?].[T,hese equations have also demonstrated their
usefulness in ecology and economics. Thus, methods of@oligr these equations are of great importance to engineers
and scientist. In spite of the fact that many important défdial equations can be solved by well known analytical
techniques, a greater number of physically significantdéftial equations can not be solved [2,5].

In this research, we consider the second order nonlineérarsddifferential equation of the form

Po(X)Y(X) +AL(X)Y (x) +A2(X)Y" (X) + Ag(X)y?(x) + Aa(X)Y(X)Y () +

As()[(Y (%)) + As(X)Y()Y" (X) + Az ()Y ()Y (x) +As()[(y' ())]* =g(x) , —1<x<1 W
under the mixed nonlinear conditions
1 1
YL R @)YV @) | = Aj ; i,j=0,1 2
Lzoaky (&) + l;ﬁky (&)Y (a)] Ji )
and look for the approximate solution of (1) in the Legendskypomial form
y(x) = i}ynPn(x) , —1<x<1 (©)]

* Corresponding author e-maslalih.yalcinbas@cbu.edu.tr ®© 2016 BISKA Bilisim Technology


 http://dx.doi.org/10.20852/ntmsci.2016218387

258 BIS K A S. Yalcinbas and T. Ulu: Legendre collocation method fovisgj a class of the second order nonlinear differential 6quaw

wherey,, (n=0,1,2,...,N) are unknown Legendre coefficients. H&¢x), n = 0, 1, 2, ..., N are unknown Legendre
polynomials defined by

1[2] k(N 2n—2k\ o n 2.n even
Pn(x)f?k;(fl) <k>< ) )x ,nf0,1,2,...,b}f "2 1 odd

2 Fundamental matrix relations

Let us consider the nonlinear differential equation (1) find the matrix forms of each term in the equation. Firstly, we
consider the solutiog(x) defined by a truncates series (3) and then we can convertietmatrix form

y(x) = P(X)Y 4)
where

PX) = [Ro(X) Pr(x) ... An(x)]

Y = [yoy1--Wn]"

If we differentiate Eq. (5) with respect tg we obtain
(¥ =P(X)Y=PxATY (5)

Y'() = P()ITY = P(x) (MT)?Y

where ifnis even

000O0-- 0 0 O
1000 O 0 O
0300 0 0 O
n=11050 0 0 O
7---2N-3 0 O
L1 0- 0 N-10 (N+1)x (N+1)
if nis odd ~ _
0 00O 0 0 O
1000 O 0 O
03 00--- O 0 O
nmn=/120520- 0 0 O
1 050---2N-3 0 O
10307 0 2N-10] (NA1)x (N21)
By using (5) the matrix form of expressiog&x) is obtained as
P(x) O 0 YoY

(6)
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or shortly
Y2(x) = P(X)P(x)Y
where
P(x) O 0
_ 0 P(x) 0 _ T
P(x) = : Y= [on yY - yNY}
0 0 - PXx

yOQY () = P()P() (7)Y ()
Following a similar way to (6) we obtain
[(Y(%9)]? = POATP(x) (AT) Y ®)
where
(nTy o 0

(ﬁT): . . . .
0 0 - (7

Besides, applying a similar way to (4), (5) and (6), can bdtemi respectively

yO)Y'(x) = PP (T17) Y ©)
YY" () = PP (TT7) ¥ (10)
[(Y'00)]* = Peo(NT) PO (TTT) ¥ (11)
where
(nm)? o 0
() - o (n7)? 0
o 0 (/'I.T)2

3 Matrix relations based on collocation points

Let us use the collocation points defined by
X=a———i, i=01..N (12)

in order to
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By using the collocation points (9) into Eq. (1), we get theaipn

Ao(X)Y(% ) +AL(x)Y (%) + Az (%)Y (%) + Ag(x)Y2 (%) + Aa(x)Y(x) )Y (%) + As(x) [ (Y (%0))]?
+ As (X )Y(X )Y (xi) +Az(x)Y (%)Y" (%) + As(xi) [ (Y (% )] =g(x), (i=0,1,..,N); -1<x <1  (13)

By using the relations (4), (5), (6), (7), (8), (9), (10) add); the system (13) can be written in the matrix form

[Aox)PO) 1 + Al(Xu)P(Xu)”T+A2 (6)POG) (MT)° | Y+
+ [Ag(%) P(%)P(x) + Aq(x)P x) (1 ) +As(x) P()MTP( (ﬁT) (14)
-

+A6() P(x)P(x) (1T )+A7<xi>P< DATP() (") +Ag(x) P06) (M) %P(x) ()| ¥ =g (x).
Consequently, the fundamental matrix equations of (14)gawritten in the following compact form
W)Y +V(x)Y = g(x)

where
W(x) = Ao(x)P(x) | + Ac(x)PO3)ITT + As(x)P(xi) (M)

and

V(%) = Ag(%) P4 )P(%) + Aa(%)P(x )P (% >(FTT) +As(x) PO ATP(x) (MTT)
I7

— =T 2= =T
+Ae(x) PO)P(X) (M) +A7(6) PO4) MTR(x) (M) +As(x) P(x) (M1T)*Plx) (A1)
Above expression can be rewritten shortly as
WY % +VYx =G (15)
where
W(x) 0 0 V(x) 0 0
0 W(xg 0 0 V(x) 0
W (%) v_ ( |
0 0 WON) | (ny1)x (np12 0 0 - VON) | (i) w npay?
9(%o) 10---0 Y Y
g(x1) 01---0 Y _ Y x
G= . al = A . 7Y* = 7Y* = .
90N) | (11 w1 00 1] Nia)x (na1) Y1 (N1 <1 Y | (N1 x1

4 M ethod of solution

The fundamental matrix equation (15) corresponding to Epcén be written as,
WY % +VYx = G

or
W;V; G (16)
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We can find to corresponding matrix equation for the cond#i?), using the relation (4),(5),(6),(7) and (8) as fokow

{aooP(a0) + a10P(a1) + ao1P(ao) + a11P(ag) } Y +
{BooP(a0)P(a0) + BroP(a1)P(a1) (M) + PorP (ao) P(ao) (M) + PraP(a) 1P (ag) (MT)}Y = Aj, j=0,1. (17)

or shortly
KiY + LY = A, i=0,1,
so that .
K=Y [awP(@)] (M), i=0.1,
K=0
1
Li= Y B[P(@)P(a)+P(@)P(@) (") +P@)n"P)(MM)]Y , i=01
K=o
where
P(@) O 0
_ 0 P@)-- 0
P(ai): {Po(a) Pl(ai)PN(a*)}aP(a*): . . . : ,i=0,1.
0 0 - P(a) (N+1) x (N+1)2

We can write the corresponding matrix form (17) for the mired-linear condition (2) in the augmented matrix form as

[K; L; A] a8
where l
_ koo ko1 ... Kon 0 B | | | .
“ l 0 kio ka1 ...klNl = 2 ik [P(@)+ P(a) (M7)"]
1
L [Ioo lo1 O...loN . 0 I ] - Z)Bik [P(a)P(ai) +P(a)P(a) (M) +P(a) 1T P(a)1"]
10 li1 ... hin 2

A= [22] » 0= [Oom OLx(NH)'

To obtain the approximate solution of Eqg. (1) with the mixeshdinear condition (2) in the terms of Legendre
polynomials, by replacing the row matrix (18) by the last rofvthe matrix (15), we obtain the required augmented
matrix:

W(o) 0 - 0;V(o) 0 - 0:g(x)
;6] = 0 W(.Xl)...O; 0 V(;(l)....(.):g(?(l)

or the corresponding matrix equation
WY« +VYx = G (19)

where
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W(x) 0 0 V(x) O 0 g(xo
. 0 W(xq)--- 0| _ 0 V(Xg)---0| . X
wo | O WOy O VOl e ok
0 0 K 0 0 L A

The unknown coefficients s¢¥o, y1, ..., yn} can be determined from the nonlinear system (19). As a regaitan obtain
approximate solution in the truncated series form (3).

5 Accuracy of solution

We can check the accuracy of the solution by following praced6 - 16]: The truncated Legendre series in (3) have to
be approximately satisfying Eq. (1); that is for eack x € [a,b] ,i = 1,2, ...

1R
o

E(x) = | A0V +ALX)Y (%) +2a(X)y" (%) + As()y* () +Aa(x)y(¥)Y () +
)

As (%) [(Y (0)1% + Ae(x)y(4)y" (%) + Az (x)y (x)Y" (%) + Ag(x) (" (%:))]* — g ()

andE (x;) < 10 (kisany positiveinteger) is prescribed, then the truncation limit N is increaseditind differenceE (x;)
at each of the pointgbecomes smaller than the prescribed40

6 Numerical examples

The method of this research is useful in finding the solutmfreecond-order nonlinear ordinary differential equagion
terms of Legendre polynomials. We illustrate it by follogiexamples.

Example 1. Let us first consider the second-order nonlinear diffeegetjuation

(X—1Y'y —xyy —2xy = —2x* + 2 (20)

with conditions
y0)=-1,y(0)=0, -1<x<1

and the approximate solutigfix) by the truncated Legendre polynomial

3
yx) =S ynPh, —-1<x<1
nZOnn

where

Ao(x) = —2X, Ag(X) = =X, Ag(X) = (x—1), g(x) = —2x* +2,
ForN = 3 the collocation points become

-1 1
=—1. X =—,Xo= =, X3 = 1.
Xo » X1 3 2 3’ 3

The augmented matrix for the fundamental matrix equati@aisulated as

2-22-2;01-930-19-3501-9350-1 9 -35:0
o 22 22 .01 -13550 113 -55 -1 13 -55( 11 —143 605 . 160
[W;V;G] = |37 ® 8 "373°79°79 9 27 “9 ‘9 27 "8l Bl 2438l
10’71 ;00 0 OO0 O 0O00O0OO OCOO O O0=2
010%’;000000000000000 0 :
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From the obtained system, the coefficieyis/1 y» andys are found as

2
yO,:_éa yl,:Oa Yo =

Hence we have the Legendre polynomial solution

which is the exact solution.

y(x) =% -1

Example 2. Our last example is nonlinear differential equation

with nonlinear conditions

'y —e Y = xe

,y3=0.

y(0)+3y*(0)=4, Y (0)—y?(0)=0, —1<x< 1,

Following the procedure in Section 4, we find the approxinsatation of problem (21) faX = 3as

y(xX) =1+ x+

X2
2!

x3
_+_

(21)

The solutions obtained fdl = 3, 7 are compared with the exact solutionels which are given in Figures 1, 2. We
compare the numerical solution and absolute errorsifer3, 7 in Table 1.

Presen'tA rgletlhod

solute

, . Absolute

N=3 N=7
X Exact solution ,Y(X) erl\rlozrs 3for ,Y(X) errors forN < 7

-1 0.3678794412 | 0.33333333 3.454661 E-1 0.3678571429 | 2.22983 E-5
-0.8 0.4493289641 | 0.43466666 1.466229 E-2 0.4493251454 | 3.8187 E-6
-0.6 0.5488116361 | 0.544000 4.811636 E-3 0.5488112457 | 3.904 E-7
-0.4 0.670320046 0.66933333 9.867127 E-4 0.6703200305 | 1.55E-8

-0.2 0.8187307531 0.81866666 6.40864 E-5 0.818730753 1.000 E-10

0 1.0 1.0 0 1.0 0

0.2 1.221402758 1.22133333 6.9425 E-5 1.221401758 | 1.000 E-12
0.4 1.491824698 1.49666666 1.15831 E-3 1.491824681 | 1.700 E-8

0.6 1.8221188 1.816000 6.1188 E-3 1.822118354 | 4.46 E-7

0.8 2.225540928 2.205333 2.0207595 E-2 2.225536366 | 4.562 E-6
1.0 2.718281828 2.66666666 5.1615161 E-2 2.718225396 | 2.786 E-5

Table 1: Comparison of the absolute errors of Example 2.
7 Conclusion

A new technique, using the Legendre polynomial, to numéyicalve the second order nonlinear differential equation
is presented. Nonlinear differential equations are ugudifficult to solve analyticaly. Then it is required to obtahe
approximate solutions. For this reason, the present mettasdbeen proposed for approximate solution and also
analytical solution.
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Fig. 1: Numerical and exact solution of Example 2 for=3,7.
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Fig. 2: Comparison of the absolute errors of Example 2Nct 3,7.

On the other hand, from Table 1, it may be observed that th@sefound for differentN show close agreement for
various values ok;. Table and Figures indicate that s increases, the errors decrease more rapidly; hence farbett
results, using large numbeéy is recommended. Another considerable advantage of theodheth that Legendre
coefficients of the solution are found very easily by using tomputer programs. On the other hand Nthr order
approximation gives the exact solution when the solutigmoilynomial of degree equal to or less thidnif the solution

is not polynomial, Legendre series approximation convetgehe exact solution dsincreases.

The method can also be extended to the high order nonlin#aratitial equations with variable coefficients, but some
modifications are required.
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