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Abstract: In this study, sinc-Galerkin and sinc-collocation methodsare presented to solve numerically some well-known class of
fractional differential equations (FDEs) utilizing Mathematica. By using these two methods, FDEs with the variable coefficient and
boundary values are examined. To obtain an approximate solution of the given class of differential equations with sinc methods is
reduced a system of algebraic equations which is simpler form via theorems. Obtained numerical results and approximatesolution
functions are presented in the table and graphical forms, respectively. It can be concluded from tables and graphs that sinc-collocation
method has the more accurate and effective results than sinc-Galerkin method.
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1 Introduction

Many systems in applied sciences, such as, signal and image processing, earthquake engineering, electrochemistry and

biomedical engineering, can be modeled by using fractionalcalculus in the form of fractional differential equations.In

order to better analyze these systems, it is required to knowthe approximate solutions of these systems. For this aim,

several solution methods are developed to get the approximate solutions of fractional differential equations. Some

well-known numerical methods for obtaining the approximate solutions of FBVP are summarized as follows, but not

limited to: Homotopy perturbation method [1,2], Differential transform method[3,4], Adomian decomposition

method[5,6,7], Variational iteration method [8,9], Cubic spline method [10], Haar wavelet method[11] and Homotopy

analysis method[12].

The sinc methods were introduced in [13] and expanded in [14] by Frank Stenger. The sinc functions were first analyzed

in [15,16]. Later, sinc methods are studied by several authors in [17-24].

Particularly, in this paper, to compare the performance of sinc-collocation method and sinc-Galerkin method are applied

ones to a class of fractional order boundary value problem with variable coefficients in the following form

y′′+ p(x)y′+q(x)y(α)+ r(x)y= f (x), 0< α < 1 (1)

y(a) = 0,y(b) = 0

wherey(α) is the left Caputo fractional derivative of orderα of y(x)
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The rest of this paper is organized as follows. In section 2, we give some definitions and theorems for fractional calculus

and sinc methods. In section 3, we use sinc methods to obtain an approximate solution of a general fractional differential

equation and obtained results are given as some theorems.Insection 4, some test problems are given to compare the

ability of present methods by using tables and graphics. Finally, in section 5, the paper is completed with a conclusion.

2 Preliminaries and Notations

In this section, we recall notations and definitions of the sinc function and Caputo fractional derivative and derive useful

formulas that are important for this paper. For more detailssee[24, 25].

Definition 1. Let f : [a,b]→ R be a function,α a positive real number, n the integer satisfying n−1≤ α < n, andΓ the

Euler gamma function. Then, the left Caputo fractional derivative of orderα of f(x) is given as

f (α)(x) =
1

Γ (n−α)

∫ x

a
(x− t)n−α−1 f (n)(t)dt. (2)

Definition 2. The Sinc function is defined on the whole real line−∞ < x< ∞ by

sinc(x) =

{

sin(πx)
πx x 6= 0

1 x= 0.

Definition 3. For h> 0 and k= 0,±1,±2, ... the translated sinc function with space node are given by:

S(k,h)(x) = sinc
(x− kh

h

)

=







sin
(

π x−kh
h

)

π x−kh
h

x 6= kh

1 x= kh.

Definition 4. If f (x) is defined on the real line, then for h> 0 the series

C( f ,h)(x) =
∞

∑
k=−∞

f (kh)sinc
(x− kh

h

)

is called the Whittaker cardinal expansion of f whenever this series converges.

In general, approximations can be constructed for infinite,semi-infinite and finite intervals. To construct an approximation

on the interval(a,b) the conformal map

φ(z) = ln
(z−a

b− z

)

is employed. The basis functions on the interval(a,b) are derived from the composite translated sinc functions

Sk(z) = S(k,h)(z)oφ(z) = sinc
(φ(z)− kh

h

)

.

The inverse map ofw= φ(z) is

z= φ−1(w) =
a+bew

1+ew .
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The sinc grid pointszk ∈ (a,b) in DE will be denoted byxk because they are real. For the evenly spaced nodes{kh}∞
k=−∞

on the real line, the image which corresponds to these nodes is denoted by

xk = φ−1(kh) =
a+bekh

1+ekh , k= 0,±1,±2, ...

Theorem 1.LetΓ be(0,1),F ∈ B(DE), then for h> 0 sufficiently small,

∫

Γ
F(z)dz−h

∞

∑
j=−∞

F(zj )

φ ′(zj )
=

i
2

∫

∂D

F(z)k(φ ,h)(z)
sin(πφ(z)/h)

dz≡ IF (3)

where

|k(φ ,h)|z∈∂D =
∣

∣

∣
e
[

iπφ (z)
h sgn(Imφ(z))

]

∣

∣

∣

z∈∂D
= e

−πd
h .

For the sinc methods, the infinite quadrature rule must be truncated to a finite sum. The following theorem indicates the

conditions under which an exponential convergence results.

Theorem 2.If there exist positive constantsα,β and C such that

∣

∣

∣

F(x)
φ ′(x)

∣

∣

∣
≤C

{

e−α |φ(x)| x∈ ψ((−∞,∞))

e−β |φ(x)| x∈ ψ((0,∞)).
(4)

then the error bound for the quadrature rule (3) is

∣

∣

∣

∫

Γ
F(x)dx−h

N

∑
j=−M

F(x j)

φ ′(x j)

∣

∣

∣
≤C

(e−αMh

α
+

e−β Nh

β

)

+ |IF | (5)

The infinite sum in (3) is truncated with the use of (4) to arrive at the inequality (5). Making the selections

h=

√

πd
αM

and

N ≡
[⌊αM

β
+1
⌋]

where[⌊.⌋] is an integer part of the statement andM is the integer value which specifies the grid size, then

∫

Γ
F(x)dx= h

N

∑
j=−M

F(x j)

φ ′(x j)
+O

(

e−(παdM)1/2
)

. (6)

3 Numerical Methods

3.1 The sinc-Galerkin method

An approximate solution ofy(x) in (1) is represented by the formula

yn(x) =
N

∑
k=−M

ckSk(x), n= M+N+1 (7)
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whereSk is functionS(k,h) ◦ φ(x) for some fixed step sizeh. The unknown coefficientsck in (7) are determined by

orthogonalizing the residual with respect to the basis functions, i.e.

〈y′′,Sk〉+ 〈p(x)y′,Sk〉+ 〈q(x)y(α),Sk〉+ 〈r(x)y,Sk〉= 〈 f (x),Sk〉, k=−M, . . . ,N (8)

The inner product used for the sinc-Galerkin method is defined by

〈 f ,g〉 =
∫ b

a
f (x)g(x)w(x)dx

wherew(x) a weight function which is taken for second-order boundary value problems in the following form

w(x) =
1

φ ′(x)
.

We need the following theorems for the approximation of inner products in (8).

Theorem 3.The following relations hold:

〈y′′,Sk〉 ≈ h
N

∑
j=−M

2

∑
i=0

y(x j)

φ ′(x j)hi δ (i)
k j g2,i(x j) (9)

〈p(x)y′,Sk〉 ≈ −h
N

∑
j=−M

1

∑
i=0

y(x j)

φ ′(x j)hi δ (i)
k j g1,i(x j) (10)

and for G(x) = r(x)y(x) and G(x) = f (x)

〈G,Sk〉 ≈ h
G(xk)w(xk)

φ ′(xk)
. (11)

Theorem 4.The following relation holds for0< α < 1:

〈q(x)y(α),Sk〉 ≈ − h
Γ (1−α)

N

∑
j=−M

y(x j)

φ ′(x j )

d
dx

[

hL

L

∑
r=−L

(xr − x)αK(xr)

ξ ′(xr)

]

x=xj

(12)

where K(x) = q(x)Sk(x)w(x), ξ (t) = ln
(

t−x
1−t

)

and hL = π/
√

L.

The proofs of these theorems and values ofgk,i(x) can be found in [24]. Replacing each term of (8) with the approximation

defined in (9)-(12), respectively, and replacingy(x j) by c j , and dividing byh, we obtain the following theorem.

Theorem 5.If the assumed approximate solution of the boundary-value problem (1) is (7), then the discrete sinc-Galerkin

system for the determination of the unknown coefficients{c j}N
j=−M is given, for k=−M, . . . ,N, by

N

∑
j=−M

{

2

∑
i=0

1
hi δ

(i)
k j

g2,i(x j)

φ ′(x j)
c j −

1

∑
i=0

1
hi δ (i)

k j

g1,i(x j)

φ ′(x j)
c j −

1
Γ (1−α)

c j

φ ′(x j)

d
dx

[

hL

L

∑
r=−L

(xr − x)αK(xr)

ξ ′(xr)

]

x=xj

}

+
r(xk)w(xk)

φ ′(xk)
ck =

f (xk)w(xk)

φ ′(xk)
.

(13)

Now we define some notations to represent in the matrix-vector form for system (13). LetD(y) denotes a diagonal matrix

whose diagonal elements arey(x−M),y(x−M+1), ...,y(xN) and non-diagonal elements are zero, also letI (i) denotes the

matrices for 0≤ i ≤ 2 by

I (i) = [δ (i)
jk ], j,k=−M, . . . ,N.

c© 2016 BISKA Bilisim Technology



NTMSCI 1, No. 1, 13-23 (2016) /http://www.ntmsci.com/jacm 17

and

F =− 1
Γ (1−α)

d
dx

[

hL

L

∑
r=−L

(xr − x)αK(xr)

ξ ′(xr)

]

x=xj

whereD,F, I (0), I (1) and I (2) are square matrices of ordern×n. In order to calculate unknown coefficientsck in linear

system (13), we rewrite this system by using the above notations in matrix-vector form as

Ac = B (14)

where

A =
2

∑
j=0

1
h j I

(2)D

(

g2, j

φ ′

)

−
1

∑
j=0

1
h j I

(1)D

(

g1, j

φ ′

)

+D

(

1
φ ′

)

F+ I (0)D

(

g0,0

φ ′

)

B = D

(

w f
φ ′

)

1

c=
(

c−M,c−M+1, . . . ,cN−1,cN

)T

Now we have linear system ofn equations in then unknown coefficients given by (14). Solving it, we can obtainthe

unknown coefficientsck that are necessary for approximate solution in (7).

3.2 The sinc-collocation method

We assume an approximate solution fory(x) in problem (1) by the finite expansion of sinc basis functions

yn(x) =
N

∑
k=−M

ckSk(x), n= M+N+1 (15)

whereSk(x) is the functionS(k,h)◦φ(x). The unknown coefficientsck in (15) are determined by sinc-collocation method.

For this purpose, the first and second derivatives ofyn(x) are given by

d
dx

yn(x) =
N

∑
k=−M

ckφ ′(x)
d

dφ
Sk(x) (16)

d2

dx2 yn(x) =
N

∑
k=−M

ck

(

φ ′′(x)
d

dφ
Sk(x)+ (φ ′)2 d2

dφ2 Sk(x)
)

. (17)

Similarly, α order derivative ofyn(x) for 0< α < 1 is given by the following theorem.

Theorem 6.If ξ is a conformal map for the interval[a,x], thenα order derivative of yn(x) for 0< α < 1 is given by

y(α)
n (x) =

N

∑
k=−M

ckR(x) (18)

where

R(x) = S(α)
k (x)≈ hL

Γ (1−α)

L

∑
r=−L

(x− xr)S′k(xr)

ξ ′(xr)
.
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Proof.see [26]. Replacing each term of (1) with the approximation given in (15)-(18), multiplying the resulting equation

by {(1/φ ′)2} and settingx= x j , we obtain the following linear system

N

∑
k=−M

ck

{

d2

dφ2 Sk+

[

p
( 1

φ ′

)

−
( 1

φ ′

)′
]

d
dφ

Sk+q
( 1

φ ′

)2
R+ r

( 1
φ ′

)2
Sk

}

(x j)

=

(

f̂
( 1

φ ′

)2
)

(x j), j =−M, ...,N.

By using Lemma 1 in [27], we know that

δ (0)
jk = δ (0)

k j , δ (1)
jk =−δ (1)

k j , δ (2)
jk = δ (2)

k j

then we obtain the following theorem.

Theorem 7.If the assumed approximate solution of boundary value problem (1) is (15), then the discrete sinc-collocation

system for the determination of the unknown coefficients{ck}N
k=−M is given by

N

∑
k=−M

ck

{

1
h2 δ (2)

jk +
1
h

[

( 1
φ ′

)′
− p
( 1

φ ′

)

]

(x j )δ
(1)
jk +

(

q
( 1

φ ′

)2
R
)

(x j)+
(

r
( 1

φ ′

)2)

(x j)δ
(0)
jk

}

=

(

f̂
( 1

φ ′

)2
)

(x j), j =−M, ...,N. (19)

Now we define some notations to represent in the matrix-vector form for system (9). LetD(y) denotes a diagonal matrix

whose diagonal elements arey(x−M),y(x−M+1), ...,y(xN) and non-diagonal elements are zero, letF = R(x j) denote a

matrix and also letI (i) denotes the matrices

I (i) = [δ (i)
jk ], i = 0,1,2

whereD,F, I (0), I (1) and I (2) are square matrices of ordern×n. In order to calculate unknown coefficientsck in linear

system (19), we rewrite this system by using the above notations in matrix-vector form as

Ac = B (20)

where

A =
1
h2 I (2)+

1
h

D

(

( 1
φ ′

)′
− p
( 1

φ ′

)

)

I (1)+D

(

q
( 1

φ ′

)2
)

F+D

(

r
( 1

φ ′

)2
)

I (0)

B = D

(

f
(φ ′)2

)

1

c= (c−M,c−M+1, ...,cN)
T .

Now we have linear system ofn equations in then unknown coefficients given by (20). When it is solved, we can obtain

the unknown coefficientsck that are necessary for approximate solution in (7).
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Table 1: Maximum errors of the present methods forExample 1.

N ESC ESG

5 1.604×10−3 2.633×10−3

10 7.453×10−5 2.345×10−4

20 1.073×10−6 4.289×10−6

40 3.962×10−9 1.252×10−7

Table 2: Numerical results forExample 1whenN = 20.

x Exact SC Error SG Error
0 0 0 0
0.1 0.009 3.258×10−6 3.144×10−6

0.2 0.032 2.270×10−7 2.793×10−6

0.3 0.063 6.981×10−6 6.967×10−6

0.4 0.096 1.166×10−5 9.308×10−6

0.5 0.125 1.073×10−6 2.933×10−6

0.6 0.144 1.065×10−5 8.611×10−6

0.7 0.147 5.127×10−6 1.022×10−6

0.8 0.128 1.434×10−6 1.066×10−8

0.9 0.081 1.778×10−6 8.207×10−7

1 0 0 0

4 Computational examples

In this section, some numerical examples are presented to show the accuracy of the introduced methods by

MATHEMATICA 10. In all examples,h = π/
√

N,N = M = L are taken into account. In the examples, the maximum

absolute error at sinc grid points is taken as like [18]

ESC= max
−N≤i≤N

|yexact(xi)− yn,SC(xi)|

and

ESG= max
−N≤i≤N

|yexact(xi)− yn,SG(xi)| .

Example 1.Consider linear fractional boundary value problem

y′′(x)− xy′(x)+ x2y(0.3)(x) = f (x)

subject to the homogeneous boundary conditions

y(0) = 0, y(1) = 0

where f (x) = −3x3+2x2−6x+2− 6
Γ (3.7)x

4.7+ 2
Γ (2.7)x

3.7 . The exact solution of this problem isy(x) = x2(1− x). The

numerical solutions which are obtained by using the presentmethod for this problem are presented in Table 1 and Table

2. Additionally, the graphics of the exact and approximate solutions for different values ofN are given in Figure 1.
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(a) N = 5 (b) N = 10

(c) N = 20 (d) N = 40

Fig. 1: Graphs of exact and approximate solutions for Example 1

Example 2.Consider the following singular linear fractional boundary value problem

y′′(x)+
1
x

y(0.7)(x)+
1

x−1
y(x) = f (x)

subject to the homogeneous boundary conditions

y(0) = 0, y(1) = 0

where f (x) = x4 + 20x3 − 12x2 + 120
Γ (5.3)x

3.3 − 24
Γ (4.3)x

2.3 . The exact solution of this problem isy(x) = x4(x− 1). The

numerical solutions which are obtained by using the presentmethod for this problem are presented in Table 3 and Table

4. Additionally, the graphics of the exact and approximate solutions for different values ofN are given in Figure 2.

Table 3: Maximum errors of the present methods forExample 2.

N ESC ESG

5 6.760×10−3 7.230×10−3

10 1.690×10−3 1.519×10−3

20 4.118×10−4 4.550×10−4

40 7.567×10−5 2.043×10−4
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Table 4: Numerical results forExample 2whenN = 20.

x Exact SC Error SG Error
0 0 0 0
0.1 0.009 2.470×10−4 2.754×10−4

0.2 0.032 3.550×10−4 3.777×10−4

0.3 0.063 3.912×10−4 4.340×10−4

0.4 0.096 4.380×10−4 4.697×10−4

0.5 0.125 4.013×10−4 4.125×10−4

0.6 0.144 3.235×10−4 3.380×10−4

0.7 0.147 3.344×10−4 2.558×10−4

0.8 0.128 1.301×10−4 1.402×10−4

0.9 0.081 2.215×10−5 5.324×10−5

1 0 0 0

(a) N = 5 (b) N = 10

(c) N = 20 (d) N = 40

Fig. 2: Graphs of exact and approximate solutions for Example 2

5 Conclusion

In the present study, sinc-Galerkin and sinc-collocation methods are applied to find the approximate solutions of fractional

order two-point boundary value problems. In order to compare the performance of the methods for FBVPs, they are applied
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to some special examples and obtained solutions are compared with exact solutions and each other. Then, differences are

shown in tables and graphical forms. Observing these tablesand graphical forms, it can be concluded that sinc-collocation

method has the more accurate and effective results than sinc-Galerkin methods for obtaining the approximate solution of

FBVPs. Also, numerical results can be obtained with less computation procedure by using sinc-collocation method than

sinc-Galerkin method.
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