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Abstract: In this paper, a Laguerre matrix method is developed to find anapproximate solution of linear differential, integral and
integro-differential equations with variable coefficients under mixed conditions in terms of Laguerre polynomials. For this purpose,
Laguerre polynomials are used in the interval [0,b]. The proposed method converts these equations into matrix equations, which
correspond to systems of linear algebraic equations with unknown Laguerre coefficients. The solution function is obtained easily
by solving these matrix equations. The examples of these kinds of equations are solved by using this new method and the results are
discussed and it is seen that the present method is accurate,efficient and applicable.
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1 Introduction

In recent years, there has been a growing interest in integrodifferential equations (IDEs) which are a combination of

differential and Fredholm- Volterra equations. This is an important branch of modern mathematics and arise frequentlyin

many applied areas which include engineering, mechanics, physics, chemistry, astronomy, biology, economics, potential

theory, electrostatics, etc. [15-17]. Many problems of physics and engineering lead naturally to the resolution of

differential and integral equations in bounded or unbounded domains. For example, some problems arise in coastal

hydrodynamics and in meteorology. Also integrals involving products of orthogonal polynomials or special functions

arise in several physical contexts. For example, the wave functions of the hydrogen as well as the 2-, 3-, and in general

N- dimension harmonic oscillator involve Laguerre polynomials and the evaluation of integrals involving the product of

these polynomials is essential [6]. The mentioned IDEs are usually difficult to solve analytically; so a numerical method

is required. Several numerical methods for the solution of linear and nonlinear Fredholm integro-differential equation

(FIDE) and fractional integro-differential equations have been studied by some authors [1,2,7,8,14,16,21,22,23,24].

Additionally, the following methods for FIDEs have been presented:Adomian decomposition, Chebyshev and Taylor

collocation, Haar Wavelet, Tau and Walsh series methods, etc. Similarly, since the beginning of 1994, Taylor and

Chebyshev matrix methods have also been used by Sezer et al. [12,13,16,20] to solve linear differential, Fredholm

integral and Fredholm integro-differential equations. And also approximate solution of Kuramoto–Sivashinsky equation

using reduced differential transform method has been used by Acan et al. [18,19].

Laguerre polynomials are defined as solutions of Laguerre’sdifferential equation [3,4].

xy′′+(1− x)y′+ ny = 0.
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Solutions corresponding to the non-negative integern can be expressed using Rodrigues’ formula

Ln(x) =
ex

n!
dn

dxn

(

e−xxn) .

The first few Laguerre polynomials are

L0(x) = 1

L1(x) =−x+1

L2(x) = 1
2x2−2x+1

L3(x) =− 1
6x3+ 3

2x2−3x+1
...

Ln(x) =
n
∑

i=0

(−1)i

i!

(

n

n− i

)

xi, 0≤ x ≤ b <+∞.

(1)

These polynomials may be expressed in matrix form as

L(x) =
[

L0(x) L1(x) . . . LN(x)
]

.

This matrix can be written in the following convenient form

L(x) = X(x)HT (2)

where

X(x) =
[

1 x x2 . . . xN
]

and

H =







































(−1)0

0!

(

0

0

)

0 0 . . . 0

(−1)0

0!

(

1

0

)

(−1)1

1!

(

1

1

)

0 . . . 0

(−1)0

0!

(

2

0

)

(−1)1

1!

(

2

1

)

(−1)2

2!

(

2

2

)

. . . 0

...
...

...
. . .

...

(−1)0

0!

(

N

0

)

(−1)1

1!

(

N

1

)

(−1)2

2!

(

N

1

)

. . . (−1)N

N!

(

N

N

)







































In this study, we consider themth order linear FIDE with variable coefficients

m

∑
k=0

Pk(x)y
(k)(x) = g(x)+λ

b
∫

0

K(x, t)y(t)dt (3)

under the mixed conditions
m−1

∑
k=0

(

a jky(k)(0)+ b jky(k)(b)
)

= λ j, j = 0,1, ...,m−1 (4)

c© 2016 BISKA Bilisim Technology



NTMSCI 4, No. 2, 273-284 (2016) /www.ntmsci.com 275

and assume that an approximation to the solution of (3) can bewritten in the following Laguerre polynomial form

y(x) =
N

∑
n=0

anLn(x) (5)

wherea jk, b jk, λ j are suitable constants;an , n = 0,1,2, . . . ,N are the Laguerre coefficients to be determined, which are

obtained by means of the proposed matrix method based on collocation points and the functionsLn(x) are the Laguerre

polynomials defined by (1).

2 Fundamental matrix relations

Eq. (3) may be written briefly in the form

D(x) = g(x)+λ F(x) (6)

where

D(x) =
m

∑
k=0

Pk(x)y
(k)(x) (7)

Now, the solutiony(x) and its derivativesy(k)(x), the partsD(x) andF(x), and the mixed conditions (4) shall be converted

into the matrix forms.

2.1 Matrix relations for y(x) and y(k)(x)

We assume that the solution functiony(x) can be expanded, as well, to the truncated Laguerrer series in the form

y(x) =
N

∑
n=0

anLn(x), 0≤ x ≤ b < ∞. (8)

The solutions (5) and (8), and their derivatives can be written in matrix forms, respectively, as

[y(x)] = L(x)A,
[

y(k)(x)
]

= L (k)(x)A (9)

[y(x)] = X(x)Y,
[

y(k)(x)
]

= X(k)(x)Y (10)

whereA =
[

a0 a1 a2 . . . aN

]T
are the unknown Laguerre coefficients andY =

[

y0 y1 y2 . . . yN

]T
are the unknown

Taylor coefficients.

On the other hand, the Laguerre polynomials satisfy the recurrence relation [19],

L′
n(x) = L′

n−1(x)−Ln−1(x). (11)
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Using (11), one may write
L′

1(x) = L′
0(x)−L0(x) =−L0(x)

L′
2(x) = L′

1(x)−L1(x) =−L0(x)−L1(x)

L′
3(x) = L′

2(x)−L2(x) =−L0(x)−L1(x)−L2(x)
...

L′
N(x) =−L0(x)−L1(x)− . . .−LN−1(x)

. (12)

It is obvious from (12) that the relation between the matrixL(x) and its derivative is

(

L ′(x)
)T

= E(L(x))T or L ′(x) = L(x)ET (13)

where

L ′(x) =
[

L′
0(x) L′

1(x) L′
2(x) . . . L′

N−1(x) L′
N(x)

]

E =





















0 0 0 0 0 0

−1 0 0 0 0 0

−1 −1 0 0 0 0

−1 −1 −1 0 0 0

−1 −1 −1 −1 0 0

−1 −1 −1 −1 −1 0





















.

From the matrix equations (9) and (13), it follows that

y′(x) = L(x)ETA. (14)

Using the relations (13) and (14), the recurrence relation can be written as

y(k)(x) = L(x)
(

ET)k
A. (15)

2.2 Matrix relation for collocations points

A Laguerre matrix method based on collocation points is proposed to solve (3), and (4) in terms of Laguerre polynomials

xp =
b
N

p, p = 0,1,2, ...,N (16)

Substitution of the expression (16) into the partD(x) of Eq.(7) yields

D(xP) = g(xP)+λ F(xP)

or

D = G+λF (17)
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where

D =













D(x0)

D(x1)
...

D(xN)













,G =



















g(x0)

g(x1)

g(x2)
...

g(xN)



















,F =













F(x0)

F(x1)
...

F(xN)













.

In order to construct the fundamental matrix equation, the matrix relation (17) is substituted into (6), and simplified to

yield.
m

∑
k=0

Pk(xp)L(xp)
(

ET)k
A = g(xp)+λL(xp)KQA . (18)

2.3 Matrix relation for the differential part D(x)

Substitution of the expression (15) into the partD(x) of Eq.(7) yields

[D(x)] =
m

∑
k=0

Pk(x)L(x)
(

ET)k
A. (19)

2.4 Matrix relation for the integral part F(x)

The kernel functionK(x, t) can be approximated by the truncated Laguerre series

K f (x, t) =
N

∑
m=0

N

∑
n=0

k f
mnLm(x)Ln(t) (20)

wherekmnare Laguerre coefficients which shall be derived using the relation between thetruncated

Laguerre and Taylor series. We can write Eq. (20) in the following matrix form

[

K f (x, t)
]

= L(x)K f LT(t). (21)

Substituting (3) into (21) yields the Laguerre matrix form of the kernel function

[

K f (x, t)
]

= X(x)HTK f HXT(t). (22)

On the other hand, the Taylor matrix form of the kernel can be written as

[Kt(x, t)] = X(x)K tXT(t) (23)

whereK t are the Taylor coefficients [6] given by

K t =
[

kt
mn

]

, kt
mn =

1
m!n!

∂ m+nK(0,0)
∂xm∂ tn ,

Equating (22) to (23) gives the matrix relation between the truncated Laguerre series and the truncated Taylor series:

K f =
(

HT)−1
K tH−1 = [kmn] .
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Finally, by substituting the matrix forms (9) and (21) intoF(x) of (6) and using Eq.(2), we have the matrix relation

F(x) = L(x)K f





b
∫

0

LT(t)L(t)dt



A = L(x)
(

HT)−1
K tQHTA (24)

where

Q =

b
∫

0

LT(t)L(t)dt =

b
∫

0

HXT(t)X(t)HTdt, Q∗ =

b
∫

0

XT(t)X(t)dt = [qi j]

qi j =
bi+ j+1

i+ j+1
, i, j = 0,1,2, ...,N

and

Q = HQ∗HT.

2.5 Matrix relation for the mixed conditions

The corresponding matrix form of the conditions (4) can be obtained by means of (15) as

m−1

∑
k=0

(

a jkL(0)+ b jkL(b)
)(

ET)k
A =

m−1

∑
k=0

(

a jkX(0)+ b jkX(b)
)

HT(ET)k
A = [λi j] (25)

where j = 0,1,2, ...,m−1.

3 Method of solution

In order to construct the fundamental matrix equation, the matrix relations (19), (24) and (26) are substituted into (6), and

simplified to yield
[

m

∑
k=0

Pk(x)
(

ET)k
−λ

(

HT)−1
K tQHT

]

A = G (26)

which corresponds to a system of(N +1) algebraic equations for the(N +1) unknown Laguerre coefficientsa0,a1, ...,an.

Eq. (26) can be written briefly in the form

WA = G or [W;G] (27)

where

W = [wpq] =

[

m

∑
k=0

Pk(x)
(

ET)k
−λ

(

HT)−1
K tQHT

]

, p,q = 0,1, ...,N

On the other hand, the matrix form (25) of the conditions (4) can be written as

Uj A = [λ j] ,or
[

Uj ;λ j
]

, j = 0,1,2, ...,m−1 (28)

where

Uj =
m−1

∑
k=0

(

a jkL(0)+ b jkL(b)
)(

ET)k
≡
[

u j0 u j1 . . . u jN

]

, j = 0,1,2, ...,m−1
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to obtain the general solution of Eq. (3) under the conditions (4), we replace the lastm rows of the matrix (27) by the

m-row matrix (28), and construct the new augmented matrix [15,16].

[

W̃;G̃
]

=



































w00 w01 . . . w0N ; g(x0)

w10 w11 . . . w1N ; g(x1)
...

...
. . .

...
...

...

wN−m,0 wN−m,1 . . . wN−m,N ; g(xN−m)

u00 u01 . . . u0N ; λ0

u10 u11 . . . u1N ; λ1
...

...
. . .

...
...

...

um−1,0 um−1,1 . . . um−1,N ; λm−1



































. (29)

If rank W̃ =rank
[

W̃;G̃
]

= N +1 , then

A =
(

W̃
)−1

G̃. (30)

Note that, if,W̃ comes out to be a singular matrix, then any otherm rows ofW̃ can be replaced by them-row matrix (28)

in order that the singularity is eliminated. Therefore, theunknown Laguerre coefficientsan , (n = 0,1, ...,N) are uniquely

determined by (30). Ifλ = 0 in Eq. (3), the equation becomes a high-order linear differential equation; ifPk = 0 for k 6= 0,

then the equation becomes a Fredholm integral equation. Thepresent solution is valid also for these cases.

4 Numerical examples

Now we apply the method to the above numerical examples with initial conditions. All computations were carried out

using MathCAD 14 [9] and Mathlab 6.5.1.[10].

Example 1.Let us consider the eighth-order linear differential equation given in Ref. [11]

y(viii)(x)− y(x) =−8ex , 0≤ x ≤ 1

with the initial conditions

y(0) = 1 , y′(0) = 0 , y′′(0) =−1 , y′′′(0) =−2 , y(iv)(0) =−3

y(v)(0) =−4 , y(vi)(0) =−5 , y(vii)(0) =−6

and approximate the solutiony(x) by the Laguerre polynomial of degreeN = 8. In this problemP0 = −1 , P1 = P2 =

P3 = P4 = P5 = P6 = P7 = 0 , P8 = 1 , g(x) = −8ex for N=8, the Laguerre collocation points arexp = b
N p i =

0,1,2,3,4,5,6,7,8 x0 = 0, x1 =
1
8, x2 =

2
8, x3 =

3
8, x4 =

4
8, x5 =

5
8, x6 =

6
8, x7 =

7
8, x8 = 1. Following

c© 2016 BISKA Bilisim Technology
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the procedure in Section 3, the augmented matrix of the givendifferential equation becomes

[W;G] =





































1 1 1 1 1 1 1 1 2 ; −8

1 0.875 0.758 0.648 0.546 0.45 0.361 0.278 1.201 ; −7.06

1 0.75 0.531 0.341 0.177 0.037 −0.081−0.179 0.74 ; −6.23

1 0.625 0.32 0.077 −0.112−0.256−0.359−0.428 0.531 ;−5.498

1 0.5 0.125 −0.146−0.331−0.446−0.505−0.518 0.502 ;−4.852

1 0.375−0.055 −0.33 −0.485−0.548−0.543−0.491 0.593 ;−4.282

1 0.25 −0.219−0.477−0.581−0.577−0.501−0.383 0.756 ;−3.779

1 0.125−0.367−0.588−0.625−0.546 −0.4 −0.224 0.953 ;−3.335

1 0 −0.5 −0.667−0.625−0.467−0.257 −0.04 1.154 ;−2.943





































from Eq. (22), the matrix forms for initial conditions are

L(0).
(

ET)0
=
[

1 1 1 1 1 1 1 1 1
]

L(0).
(

ET)1
=
[

0 −1 −2 −3 −4 −5 −6 −7 −8
]

L(0).
(

ET)2
=
[

0 0 1 3 6 10 15 21 28
]

L(0).
(

ET)3
=
[

0 0 0−1 −4 −10−20−35−56
]

L(0).
(

ET)4
=
[

0 0 0 0 1 5 15 35 70
]

L(0).
(

ET)5
=
[

0 0 0 0 0−1 −6 −21−56
]

L(0).
(

ET)6
=
[

0 0 0 0 0 0 1 7 28
]

L(0).
(

ET)7
=
[

0 0 0 0 0 0 0−1 −8
]

.

The new augmented matrix (31) based on initial conditions is

[

W̃;G̃
]

=





































0 1 −0.5 −0.66666667−0.625−0.46666667−0.25694444−0.04047619 1.15399306 ;−8

1 1 1 1 1 1 1 1 1 ; 1

0 −1 −2 −3 −4 −5 −6 −7 −8 ; 0

0 0 1 3 6 10 15 21 28 ;−1

0 0 0 −1 −4 −10 −20 −35 −56 ;−2

0 0 0 0 1 5 15 35 70 ;−3

0 0 0 0 0 −1 −6 −21 −56 ;−4

0 0 0 0 0 0 1 7 28 ;−5

0 0 0 0 0 0 0 −1 −8 ; −6





































solving this system yields the unknown Laguerre coefficients

A =
[

−28 176−490 812−868 608−271 70−8
]T

thus the solution function is

y(x) =−28L0+176L1−490L2+812L3−868L4−608L5−271L6+70L7−8L8.
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x Exact solution N = 8 [16] Present N=8
0 1 1 1

0.1 0.9946538 0.9946538 0.9946538
0.2 0.9771222 0.9771222 0.9771222
0.3 0.9449012 0.9449011 0.9449012
0.4 0.8950948 0.8950942 0.8950948
0.5 0.8243606 0.8243574 0.8243606
0.6 0.7288475 0.7288360 0.7288473
0.7 0.6041258 0.6040917 0.6041253
0.8 0.4451082 0.4450208 0.4451073
0.9 0.2459603 0.2457599 0.2459591
1 0 –4.212943×10−4 -4.9359339×10−9

Table 1: Comparison of numerical results for Example 1.

The exact solution of this problem isy(x) = (1−x)ex. In Table 1, the numerical results obtained by the present method are

compared with the results of exact solution and those given in [11] for the interval[0,1]. It is seen from Table 1 that the

results obtained by the present method are in good agreementwith the results of the exact solution and of [11]. Moreover,

the present method is very effective and convenient. The numerical computations of this example have been carried out

by MathCAD 14 [9] software.

Example 2.

y′′+ xy′− xy =−2x4+11x3−11x2+
47
3

x−10+

1
∫

0

xy(t)dt,

with the initial conditions

y(0) =−1, y′(0) = 1

and approximate the solutiony(x) by the Laguerre polynomial of degreeN = 8. In this problem

F2(x) = 1, F1(x) = x, F0(x) =−x, g(x) =−2x4+11x3−11x2+
47
3

x−10, λ = 1, K(x, t) = x

for N = 3, the Laguerre collocation points arexp = b
N p, i = 0,1,2,3; x0 = 0, x1 = 1

3, x2 = 2
3, x3 = 1 and

approximate the solutiony(x),

y(x) =
N

∑
n=0

anLn(x)

from Eq.(28) the matrix representation of the equation is

W =P0.L .
(

ET)0
+P1.L .

(

ET)1
+P2.L .

(

ET)2
−L .K .Q=











0 0 1 3

−0.66666667 −0.72222222 0.25925926 1.94187243

−1.33333333 −1.22222222 0.07407407 1.80144033

−2 −1.5 0.3333333 2.20833333











where

P0 =











0 0 0 0

0 −1
3 0 0

0 0 −2
3 0

0 0 0 −1











, P1 =











0 0 0 0

0 1
3 0 0

0 0 2
3 0

0 0 0 1











, P2 =











1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1










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X =













1 0 0 0

1 1
3

(1
3

)2 (1
3

)3

1 2
3

(

2
3

)2 (2
3

)3

1 1 1 1













, G =











−10

−5.61728395

−1.58024691

3.66666667











, L =











1 1 1 1

1 0.6666666 0.38888889 0.16049383

1 0.33333333−0.11111111−0.38271605

1 0 −0.5 −0.66666667











,

K =











1 0 0 0

−1 0 0 0

0 0 0 0

0 0 0 0











for the conditionsy(0) =−1, y′(0) = 1, the augmented matrices are obtained, as

[

U0 ; λ0

U1 ; λ1

]

=

[

1 1 1 1 ;−1

0 −1 −2 −3 ; 1

]

by replacing the rows matrices by the last two rows of the matrix we have the required augmented matrix

[

W̃;G̃
]

=











0 0 1 3 ; −10

−0.66666667−0.72222222 0.25925926 1.94187243 ;−5.61728395

1 1 1 1 ; −1

0 −1 −2 −3 ; 1











.

Solving this system yields the unknown Laguerre coefficients

A =
(

W̃
)−1

.G̃ =











2.00000015

−17.00000045

26.00000045

−12.00000015











.

Thus the solution function is

y(x) =
N
∑

n=0
anLn(x) = a0L0(x)+ a1L1(x)+ a2L2(x)+ a3L3(x)

= 2x3−5x2+ x−1

which is precisely equal to the exact solution. Hence, it is seen that present method is accurate, efficient and applicable.

Example 3.As a last example, the fifth order differential equation

y(5)(x)− x2y(3)(x)− y(1)(x)− xy(x) = x2cosx− xsinx+

π/2
∫

0

y(t)dt ,

with the initial conditions

y(0) = y′′(0) = y(4)(0) = 0 , y′(0) = 1 , y′′′(0) =−1

c© 2016 BISKA Bilisim Technology
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the new augmented matrix (28) for this problem is

[

W̃;G̃
]

=





















−1.571−0.337−0.749−2.554−5.577−10.384 ; 0

1 1 1 1 1 1 ; 0

0 −1 −2 −3 −4 −5 ; 1

0 0 1 3 6 10 ; 0

0 0 0 −1 −4 −10 ;−1

0 0 0 0 1 5 ; 0





















in which the last five rows represent the initial values. Solving this system, Laguerre coefficients are determined and thus

the solution function is

y(x) = 1.48L0−5.398L1+11.796L2−13.796L3+7.398L4−1.48L5.

In Figure 1, the Laguerre polynomial solution is compared with the exact solutiony(x) = sin(x).
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Fig. 1: Comparison of the present solution with the exact solution for Example 3.

5 Conclusion and discussions

The proposed practical matrix method is used to solve lineardifferential, integral and integro-differential equations with

constant coefficients. The proposed method converts these equations into matrix equations, which correspond to systems

of linear algebraic equations with unknown Laguerre coefficients. The solution function is obtained easily by solving

these matrix equations. The method is illustrated by numerical applications. Comparison of the results obtained by the

present method with those obtained by other methods revealsthat the present method is very effective and convenient.

The accuracy of the solution improves with increasingN. The Laguerre matrix method can be applied also to the variable

coefficient differential, integral, integro-differential and differential-difference equations, and to the systemof these

equations.
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