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Abstract: In this paper, a Laguerre matrix method is developed to find@proximate solution of linear differential, integral and
integro-differential equations with variable coefficientnder mixed conditions in terms of Laguerre polynomiats. this purpose,
Laguerre polynomials are used in the interval [0,b]. Theppsed method converts these equations into matrix eqsatiehich
correspond to systems of linear algebraic equations witnawn Laguerre coefficients. The solution function is ohal easily
by solving these matrix equations. The examples of thesaskifi equations are solved by using this new method and thétsese
discussed and it is seen that the present method is acceffatnt and applicable.
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1 Introduction

In recent years, there has been a growing interest in intgidferential equations (IDEs) which are a combination of
differential and Fredholm- Volterra equations. This is portant branch of modern mathematics and arise frequiently
many applied areas which include engineering, mechanigsigs, chemistry, astronomy, biology, economics, padént
theory, electrostatics, etc. [15-17]. Many problems of $iby and engineering lead naturally to the resolution of
differential and integral equations in bounded or unbodndemains. For example, some problems arise in coastal
hydrodynamics and in meteorology. Also integrals invodvjproducts of orthogonal polynomials or special functions
arise in several physical contexts. For example, the wanetions of the hydrogen as well as the 2-, 3-, and in general
N- dimension harmonic oscillator involve Laguerre polynalsiand the evaluation of integrals involving the product o
these polynomials is essential [6]. The mentioned IDEs aually difficult to solve analytically; so a numerical metho

is required. Several numerical methods for the solutionirefdr and nonlinear Fredholm integro-differential equiati
(FIDE) and fractional integro-differential equations kaeen studied by some authors [1,2,7,8,14,16,21,22 23,24
Additionally, the following methods for FIDEs have been ggeted:Adomian decomposition, Chebyshev and Taylor
collocation, Haar Wavelet, Tau and Walsh series methods, Sitilarly, since the beginning of 1994, Taylor and
Chebyshev matrix methods have also been used by Sezer d2413[16,20] to solve linear differential, Fredholm
integral and Fredholm integro-differential equationsdAaiso approximate solution of Kuramoto—Sivashinsky eiquat
using reduced differential transform method has been ugédtan et al. [18,19].

Laguerre polynomials are defined as solutions of Lagueditfsrential equation [3,4].

xy”’ + (1—X)y +ny=0.
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Solutions corresponding to the non-negative integean be expressed using Rodrigues’ formula

eed
Ln(X) = S 3a (e7X").

The first few Laguerre polynomials are

n i .
La(X) = ¥ <,—,1>< ”i>x', 0<x<b< 0.

These polynomials may be expressed in matrix form as
LO) = [Lo() La() - Ln(¥) | -

This matrix can be written in the following convenient form

where
X(X) = [1xx2 XN}
and ~ -
0 [0
A 0 0 0 0
_1)0 1 _1)! 1
1 . Cy . 0 0
H=1 (0 (2) ot (2) 0?2 (2 0
0! O 1! 1 2! 2
—1° (N} ot (N} (12 (N N (N
I 0! O 1! 1 21 1 e N! N |

In this study, we consider theth order linear FIDE with variable coefficients

under the mixed conditions

1)

)

®3)

(4)
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and assume that an approximation to the solution of (3) camritien in the following Laguerre polynomial form

N
y(x) = Zoanl-n(x) (5)

whereaji, bjk, Aj are suitable constanta; , n=0,1,2,...,N are the Laguerre coefficients to be determined, which are
obtained by means of the proposed matrix method based arcatithn points and the functiohs(x) are the Laguerre
polynomials defined by (1).

2 Fundamental matrix relations

Eq. (3) may be written briefly in the form

D(X) =g(x) +AF(x) (6)
where .
D(x) = k;&(x)y“) (%) (7)

Now, the solutiory(x) and its derivativeg¥ (x), the partsD(x) andF (x), and the mixed conditions (4) shall be converted
into the matrix forms.

2.1 Matrix relations for y(x) and y (x)

We assume that the solution functigfx) can be expanded, as well, to the truncated Laguerrer sariks form

N
y(x) = ZoanLn(x), 0<x <b< o, (8)
n=
The solutions (5) and (8), and their derivatives can be &mith matrix forms, respectively, as

Y09 =LA, [y¥9 9] =L M (A (©)

YOOI =X (Y, Y9 0] =xM v (10)

T T
whereA = [ao a; ay ... ay | are the unknown Laguerre coefficients afid= [yo ViVY2...yn| are the unknown
Taylor coefficients.

On the other hand, the Laguerre polynomials satisfy therrenae relation [19],

La() = Lh-1(0) = Ln-1(X) (11)

(© 2016 BISKA Bilisim Technology
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Using (11), one may write
L'1(x) = L'o(X) — Lo(X) = —Lo(X)
le(X) = L,j_(X) — Ll(X) = 7L0(X) — Lj_(X)
L'3(x) = L'2(x) — La(x) = —Lo(X) — L1(x) — L2(x) . (12)

L'N(X) = 7L0(X) — Lj_(X) — .. LNfl(X)
It is obvious from (12) that the relation between the maltrix) and its derivative is
(L/ T_ T 1) T
()" =E(L(K)" or L'(x)=L(xE (13)

where
L'(x) = {L’O(x) L'1(x) L'2(x) ... U'n-1(X) L/N(X)}

[0 0 0 0 0 O
-1 0 0 0 00
c_|-1-10 000
~1-1-10 00
~1-1-1-100
| -1 -1-1-1-10]

From the matrix equations (9) and (13), it follows that
y(x) = L(X)ETA. (14)
Using the relations (13) and (14), the recurrence relatsoonbe written as

y9(x) =L (x) (ET)A. (15)

2.2 Matrix relation for collocations points

A Laguerre matrix method based on collocation points is pseg to solve (3), and (4) in terms of Laguerre polynomials
b
xp:Np, p=0,1,2,....N (16)
Substitution of the expression (16) into the dafk) of Eq.(7) yields
D(xp) = g(xp) + AF(xp)

or
D=G+AF (17)

(© 2016 BISKA Bilisim Technology
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where _ _
g(xo
D F
St I ) N
D=| . |,G=|9%) | F=]|
D(xn) _g(>.<N)_ F(xn)

In order to construct the fundamental matrix equation, tlaérixrelation (17) is substituted into (6), and simplified t
yield.

ia(xpn (%) (ET)"A = g(xp) + AL (x,)KQA (18)
k=

2.3 Matrix relation for the differential part D(x)

Substitution of the expression (15) into the pafk) of Eq.(7) yields

DX = 3 AL () (ET)“A. (19)
2.4 Matrix relation for theintegral part F(x)

The kernel functiorK (x,t) can be approximated by the truncated Laguerre series

Z kanm Ln(t) (20)

m=0 n=

wherekmmare Laguerre coefficients which shall be derived using tlegiom between thetruncated
Laguerre and Taylor series. We can write Eq. (20) in the ¥alhg matrix form

[Kr(x,t)] =LK LT (1). (21)
Substituting (3) into (21) yields the Laguerre matrix forfrtee kernel function
[Kr(x,1)] = X()HTK {HX T (t). (22)
On the other hand, the Taylor matrix form of the kernel can btem as
[Ke(x )] = X(x)KXT () (23)

whereK are the Taylor coefficients [6] given by

1 @™nK(0,0)

K= (K] K = =

Equating (22) to (23) gives the matrix relation between thadated Laguerre series and the truncated Taylor series:

Ki=(HT) "KeH ™ = [kn)].

(© 2016 BISKA Bilisim Technology
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Finally, by substituting the matrix forms (9) and (21) irft¢x) of (6) and using Eq.(2), we have the matrix relation

b
F(x) =L(X)K g {/LT(t)L(t)dt] A= L(x)(HT)’thQHTA (24)
0
where
b b b
Q= [LTOLM)dt= [ HXTOXOH dt, Q"= [ XT(t)X(t)dt = [qjj]
Jrrova- /
bi+j+1 o
qij:m, i,j=0,1,2,....,N
and
Q=HQ*H".

2.5 Matrix relation for the mixed conditions

The corresponding matrix form of the conditions (4) can b&ited by means of (15) as

m-1 m-1
kzo (L (0) + by (b)) (ET)*A = kzo (21X (0) + byX (b)) HT (ET)*A = [Ayj) (25)

wherej =0,1,2,....m—1.

3 Method of solution

In order to construct the fundamental matrix equation, thgrixrelations (19), (24) and (26) are substituted into &)
simplified to yield

iﬂ((x)(ET)k/\(HT)thQHT A=G (26)
k=

which corresponds to a system(®f + 1) algebraic equations for tH&\ + 1) unknown Laguerre coefficien#, as, ..., an.
Eq. (26) can be written briefly in the form

WA =G or [W;G] (27)

where
m

Z H((X)(ET)I(_A(HT):LKIQHT] ’ paqzovlv'-'aN

W = [Wpq| = LO

On the other hand, the matrix form (25) of the conditions @) be written as
UiA=[Aj],or [Uj;Aj],j=0,1,2,...,m-1 (28)

where
m-1

U,-:Z)(ajkL(pojkL(b))(ET)kz{u,—oujl...ujN . j=012..m-1
k=

(© 2016 BISKA Bilisim Technology
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to obtain the general solution of Eq. (3) under the cond#ift), we replace the last rows of the matrix (27) by the
m-row matrix (28), and construct the new augmented matrixi[@p

Woo Woi ... Won ; O(Xo)
Wi Wi ... Wiy g(X1)
[VN\/'G} | WN-m0o WN-m1 - WN-mN ; 9(XN-m) (29)
' Upo Up1 ... Uon ; Ao .
Up U1 ... Uuin ; A
| Un-10 Um-11 --- Un-1N ;5 Am-1 |

If rank W =rank/W;G] =N+ 1, then
1

A= (W) G (30)

Note that, if W comes out to be a singular matrix, then any otheows of W can be replaced by the-row matrix (28)
in order that the singularity is eliminated. Therefore,didknown Laguerre coefficients, (n=10,1,...,N) are uniquely
determined by (30). IA = 0in Eq. (3), the equation becomes a high-order linear difféal equation; i = 0 fork £ 0,
then the equation becomes a Fredholm integral equationpisent solution is valid also for these cases.

4 Numerical examples

Now we apply the method to the above numerical examples witlali conditions. All computations were carried out
using MathCAD 14 [9] and Mathlab 6.5.1.[10].

Example 1.Let us consider the eighth-order linear differential eqpragiven in Ref. [11]
yViID(x) —y(x) = -8 |, 0<x<1
with the initial conditions

YO =1, Y(0)=0, y(©O=-1, y(©0)=-2, y"¥(©=-3
V(0= ~4. yW(©0)=-5, y(0)=-6

and approximate the solutiorix) by the Laguerre polynomial of degrée= 8. In this problemPy = -1, P =P, =

PR=PR=R=R=P=0, RBR=1, g(x)=—8¢ for N=8, the Laguerre collocation points axg = %p i =

07172737475767778)(0205 X]_:%, X2:%7 X3:%; X4:‘§17 XSZg; X6:g7 X7:%a X8:1 FOIlOWing

(© 2016 BISKA Bilisim Technology
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the procedure in Section 3, the augmented matrix of the giiffgrential equation becomes

(1 1 1 1 1 1 1 1 2 . -8

10875 Q758 0648 0546 045 0361 0278 1201; —7.06
1 075 0531 Q341 Q177 Q037 —0.081-0.179 Q74 : —6.23
10625 Q32 0077 —0.112-0.256—0.359 —0.428 0531 ; —5.498
W;G]=|1 05 0125 —0.146—0.331—0.446—0.505—0.518 Q502 ; —4.852
1 0.375-0.055 —0.33 —0.485-0.548 —0.543 —0.491 Q593 ; —4.282
1 025 —0.219-0.477-0.581—0.577 —0.501 —0.383 Q756 ; —3.779
1 0125-0.367 -0.588-0.625-0.546 —0.4 —0.224 0953 ; —3.335
1 0 -05 —0667-0.625-0.467—0.257 —0.04 1154 ;-2.943

from Eq. (22), the matrix forms for initial conditions are

L(0). ETO:[11111114

L(0).(ET)' =[0-1-2-3-4-5-6-7-8]
L(0).(E")*= 0013610152128

L(

L(0).(ET)*~[000015153570

—loo0000-1-6 —21—56}

- 000000172%

(ET)

(EN)' =]
(EN*=]

0).(E")*=[000-1-4-10-20-35 -56]

(=]
(E")°=|
(EN°=|
(ET)

:[0000000—1—8].

The new augmented matrix (31) based on initial conditions is

[0 1 —05 —0.66666667 —0.625—0.46666667—0.25694444-0.04047619 115399306 ;8|
11 1 1 1 1 1 1 1 ;1
0-1 -2 -3 —4 -5 -6 -7 -8 ;0
00 1 3 6 10 15 21 28 1
W;G]=]|0 0 0 -1 —4 -10 -20 -35 56 ;-2
00 O 0 1 5 15 35 70 ;3
00 O 0 0 -1 -6 -21 56 ;-4
00 O 0 0 0 1 7 28 5
00 O 0 0 0 0 -1 -8 ;-6

solving this system yields the unknown Laguerre coeffigent
-
A= [—28 176—490 812—868 608—271 70—8}
thus the solution function is

y(x) = —28Lp+176L; — 490L, + 812L3 — 868L4 — 608Ls — 271Lg+ 70L7; — 8Lsg.

(© 2016 BISKA Bilisim Technology
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X Exact solution N =8[16] Present N=8
0 1 1 1
0.1 0.9946538 0.9946538 0.9946538
0.2 0.9771222 0.9771222 0.9771222
0.3 0.9449012 0.9449011 0.9449012
0.4 0.8950948 0.8950942 0.8950948
0.5 0.8243606 0.8243574 0.8243606
0.6 0.7288475 0.7288360 0.7288473
0.7 0.6041258 0.6040917 0.6041253
0.8 0.4451082 0.4450208 0.4451073
0.9 0.2459603 0.2457599 0.2459591
1 0 —4.21294% 104 -4,935933% 109

Table 1: Comparison of numerical results for Example 1.

The exact solution of this problemy$x) = (1—x)€*. In Table 1, the numerical results obtained by the presethodeare
compared with the results of exact solution and those gindhi] for the interval0, 1]. It is seen from Table 1 that the
results obtained by the present method are in good agreemitarthe results of the exact solution and of [11]. Moreover,
the present method is very effective and convenient. Theemigal computations of this example have been carried out
by MathCAD 14 [9] software.

Example 2.

1
Y 4+ xy —xy=—2x*+113 - 114+ gx— 10+/xy(t)dt,
0

with the initial conditions
y0)=-1, y(0)=1

and approximate the solutigix) by the Laguerre polynomial of degrée= 8. In this problem

BX) =1 FX=x FX =-Xx g(x):72x4+11x3711x2+4—7x710, A=1,  K(xt)=x

3
for N = 3, the Laguerre collocation points arg = %p, i =0,123;%=0x= %, Xo = %, x3 =1 and
approximate the solutioy(x),
y(x) = ianLn(X)
He
from Eq.(28) the matrix representation of the equation is
0 0 1 3

—0.66666667 —0.72222222 5925926 19418724

W =P, L.(EN)+P.L (ENV ' 4+P,.L (ET)°—LK.Q=
oL.(E1) +PLL.(E) +P2L.(E') Q= | _133333333 _120222222 (7407407 18014403

-2 -15 0.3333333 22083333
where
00 0 O 0000 1000
=1 1 1
Po— 0 92 0 = 03(2)0 . Py 0100
00=50 00350 0010
00 0 -1 0001 0001

(© 2016 BISKA Bilisim Technology
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10 0 O -10 1 1 1 1
X — 11 (1) (4)° | —5.6172839 |1 06666666 038888889 (16049383
11222 2)°% | -158024691] ° | 1033333333-0.11111111-0.38271605 ’

11 1 1 3.66666667 1 0 -05  —0.6666666
1000
_|-1000
| 0000
0000

for the conditiongy(0) = —1, y/(0) =1, the augmented matrices are obtained, as

Uo;/\o . 11 1 1;-1
Up:A | |0-1-2-3; 1

by replacing the rows matrices by the last two rows of the ixate have the required augmented matrix

0 0 1 3 © 10

Wi 6] - —0.66666667—0.72222222 (25925926 194187243 :—5.6172839
I 1 1 1 1 : -1
0 -1 -2 -3 1

Solving this system yields the unknown Laguerre coeffigent

2.00000015
—17.0000004
26.00000045
—12.0000001

A=(W) 1=

Thus the solution function is
N
y(x) = Zoanl—n(x) = apLo(X) +a1L1(X) + azl2(x) + asls(x)

n=

=23 -5 +x—1

which is precisely equal to the exact solution. Hence, iemsthat present method is accurate, efficient and appdicabl

Example 3.As a last example, the fifth order differential equation
/2
2

v () — x2y3) (x) — Y (x) — xy(X) = X% cosx — xsinx+ / y(t)dt,
0

with the initial conditions

¥(0)=y'(0)=y?(0) =0, Y(0)=1, y"(0)=-1

(© 2016 BISKA Bilisim Technology



NTMSCI 4, No. 2, 273-284 (2016)Www.ntmsci.com BISKA 283

the new augmented matrix (28) for this problem is

[—1.571-0.337-0.749—2.554 5577 -10.384 ; O]

1 1 1 1 1 1 ;0

W] = o -1 -2 -3 -4 -5 ;1
0 0 1 3 6 10 ;0

0 0 0 -1 -4 -10 ;-1

0 0 0 0 1 5 ; 0

in which the last five rows represent the initial values. 8athis system, Laguerre coefficients are determined auml th
the solution function is

y(X) = 1.48Lo— 5.398L + 11.796L, — 13.796L3+ 7.398L4 — 1.48Ls.

In Figure 1, the Laguerre polynomial solution is comparethwhe exact solutiog(x) = sin(x).

—e—Laguerre N=5 —=—Exact

Fig. 1: Comparison of the present solution with the exact solutiorEikample 3.

5 Conclusion and discussions

The proposed practical matrix method is used to solve lidéarential, integral and integro-differential equatgwith
constant coefficients. The proposed method converts tlipsiens into matrix equations, which correspond to system
of linear algebraic equations with unknown Laguerre coieffits. The solution function is obtained easily by solving
these matrix equations. The method is illustrated by nurakdpplications. Comparison of the results obtained by the
present method with those obtained by other methods retreatishe present method is very effective and convenient.
The accuracy of the solution improves with increadinghe Laguerre matrix method can be applied also to the Variab
coefficient differential, integral, integro-differentiand differential-difference equations, and to the syst#nthese
equations.
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