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Abstract: In this study, sinc-Galerkin and sinc-collocation methads presented to solve numerically some well-known class of
fractional differential equations (FDES) utilizing Mathatica. By using these two methods, FDEs with the variab&fficient and
boundary values are examined. To obtain an approximatei@olaf the given class of differential equations with sinethods is
reduced a system of algebraic equations which is simplen fda theorems. Obtained numerical results and approxisaitgion
functions are presented in the table and graphical forrspetively. It can be concluded from tables and graphs thatcellocation
method has the more accurate and effective results tharGsiterkin method.
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1 Introduction

Many systems in applied sciences, such as, signal and intagegsing, earthquake engineering, electrochemistry and
biomedical engineering, can be modeled by using fractioalglulus in the form of fractional differential equatiots.
order to better analyze these systems, it is required to khevapproximate solutions of these systems. For this aim,
several solution methods are developed to get the appréxisautions of fractional differential equations. Some
well-known numerical methods for obtaining the approxienstlutions of FBVP are summarized as follows, but not
limited to: Homotopy perturbation methodL,P], Differential transform metho®4], Adomian decomposition
methodp, 6, 7], Variational iteration methodd 9], Cubic spline method1(], Haar wavelet methodfl] and Homotopy
analysis method[7].

The sinc methods were introduced i8] and expanded inl4] by Frank Stenger. The sinc functions were first analyzed
in [15,16]. Later, sinc methods are studied by several authors ir?fl]7-

Particularly, in this paper, to compare the performanceraf-sollocation method and sinc-Galerkin method are agbli
ones to a class of fractional order boundary value probletim vériable coefficients in the following form

Y+ pXY +axy @ +r(xy=f(x), O0<a<1 (1)
y(@) =0,y(b) =0

wherey(?) is the left Caputo fractional derivative of orderof y(x)
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The rest of this paper is organized as follows. In section€give some definitions and theorems for fractional calculus
and sinc methods. In section 3, we use sinc methods to obtaproximate solution of a general fractional differeintia
equation and obtained results are given as some theoreseztlion 4, some test problems are given to compare the
ability of present methods by using tables and graphicallyirin section 5, the paper is completed with a conclusion.

2 Preliminaries and Notations

In this section, we recall notations and definitions of thne $unction and Caputo fractional derivative and derivefuise
formulas that are important for this paper. For more det&&{24, 25].

Definition 1. Let f: [a,b] — R be a functiong a positive real number, n the integer satisfying ot < a < n, andl" the
Euler gamma function. Then, the left Caputo fractional dative of ordera of f(x) is given as

1

£@) () — m/{jlx(xft)”*"*lf(”)(t)dt. 2)

Definition 2. The Sinc function is defined on the whole real line < x < « by

sin(7x) X7§O
sing(x) = X
ox) {1 x=0.

Definition 3. For h > 0and k= 0,+1,+2, ... the translated sinc function with space node are given by:

. sin(nx’—hkh)
(k. h)(x) = sinc( ~ hkh) 1771%1 X# ';:
X= X

Definition 4. If f (x) is defined on the real line, then forh0 the series

> . sx—kh
SUUCES by f(khsinc( - )
is called the Whittaker cardinal expansion of f wheneves Haries converges.

In general, approximations can be constructed for infisiei-infinite and finite intervals. To construct an approation
on the intervala, b) the conformal map

o= (32)

is employed. The basis functions on the interteab) are derived from the composite translated sinc functions

S(2) = Sk, h)(2)09(2) = sinc(@).

The inverse map ol = ¢(2) is
7= o~Lw) = a+be¥
=0 W= 1+ev’
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The sinc grid pointgy € (a,b) in De will be denoted by because they are real. For the evenly spaced ndde§__
on the real line, the image which corresponds to these nsdiioted by

a-+beh

X = @ *(kh) = TR

k=0,+1,4+2, ...

Theorem 1.Letl" be(0,1),F € B(Dg), then for h> 0 sufficiently small,

- s F@) i/ Fakeh@
/r F(2)dz— h,-:Zw #(z) ~ 2 Joo sin(mez)/h)

z=Ig (3)

where |
IK(@,1)|zcop = ]e[%“sgmmw»]

For the sinc methods, the infinite quadrature rule must bectiied to a finite sum. The following theorem indicates the
conditions under which an exponential convergence results

Theorem 2.If there exist positive constants 3 and C such that

(4)

Fo0) e o0l x e Y((—o0,))
el e

then the error bound for the quadrature rule (3) is

N e aMh  o-BNh

‘/I_F(x)dx—h_z ;(();jj))lgc( Tt )+ el 5)

j=—M

The infinite sum in (3) is truncated with the use of (4) to aréat the inequality (5). Making the selections
md
h=4/—
aM

= [|5]

where]|.]] is an integer part of the statement avids the integer value which specifies the grid size, then

and

< Fx) — (radM)/2
/FF(x)dxhsz —W(Xj)+o(e ). 6)

3 Numerical Methods

3.1 The sinc-Galerkin method

An approximate solution of(x) in (1) is represented by the formula

N

yn(X) = Z S(X)y, n=M+N+1 @
k=—M
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where S is function S(k, h) o ¢(x) for some fixed step sizb. The unknown coefficientsy in (7) are determined by
orthogonalizing the residual with respect to the basistions, i.e.

',S0 + (POY, S + (@Y, S + r(0)y, S = (F(x), S0, k=-M,...N (8)

The inner product used for the sinc-Galerkin method is ddfine

(1.9)= [ 100000m00dx

wherew(x) a weight function which is taken for second-order boundatye problems in the following form

We need the following theorems for the approximation of mpr@ducts in (8).

Theorem 3.The following relations hold:

2 y(x)
- Mzm;h% ®
Loy(X)
POY S0~ -h M;) 2707 1 91 () (10)
and for Gx) = r(x)y(x) and Gx) = f(x)
S IW(xe)
Theorem 4.The following relation holds fod < a < 1:
<q(x)y(a)7s<> ~ h N y(XJ) E hL i (Xr - X)aK(Xr) (12)

rl-a =M @(x)dx| " & &'(%)

where KX) = g(X)Sc(x)w(x), &(t) = In (1) and h. = i/ VL.

The proofs of these theorems and valueg@tx) can be found inZ4]. Replacing each term of (8) with the approximation
defined in (9)-(12), respectively, and replacig;) by c;, and dividing byh, we obtain the following theorem.

Theorem 5.1f the assumed approximate solution of the boundary-vaiolelem (1) is (7), then the discrete sinc-Galerkin
system for the determination of the unknown coeffici@cr]t}ij\‘}M is given, for k=—M, ... N, by

N 2 1 L a
ng gll 1 Cj d (Xr —X) K(Xr)
- — |h —_
2, { 57 o~ S o T aw ™ 2 o s
Fxwxe) . Feowix)
+ Cx = .
@ (%) @ (%)
Now we define some notations to represent in the matrix-véatm for system (13). LeD(y) denotes a diagonal matrix

whose diagonal elements ay&x_w),y(X_m+1),....Y(xn) and non-diagonal elements are zero, alsd {létdenotes the
matrices for 0< i < 2 by
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and

1 d L (% —X)K(x)
Xr)

Xr —
P Fm o™ 2, e

X:Xj

whereD,F, 19 1) and1(@ are square matrices of order n. In order to calculate unknown coefficiertigin linear
system (13), we rewrite this system by using the above motgin matrix-vector form as

Ac=B (14)

where
21 02,j 11 01, 1 00,0
A=Y5 —1@p( =)y D Wp( =L ) 4D = |F+10Dp( 22
goh‘ <<P' J;hj g g (04

wf
B=D[— |1
T
C= (Cvach+1a---7cN—l7cN)

Now we have linear system of equations in then unknown coefficients given by (14). Solving it, we can obttia
unknown coefficientsy that are necessary for approximate solution in (7).

3.2 The sinc-collocation method

We assume an approximate solutiony@x) in problem (1) by the finite expansion of sinc basis functions

N

yn(X) = Z &(X), n=M+N+1 (15)
k=—M

whereS(x) is the functiorS(k, h) o ¢(x). The unknown coefficientx in (15) are determined by sinc-collocation method.
For this purpose, the first and second derivatives,0f) are given by

4y =S ad®0Lsm (16)
dx oy do

2 N 2
Gen00= 3 o000 g0+ (#2555 an

Similarly, a order derivative of/n(x) for 0 < a < 1 is given by the following theorem.

Theorem 6.If £ is a conformal map for the intervé, x|, thena order derivative of y(x) for 0 < o < 1is given by

N

W= 3 aRX) (18)
“=m

where

. h E(x—%)S (%)
R(X)=Si)(x)%r(1ia)r; §oe)
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Proof. see [26]. Replacing each term of (1) with the approximatiwemgin (15)-(18), multiplying the resulting equation
by {(1/¢/)?} and setting = x;, we obtain the following linear system

p(%) - (%)/1 %Sk-l-Q(%)ZR-i-r(%)zsk}(xj)

N d2
Z Ck{wsk‘i‘

k=—M

By using Lemmalir [27], we know that
0 0 1 1 2 2
5j(k): 5&1-), 6j(k) = 75‘51-), 6j(k) = 5k(j)

then we obtain the following theorem.

Theorem 7.If the assumed approximate solution of boundary value giolqll) is (15), then the discrete sinc-collocation
system for the determination of the unknown coeﬁici@’kﬂﬂ‘}‘}M is given by

(3) o)+ (e ()

- (f(%)z) (X)),  j=-M,..N. (19)

Now we define some notations to represent in the matrix-véotm for system (9). LeD(y) denotes a diagonal matrix
whose diagonal elements ay&_wm),Y(X-m+1),-..,Y(Xn) and non-diagonal elements are zero,Het R(x;) denote a
matrix and also let) denotes the matrices

N 1 2) 1
ZMCk{ﬁéjk + H

10 =15)], =012

whereD,F, 19 1) and1(@ are square matrices of orderx n. In order to calculate unknown coefficierdsin linear
system (19), we rewrite this system by using the above mutain matrix-vector form as

Ac=B (20)

where

f
BD<W>1

c=(C-M,C-M11,-CN) "

Now we have linear system ofequations in th& unknown coefficients given by (20). When it is solved, we chtam
the unknown coefficients, that are necessary for approximate solution in (7).
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Table 1: Maximum errors of the present methods Example 1.

N Esc Esg

5 1.604x 103 2.633x 1073
10 7453x 10°° 2.345x 104
20 1073x 1078 4.289x 106
40 3962x 1079 1.252x 10°7

Table 2: Numerical results foExample whenN = 20.

X Exact SC Error SG Error

0 0 0 0

0.1 0.009 P58x 106 3.144x 1076
0.2 0.032 270x 1077 2.793x 107
0.3 0.063 81x 106 6.967x 1076
0.4 0.096 166x 10°° 9.308x 106
0.5 0.125 1073x 1076 2.933x 107
0.6 0.144 1065x 10°° 8.611x 10°©
0.7 0.147 5127x 1076 1.022x 1078
0.8 0.128 1434x 1078 1.066x 1078
0.9 0.081 1778x 1078 8.207x 1077
1 0 0 0

4 Computational examples

In this section, some numerical examples are presented dwv she accuracy of the introduced methods by
MATHEMATI CA 10. In all examplesh = 11/+/N,N = M = L are taken into account. In the examples, the maximum
absolute error at sinc grid points is taken as like [18]

Esc=_max_ |Vexac(X) —Yn.sc(X)|
and

Esc=_max [Vexac(X) — Ynsc(X)|-

Example 1.Consider linear fractional boundary value problem

Y' () =%y (%) + 32O (x) = f(x)

subject to the homogeneous boundary conditions

wheref (x) = —3x® 4 2x* — 6x+ 2 — =577 X*" + 57;X>7 . The exact solution of this problem y§x) = x*(1—x). The
numerical solutions which are obtained by using the presethod for this problem are presented in Table 1 and Table
2. Additionally, the graphics of the exact and approximateations for different values dfl are given in Figure 1.
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Fig. 1: Graphs of exact and approximate solutions for Example 1

Example 2.Consider the following singular linear fractional boungealue problem
Y0+ YO0+ =y = £(x)
X x—1
subject to the homogeneous boundary conditions

where f(x) = x* + 20 — 12¢ + (25333 — [ Z4x*% . The exact solution of this problem jgx) = x*(x —1). The

numerical solutions which are obtained by using the presethod for this problem are presented in Table 3 and Table
4. Additionally, the graphics of the exact and approximalations for different values dfl are given in Figure 2.

Table 3: Maximum errors of the present methods Ebtample 2.

N Esc Esc

5 6.760x 103 7.230x 103
10 1690x 103 1.519% 1073
20 4118x 10°* 4550x 104
40 7567x 10°° 2.043x 1074
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Table 4: Numerical results foExample 2vhenN = 20.

X Exact SC Error SG Error

0 0 0 0

0.1 0.009 2470x 104 2.754x 1074
0.2 0.032 3H50x 10~ 3.777x10°*
0.3 0.063 012x 104 4.340x 10~*
0.4 0.096 4380x 104 4.697x 104
0.5 0.125 4013x 10~* 4.125x 10~%
0.6 0.144 P35x 104 3.380x 10°*
0.7 0.147 B44x 1074 2.558x 1074
0.8 0.128 1301x 10~* 1.402x 10~4
0.9 0.081 215x 10°° 5.324x 10°°
1 0 0 0
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Fig. 2: Graphs of exact and approximate solutions for Example 2

5 Conclusion

In the present study, sinc-Galerkin and sinc-collocatiethnads are applied to find the approximate solutions ofifsaat

order two-point boundary value problems. In order to coraplae performance of the methods for FBVPs, they are applied
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to some special examples and obtained solutions are cothpé@feexact solutions and each other. Then, differences are
shown in tables and graphical forms. Observing these talnlégraphical forms, it can be concluded that sinc-collooat
method has the more accurate and effective results tharGaterkin methods for obtaining the approximate solutibn o
FBVPs. Also, numerical results can be obtained with lessprdgation procedure by using sinc-collocation method than
sinc-Galerkin method.
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