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Abstract: Connectivity has an important role in different discipbnaf computer science including computer network. In thégies
of a network, it is important to analyze connections by tiwele The structural properties of bipolar fuzzy graphs/jate a tool that

allows for the solution of operations research problemghigypaper, we introduce various types of bipolar fuzzy deesl bipolar fuzzy

cut-vertices, bipolar fuzzy cycles and bipolar fuzzy treelsipolar fuzzy graphs, and investigate some of their pridg@ Most of these
various types are defined in terms of levels. We also descabwarison of these types.
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1 Introduction

Graph theory has numerous applications to problems in cten@cience, electrical engineering, system analysis,
operations research, economics, networking routing, eangsportation. However, in many cases, some aspects of a
graph-theoretic problem may be uncertain. For exampleyééicle travel time or vehicle capacity on a road network
may not be known exactly. In such cases, it is natural to déhl tve uncertainty using the methods of fuzzy sets and
fuzzy logic. A (crisp) sefA in a universeX can be defined in the form of its characteristic functjgp: X — {0,1}
yielding the value 1 for elements belonging to the Aeind the value 0 for elements excluded from thefsethe most

of the generalization of the crisp set have been introdueethe unit intervall0, 1] and they are consistent with the
asymmetry observation. In other words, the generalizatfahe crisp set to fuzzy set4 9 relied on spreading positive
information that fit the crisp poinfl} into the intervall0,1]. The theory of fuzzy sets has become a vigorous area of
research in different disciplines including medical arid §ciences, management sciences, social sciences, engie
statistics, graph theory, artificial intelligence, sigmabcessing, multiagent systems, pattern recognitionpticod
computer networks, expert systems, decision making armheatt theory. There have been several generalizations of
this fundamental concept. In 1994, Zha@g][initiated the concept of bipolar fuzzy sets as a genertitinaf fuzzy sets

[19. Bipolar fuzzy sets are an extension of fuzzy sets whose lneeship degree rangefis1,1]. In a bipolar fuzzy set,

the membership degree 0 of an element means that the elemamtlevant to the corresponding property, the
membership degre@, 1] of an element indicates that the element somewhat satiBegroperty, and the membership
degreg—1,0) of an element indicates that the element somewhat satisBamplicit counter-property.

Kaufmann'’s initial definition of a fuzzy grapt®] was based on Zadeh's fuzzy relatio®§]. Rosenfeld 17] introduced

the fuzzy analogue of several basic graph-theoretic cdadapluding bridges, cut-nodes, connectedness, trees and
cycles. Bhattacharya/] gave some remarks on fuzzy graphs, and Sunitha and Vijawak{L8] characterized fuzzy
trees. Bhutani and Rosenfeld] introduced the concepts of strong arcs, fuzzy end nodegaadesics in fuzzy graphs
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and types of arcs in a fuzzy graph are describedlitj. [Akram et al[1-5] has introduced many concepts, including
bipolar fuzzy graphs, regular bipolar fuzzy graphs, bip&lazy hypergraphs and metric aspects of bipolar fuzzylysap
In this paper, we introduce various types of bipolar fuzziglgpes, bipolar fuzzy cut-vertices, bipolar fuzzy cycleslan
bipolar fuzzy trees in bipolar fuzzy graphs, and investgsame of their interesting properties. Most of these variou
types are defined in terms of levels. We also describe cosgradf these types.

We have used standard definitions and terminologies in gu&p For other notations, terminologies and applications
not mentioned in the paper, the readers are referred to 3118,120].

2 Preliminaries

In this section, we review some elementary concepts whoderatanding is necessary fully benefit from this paper.

By a graph, we mean a pa®* = (V,E), whereV is the set and is a relation orVV. The elements of are vertices 0G*
and the elements d are edges oG*. We write xy € E to mean(x,y) € E, and ife= xy € E, we sayx andy are
adjacent A pathin a graphG* is an alternating sequence of vertices and edggsy, V1, €, ---,Vn_1, €, Vn. The path
graph withn vertices is denoted bi,. A path is sometime denoted I : vov1 - - - va (n > 0). Thelengthof a pathP; in
G*isn. A pathPR, : vpv1--- Vv, in G* is called acycleif vo = v, andn > 3. Note that path grapt®,, hasn— 1 edges and
can be obtained from cycle grap®,, by removing any edge. An undirected gra@h is connectedf there is a path
between each pair of distinct vertices.bdockis a maximal biconnected subgraph of a given gr&l#n edgee in a
connected grapls is abridge (cut-edge or cut arc) iG — e is disconnected. A vertex in a connected grapB is a
cut-vertexif G — v is disconnected. The graphs with exaatly 1 bridges are exactly the trees, and the graphs in which
every edge is a bridge are exactly the forestspanning treen a connected grap@ is a subgraph of that includes all
the vertices of5 and is also a tree. forestis an undirected graph, all of whose connected componeatses®s; in other
words, the graph consists of a disjoint union of trees.

A fuzzy subsefl on a setX is a mapy : X — [0,1]. A fuzzy binary relatiorv on X is a fuzzy subset on X x X. By a
fuzzy relationv, we mean a fuzzy binary relation given lry: X x X — [0,1]. Letvov be a fuzzy set oE CV xV
defined byv o v(x,y) = sup{min{v(x,y),v(y,2)}|z€ V}. Thenvov is called the composition of with itself. Since
composition is associative, we gét = vk-1ov for k=1, 2,3,--- . Define the fuzzy subset® of V x V by

ve(xy) = sup{vK(x,y) 1 k=1,2,---}.
v®(x,y) denotes the “strength of connectedness” between two nogiedy. That is,v*(x,y) is defined as the maximum

of the strengths of all paths betweeandy.

Definition 1. [12,22] Let X be a nonempty set. Aipolar fuzzy seB in X is an object having the form

B ={(x Hg(X), U5 (X)) |x € X}

wherepf : X — [0, 1] andpy : X — [~1, 0] are mappings.

We use the positive membership degng®(x) to denote the satisfaction degree of an elemend the property
corresponding to a bipolar fuzzy $8tand the negative membership degudx) to denote the satisfaction degree of an
elemenix to some implicit counter-property corresponding to a kapdizzy seB. If uf(x) # 0 andug‘(x) =0, itis the
situation thak is regarded as having only positive satisfactionBotf uE (x) = 0 andud (x) # 0, it is the situation that
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does not satisfy the property 8fbut somewhat satisfies the counter propertfolt is possible for an elememntto be
such thatuf (x) # 0 andud (x) # 0 when the membership function of the property overlapsdhés counter property
over some portion oX.

For the sake of simplicity, we shall use the symBe# (uf, ud) for the bipolar fuzzy set

B={(x H5(X), U5 (x)) |x € X}.

Definition 2.[22] Let X be a nonempty set. Then we call a mappig (uﬁ,uﬂ) : X x X = [0,1] x [-1,0] a bipolar
fuzzy relatioron X such thaif (x,y) € [0,1] andup(x,y) € [-1,0].

Definition 3.[12] The support of a bipolar fuzzy setA(uk, uR‘), denoted by supp(A), is defined by

SUpHA) = supp’(A) Usupp'(A), supis'(A) = {x| ua(x) > 0}, supp'(A) = {x|up(x) < O}.
We call supB(A) as positive support and suppA) as negative support.

Definition 4.[12] Let A= (uf, uY) be a bipolar fuzzy set on X and lete [0, 1]. a-cut A; of A can be defined as
Aa = AGUAG, Ay = {x| p5(x) > a}, Af = {x| iy (x) < —a}.

We call A as positivea-cut and A as negativea-cut. The height of a bipolar fuzzy set=A(uf, 1Y) is defined as
h(A) = max{ g (x)|x € X}. The depth of a bipolar fuzzy set-A(uf, 1Y) is defined as A) = min{p} (x)|x € X}. We
shall say that bipolar fuzzy set A is normal, if there is asleane xc X such thaf (x) =1 or pN(x) =—1.

Definition 5.[1] A bipolar fuzzy graphs = (V, A, B) is a non-empty s&f together with a pair of functiond = (u,i’, u,'i‘) :
V —[0,1] x [-1,0] andB = (uE, ul) 1V xV — [0,1] x [-1,0] such that for alk,y € V,

HE (%) < min(Ug (x), HA(Y)) and g (x,y) > max(up (X), 4x (Y)).

Notice thatuf (x,y) > 0, ud(x,y) < 0 for (x,y) € V x V, uf(x,y) = udl(x,y) = 0 for (x,y) ¢ V x V, andB is symmetric
relation.

Definition 6.[1] A Dbipolar fuzzy graph is called complete if pE(xy) = min(uf(x),ux(y)),
HE (xy) = max(up (X), Ha (y)) forall x, y € V.

Definition 7. The support of A, denoted by As defined by
A= ((HR)", (HA)") = {xe V| UR(x) > 0and x (x) < O}
The support of B , denoted by Bs defined by
B" = ((kg)", (18)") = {(xy) € E|Hg(x.y) > 0and uf (x.y) < O}.

Let G' = (A*,B*). Fors€ (0,1], t € [-1,0), ASY = {x e V| uF(x) > s, uN(x) <t} is called an(st)-level subset of A,
BSY = {(x,y) €E|uE(x,Y) >s, ud(x,y) <t} is called an(s,t)-level subset of B. Let &) = (ASY B(sY).,

Definition 8.[4] A path Pin a bipolar fuzzy grapl® is a sequence of distinct verticeg vz, - - - , v, such that either one
of the following condition is satisfied:
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(1) pE(xy) >0 and py(x,y) < 0 for somex, y.
(2) pE(xy)>0 and py(x,y) =0 for somex, y.
(3) pE(xy)=0 and py(x,y) < 0 for somex, y.

When pE (x,y) = pd(x,y) = 0 for somex, y, then there is no edge betwerrandy. Otherwise, there exists an edge
betweerx andy.

Definition 9.[4] A bipolar fuzzy graphG is connectedf any two vertices are joined by a path.

Definition 10[4] If x,y €V, the u”— strength of connectednesstweerx andy is
Py oo _ Pyk _
(IJB) (X’y)*sup[(uB) (Xay) | kflaza"'vn}v

(IJBP)OO(X5y) = Sup{IJBP(X7Vl) A IJBP(VLVZ) AN ug(vk*:by) | XavlaVZa e akalay S Va k = 1) 2) e 7n}'

The uN— strength of connectednesstweerx andy is
(“[B\l)oo(x’y) = Inf{(l"l[ﬁ\l)k(xay) | k= 15 25 e 7n}7

(UDY® (%, y) = inF{ud (%, v1) V 1S (V1,V2) V ooV N (Vie1,Y) | XV, Vo, -+ Vi1, Y €V, k= 1,2, -+ n}.

The pP-strength anduN-strength of connectedness betweeandy in G is denoted by(ug)”(x,y) and (uY)™(x,y),
respectively. Alsqug) ®(x,y) and(ud) ®(x,y) denote(Ug_,,))”(X.Y) and(u&u y)”(x.y), whereG— (x,y) is obtained
from G by deleting the ar¢x,y).

3 Bridges, cut-vertices and blocks

We define here a bipolar fuzzy edge grapk= (V,B) whenV is a crisp vertex set anfl = (uf, uY) is a bipolar fuzzy
relation onV.

Definition 11. A bipolar fuzzy edge graph on a crisp graphi & (V,E) is an ordered pair of the fornG = (V,B),
where V is the crisp vertex set, the functiqes: V x V — [0,1] and pf) : V xV — [0,1] are defined byuf (x,y) <
min{ Ua(x), ta(y)} and ud)(x,y) > max{ uN (x), uN (y)} for all xy € E. Notice thaug (x,y) > 0, pud'(x,y) < 0for (x,y) €
V xV, uE(xy) = pd (x,y) = 0for (x,y) €V x V, and B is symmetric relation.

Definition 12[?] A bridge (x,y) in bipolar fuzzy grapl@ is said to bgu"-bridge, if deleting(x,y) reduces th@-strength
of connectedness between some pair of vertices. A brigge is said to beuN-bridge, if deleting (x,y) increases the
uN-strength of connectedness between some pair of verticbsidge (x,y) is said to be a bipolar fuzzy bridge, if it is
uP-bridge anduN-bridge.

Definition 13. Let(x,y) € E.

(1) (x,y) is called a bridge if(x,y) is a bridge of G = (A*,B*).

(2) (xy)iscalled abipolar fuzzy bridge {uPg)* (u,v) < (u§)*(u,v) and (uNg)®(u,v) > (uY)*(u,v) for some(u,v) €
E, WhereyF’B and uNB are uf and Y restricted to Vx V — {(x,y), (Y,X)}.

(3) (xy) is called a weak bipolar fuzzy bridge if there exi&tg) € (0,h(B)] x [d(B),0) such that(x,y) is a bridge of
G,

(4) (x,y) is called a partial bipolar fuzzy bridge if,y) is a bridge for G5V for all (s,t)

(5) (

€ (d(B),h(B)]u{h(B)}.
x,y) is called a full bipolar fuzzy bridge ifx,y) is a bridge for GV for all (s,t) € (0,h(B)] x [d(B),0).
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Example 1.Consider a connected bipolar fuzzy graph as shown in thelFig.

v
O (0.8,-0.2) r:

(ro—"cn)

Fig. 1: Connected bipolar fuzzy graph.

By routine computations, we hae¥B) = —0.2, h(B) = 0.8. Thus(s,t) € (0,0.8] x [-0.2,0). For 0<s< 0.7, -0.2 <
t <0,G8Y = (V,{(x,y),(y,2)}). For07 <s<0.8,-0.2<t < 0,G®Y = (V,{(y,2)}). Hence we conclude th&y,2) is

a full bipolar fuzzy bridge and,y) is a weak bipolar fuzzy bridge, but not a partial bipolar fubridge. Both(x,y) and
(y,z) are bridges and bipolar fuzzy bridges.

Example 2.Consider a connected bipolar fuzzy graph as shown in the2Fig.

= (0.9.-0.1) x

\
(ro—"80

Fig. 2: Connected bipolar fuzzy graph.

By routine computations, we havad(B) = —-04, h(B) = 09. For 0< s < 01, -04 <t <O,
GBY = (V,{(xy),(x%2),(y,2}). For 01 < s < 08, —-01 <t < 0, G& = (V,{(xy),(x2}). For
0.8<5<0.9,-0.1<t<0,G8Y = (V,{(x,2)}). Thus(x,2) is a bipolar fuzzy bridge and a partial bipolar fuzzy bridge,
but not a bridge. The eddg, z) is not any of five types of bridges.

Example 3.Consider a connected gragti = (V,E) such thaV = {x,y,z}, E = {(x,y),(Y,2),(X,2)}. Let A be a bipolar
fuzzy set oV and letB be a bipolar fuzzy set & C V x V defined by

HA(X) = UR(Y) = HA(2) =1, pN(X) = UA(Y) = UA(2) = -1,
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HE(XY) = Ug(,2) = UE(%,2) = 0.9, 1 (x,Y) = U5 (¥,2) = kg (x,2) = —0.1.
Routine computations show that connected bipolar fuzzglg@&has no bridges of any of the five types.

Example 4.Consider a connected gra@t = (V,E) such tha¥ = {x,y,z,w}, E = {(X,y), (Y,2),(X,2),(zwW)}. LetAbe a
bipolar fuzzy set oV and letB be a bipolar fuzzy set & CV x V defined by

HA((X) = HA(Y) = UR(2) = HAW) =1, A (X) = LA (Y) = HA (2) = pA (W) = —1,

pE(X.Y) = (v,2) = 0.1, g (%,2) = pg (W,2) = 0.9, pg(xy) = g (¥,2) = —0.5, ug(x,2) = pug(w,z) = —0.1.

By routine computations, we haval(B) = —0.5, h(B) = 09. For 0 < s < 01, -05<1t <0,
GBY = (V,{(x,Y),(¥,2),(%,2),(zW)}). For01<s< 0.9, -0.1<t < 0,G5Y = (V,{(x,2),(zw)}). Thus(z,w) is a full
bipolar fuzzy bridge andx, z) is a partial bipolar fuzzy bridge, but not a full bipolar fyzzridge.

We state the following propositions without their proofs.

Propositionrl. Let (x,y) be a bridge in G. Then(x,y) is a bipolar fuzzy bridge if and only fg (x,y) > ﬂpg(x,y) and
Y (xy) < NG (xY).

Proposition 2. (x,y) is a bipolar fuzzy bridge if and only {i,y) is not a weakest bridge of any cycle.

Proposition 3. (x,y) is a bipolar fuzzy bridge if and only {k,y) is a bridge for G andug (x,y) = h(B), uY (x,y) = d(B).

Proof. Supposéx,y) is a full bridge. Ther(x,y) is a bridge forG(S!) V(s t) € (0,h(B)] x (0,d(B)]. Hence(x,y) € B"®)
and sopg (x,y) = h(B), uy (x,y) = d(B). Since(x,y) is a bridge forGs! for all (s,t) € (0,h(B)] x (0,d(B)], it follows
that(x,y) is a bridge foIG* sinceV = A%®) andE = B"(®).

Conversely, suppose thatxy) is a bridge for G* and pf(xy) = h(B), wui(xy) = d(B). Then
(x,y) € BEYY(st) € (0,h(B)] x [d(B),0). Thus since also(x,y) is a bridge for G*, (x,y) is a bridge for
GYY(st) € (0,h(B)] x [d(B),0) since eaclGSV is a subgraph o6*. Hence(x,y) is a full bipolar fuzzy bridge.

Proposition 4. Suppose thalx,y) is not contained in a cycle of GThen the following conditions are equivalent:
(1) WE(x.y) =h(B), ug'(x.y) = d(B).

(2) (x,y) is a partial bipolar fuzzy bridge.

(3) (x,y) is a bipolar full fuzzy bridge.

Proof. Since(x,y) is not contained in a cycle d&*, (x,y) is a bridge ofG*. Hence by Proposition 3.9, (&) (3).
Clearly, (3)= (2). Suppose that (2) holds. Thény) is a bridge foilG(SY) Y(s;t) € (d(B), h(B)] and sa(x,y) € B"®). Thus
LE(x,y) = h(B), ud'(x,y) =d(B), i.e., (1) holds.

Proposition 5. If (x,y) is a bridge, ther(x,y) is a weak bipolar fuzzy bridge and a bipolar fuzzy bridge.
Proposition 6. (x,y) is a bipolar fuzzy bridge if and only {k,y) is a weak bridge.

Proof. SupposgXx,y) is a weak bipolar fuzzy bridge. Thei(s,t) € (0,h(B)] x [d(B),0) such that(x,y) is a bridge for
G(SY. Hence removal ofx,y) disconnects3(SY. Thus any path fronx toy in G has an edgéu,v) with ug(u,v) <'s,
pgl(u,v) > t. Thus the removal ofx,y) results in(uf) ©(xy) < s< (EP)2(xy), (L) “(x,y) <t < (LN)2(x,y) .
Hence(x,y) is a bipolar fuzzy bridge.
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Conversely, suppos€x,y) is a bipolar fuzzy bridge. Therd(u,v) such that removal of(x,y) results in
(UE) = (u,v) < (UE)™(u,v), () ®(u,v) > (ud)™(u,v). Hence(x,y) is on every strongest path connectingndv and
in fact, uf (u,v) > and uf!(u,v) < this value. Thus there does not exist a path (other fxay)) connectingk andy in
G(HE ()45 (<) | else this other path withouik,y) would be of strengthe B (x,y), < ul(x,y) and would be part of a
path connectingl andv of strongest length, contrary to the faaty) is on every such path. Hen¢r,y) is a bridge of
GHE(Y)-HE () and 0< pg(x,y) < h(B), 0< uY(x,y) < d(B). Thusug (x,y) anduy(x,y) are desireds;t).

Definition 14.[3] A vertexx € V in G is called uP-cut vertex if deleting it reduce theuP-strength of connectedness
between some pair of vertices. A vertexc V in called uN-cut vertex if deleting it increase thesN-strength of
connectedness between some pair of vertices. A verteX is a bipolar fuzzy cut vertex, if it ig1P-cut vertex and
uN-cut vertex.

Definition 15. Let xe V.

(1) xis called a cut-vertex if x is a cut-vertex of & (A*,B*).

(2)xis called an bipolar fuzzy cut—verte>(p’1'PB)°°(u,v) < (M) (u,v) and(u'NB)w(u,v) > (ud)*(u,v) for some eV,
wherepPg and uNg are P and ) restricted to Vx V — {(x,2), (zX)|z€ V}.

(3) xis called a weak bipolar fuzzy cut-vertex if there exists) € (0,h(B)] x [d(B),0) such that x is a cut-vertex of
G(S’t).

(4) x is called a partial bipolar fuzzy cut-vertex if x is a cutrax for GSU for all (s,t) € (d(B),h(B)] U{h(B)}.

(5) x is called a full bipolar fuzzy cut-vertex if x is a cut-verfer GV for all (s,t) € (0,h(B)] x [d(B),0).

Example 5.Consider a connected bipolar fuzzy graph as shown in Fig. 2.

(0.8,-0.2)

(ro="co)

By routine computations, we hadéB) = —0.2,h(B) = 0.8. Thus(s,t) € (0,0.8] x [-0.1,0). For 0< s<0.6,-0.2<t <0,
GSY = (V,{(x,Y),(%,2),(x,2)}). For06 < s<0.7,-0.2<t < 0,GY = (V,{(x,y), (x,2)}). For 06 < $<0.8,-0.1<t <
0,GY = (V,{(x,2)}). Thusx s a bipolar fuzzy cut-vertex and a weak bipolar fuzzy cutian, but neither a cut-vertex
nor a partial cut-vertex.

Example 6.Consider a connected gra@@i = (V,E) such thaV = {x,y,z}, E = {(x,y), (¥,2),(X,2)}. Let A be a bipolar
fuzzy set oV and letB be a bipolar fuzzy set & CV x V defined by

HA(X) = UA(Y) = A(2) =1, HA(X) = HUA(Y) = A (2) = —1,

pE(X.Y) = Hg(x,2) = 0.9, pE(y,2) =05 pF(x,y) = ug (x,2) = —0.1, up (,2) = —0.4.
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By routine computations, we haved(B) = —04, h(B) = 09. For 0< s < 05-04 <t < 0O,
GBY = (V,{(x,y),(¥,2),(x,2)}). For 05 << 0.9, 0.1 <t < 0, GV = (V,{(x,y), (x,2)}). Thusx is a bipolar fuzzy
cut-vertex and a partial bipolar fuzzy cut-vertex, but heita cut-vertex nor a full cut-vertex.

Example 7.Consider a connected gra@i = (V,E) such thai = {x,y,z}, E = {(x,¥), (¥,2),(X,2)}. Let A be a bipolar
fuzzy set oV and letB be a bipolar fuzzy set & C V x V defined by

HA(X) = UA(Y) = UA(2) =1, HA(X) = HUA(Y) = HA(2) = —1,

HE(XY) = HE(%2) = 0.9, pd(xy) = p§ (x,2) = —0.1,

By routine computations, we hae#B) = —0.1, h(B) = 0.9. For 0< s< 0.9,-0.1 <t < 0, GY = (V,{(x,y), (x,2)}).
Thusx is a full bipolar fuzzy cut-vertex, a bipolar fuzzy cut-vextand a cut-vertex.

We state the following propositions without their proofs.

Proposition 7.Let G be a bipolar fuzzy graph such that & a cycle. Then a node is a bipolar fuzzy cut-node of G if and
only if it is a common node of two bipolar fuzzy bridges.

Proposition 8.1f z is a common node of at least two bipolar fuzzy bridges) this a bipolar fuzzy cut-node.
Proposition 9.1f G is a complete bipolar fuzzy graph, thémy)* (u,v) = ug (u,v) and (1) (u,v) = p (u,v).
Proposition 10.A complete bipolar fuzzy graph has no bipolar fuzzy cutexert

Definition 16.

(1) Gis called a block if Gis a block.

(2) G is called an bipolar fuzzy block if it has no bipolar fuzzy-eartices.

(3) Gis called a weak bipolar fuzzy block if there exigg) < (0,h(B)] x [d(B),0) such that &Y is a block.
(4) G is called a partial bipolar fuzzy block if &) is a block for for all(s,t) € (d(B),h(B)]U {h(B)}.

(5) G is called a full bipolar fuzzy block if & is a block for all(s,t) € (0,h(B)] x [d(B),0).

Example 8.Consider a connected bipolar fuzzy graph as shown in the3Fig.

(0.7,-03)

(zo—"¢0)

¥

Fig. 3: Connected bipolar fuzzy graph.

By routine computations, we haeB) = —0.3, h(B) = 0.7. Thus(s,t) € (0,0.7] x [-0.2,0). For 0< s< 0.5, -0.3 <
t <0, GEY = (V,{(x,y),(y,2),(x,2)}). For 056 < s< 0.7, -02 <t < 0, GBY = (V,{(x,2)}). ThusG is a block, a
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bipolar fuzzy block and a weak bipolar fuzzy blodk.s not a partial bipolar fuzzy block sin€&s! is not a block for
05<s<0.7,-02<t<0.

Example 9.Consider a connected gra@@i = (V,E) such thaV = {x,y,z}, E = {(x,y), (Y,2),(X,2)}. Let A be a bipolar
fuzzy set oV and letB be a bipolar fuzzy set & C V x V defined by

HA(X) = IA(Y) = UA(2) =1, HA(X) = UA(Y) = A (2) = -1,

HE(XY) = HE(%,2) = 0.9, UE(Y,2) = 0.5 kg (x,y) = g (x,2) = —0.1, ug'(y,2) = —0.4.

By routine computations, we haved(B) = —0.4, h(B) = 09. For 0< s < 05, -04 <t < 00,
GBY = (V,{(xy),(¥,2),(x,2)}). For 05 <s<0.9, -0.1<t < 0,GSY = (V,{(x,y),(x,2)}). ThusG is a block and a
weak bipolar fuzzy block. Howeveg is not a bipolar fuzzy block sinceis a bipolar fuzzy cut-vertex . Also G is
not a partial bipolar fuzzy block sinceis a cut-vertex for 5 < s< 0.9, —0.1 <t < 0.

Example 10.Consider a connected grafti = (V,E) such thaV = {x,y,z}, E = {(x,y), (Y,2),(X,2)}. Let A be a bipolar
fuzzy set oV and letB be a bipolar fuzzy set & C V x V defined by

HA(X) = UR(Y) = HA(2) =1, pN(X) = PN (Y) = UA(2) = -1,

HE(XY) = HE(%,2) = HE(Y,2) = 0.9 5 (xY) = K (x,.2) = kg (¥,2) = —0.1.

By routine computations, we havad(B) = —0.1, h(B) = 09. For 0< s < 09, -01 <t <O,
GEY = (V,{(x,y),(y,2),(x,2)}). ThusGis a block, a bipolar fuzzy block and a full bipolar fuzzy bkoc

Definition 17. A connected bipolar fuzzy graph G is said to be firm if
min{px(X) | x€V} > maxug(xy) | (xy) € E},

max{px (x) | x € V} < min{pg (x.y) | (x,y) € E}.
Example 11.All connected bipolar fuzzy graphs as shown in the Fig. 1, Eignd Fig. 3 are firms.

Example 12.Consider a connected bipolar fuzzy graph as shown in thedFig.

Fig. 4: Connected bipolar fuzzy graph.
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By routine computations, we ha@B) = —0.4, h(B) = 0.8. Thus(s,t) € (0,—0.8] x (0,—0.2]. For 0< s< 0.5, -0.4 <
t <0,G8Y = (V,{(x,y),(¥,2),(x2)}). For05<s<0.8,-0.2<t < 0,G5Y = (V,{(x,2)}). ThusG is a block, a bipolar
fuzzy block and full bipolar fuzzy block. We note th@tis not firm.

4 Cycles and trees

Definition 18.

(1) Giscalledacycleif Gis a cycle.

(2) G is called an bipolar fuzzy cycle if"Gs a cycle and there does not exist unigugy) € E such thatuf (x,y) =
min{ 8 (u, )| (U,v) € E}u8 (x,y) = max{ b (u,v)|(u,v) € E}.

(3) Gis called a weak bipolar fuzzy cycle if there exists) € (0,h(B)] x [d(B),0) such that &V is a cycle.

(4) Gis called a partial bipolar fuzzy cycle if &) is a cycle for for all(s,t) € (d(B),h(B)]u{h(B)}.

(5) Gis called a full bipolar fuzzy cycle if &) is a cycle for all(s,t) € (0,h(B)] x [d ( ),0).

Example 13.Consider a connected bipolar fuzzy graph as shown in Fig. 5.

(0.9,-0.1)

(0.5,-0.2) (0.5,-0.2)

(0.9,—-0.1)
z w

Fig. 5: Connected bipolar fuzzy graph.

By routine computations, we ha@B) = —0.2, h(B) = 0.9. Thus(s,t) € (0,—0.9] x (0,—0.1]. For0<s< 0.5,0<t <
—0.2,GY = (V, {(x,y), (X, W), (¥,2),(W,2)}). For 05 <s< 0.9, -0.1<t < 0,GSY = (V,{(x,y),(zW)}). ThusG is a
bipolar fuzzy cycle and weak bipolar fuzzy cycle l6aits not partial bipolar fuzzy cycle.

Example 14.Consider a connected bipolar fuzzy graph as shown in thesFig.

(0.9.-0.1)

(0.9.-0.1) (0.9,—0.1)

(0.9,—0.1) :

= | ] Ww

Fig. 6: Connected bipolar fuzzy graph.
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By routine computations, we hadéB) = —0.4, h(B) = 0.9. Thus(s;t) € (0,h(B)] x [d(B),0) meangs;t) € (0,—0.9] x
[—0.1,0). For 0< s< 0.1, —0.4 <t < 0, GSY = (V,{(x,y), (¥,2), (W, 2), (W, X), (x,w)}) which is not a cycle. For.Q <
$<0.9,-01<t<0,G8 = (V {(xy),(,2),(zZW),(W,x)}) which is a cycle. Thu§ not cycle,G is a partial bipolar
fuzzy cycle but not a full bipolar fuzzy cycle.

The proofs of the following propositions are trivial.

Proposition 11. Suppose G is a cycle. Then G is a patrtial bipolar fuzzy cydedfonly if G is a full bipolar fuzzy cycle.
Proposition 12. G is a full bipolar fuzzy cycle if and only if G is a cycle and BE@stant on E.

Definition 19. A connected bipolar fuzzy graph & (A,B) is a bipolar fuzzy tree if it has a bipolar fuzzy spanning
subgraph H= (A,C) which is a tree, where for all arc&,y) notin H, ug (x,y) < (U5)2(%,Y), Uy (x,y) > (LD (X,y).

Definition 20.

(1) Gis called a forest if Gis a forest.

(2) Gis called a bipolar fuzzy forest if G has a bipolar fuzzy spag subgraph H= (A,C) which is a forest such that
for all (u,v) € E—W, pf(u,v) < (uE)=(u,v) and pf (u,v) > (ud)*(u,v).

(3) Gis called a weak bipolar fuzzy forest if for 48 t)  (0,h(B)] x [d(B),0) such that &V is a forest.

(4) G is called a partial bipolar fuzzy forest if &) is a forest for for all(s,t) € (d(B),h(B)] U{h(B)}.

(5) G is called a full bipolar fuzzy forest if &) is a forest for all(s,t) € (0,h(B)] x [d(B),0).

Example 15.Consider a connected gragi = (V,E) such thaV = {x,y,z,w}, E = {(X,y), (V,2), (X,w), (W, 2) }. LetAbe
a bipolar fuzzy set o¥ and letB be a bipolar fuzzy set & C V x V defined by

HA(X) = HA(Y) = UR(2) = HA(W) =1, A (X) = UA (Y) = HA (2) = A (W) = —1,

HE(X,Y) = HE(W,2) = 0.9, L (x,w) = p5(%,2) = 0.5, 1 (xy) = p5 (W2) = —0.1, i (x, W) = pid (¥, 2) = —0.4.

By routine computations, we haval(B) = —04, h(B) = 09. For 0< s < 05, -04<1t<0,
GBY = (V, {(x,w), (Y,2),(X,Y),(W,2)}), and for 05 < s < 0.9, —0.1 <t < 0, GV = (V. {(x,y),(W,2)}). ThusG is a
partial bipolar fuzzy forest, but is neither a bipolar fuzayest nor a full bipolar fuzzy forest.

Proposition 13.G is a full bipolar fuzzy forest if and only if G is forest.

Proof. Suppose thab is a full bipolar fuzzy forest. TheG* = G4® is a forest.

Conversely, suppose th@tis a forest. TheiG* is a forest and hence so must®&Y for all (s,t) € (0,h(B)] x [d(B),0)
since each sucBsY is a subgraph of*. This completes the proof.

Example 16.Consider a connected grafti = (V,E) such thaV = {x,y,z}, E = {(x,y), (Y,2),(X,2)}. Let A be a bipolar
fuzzy set oV and letB be a bipolar fuzzy set & C V x V defined by

HA(X) = UR(Y) = UA(2) =1, pN(X) = PN (Y) = UA(2) = -1,

HE(XY) =09, E(Y,2) = 0.5, pp(xy) = 0.1 g (y,2) = —04.

By routine computations, we haw{B) = (0.5,—0.4), h(B) = (0.9,—0.1). For 0< s< 0.5, 0.4 <t < 0, G =
V,{(x,y),(¥,2)}). For05<s<0.9,-0.1<t < 0,G®Y = (V,{(x,y)}). ThusG is a forest and a full bipolar fuzzy forest
without being a constant db. Note thatG"(B) has more connected components tfn
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Proposition 14. G is a weak bipolar fuzzy forest if and only if G does not cantacycle whose edges are of strength
h(B).

Proof. Suppose contains a cycle whose edges are of strehgB). ThenGSY  (st) € (0,h(B)] contains this cycle and
so is not a forest. ThuS is not a weak bipolar fuzzy forest.

Conversely, suppos8 does not contain a cycle all of whose edges are of stremd@h ThenG"®) does not contain a
cycle and so is a forest.

Corollary 1. If G is a bipolar fuzzy forest, then G is a weak bipolar fuzzggt

Theorem 1.G is a forest and B is constant on E if and only if G is a full bgpdfuzzy forest, Gand G'® have the same
number of connected components and G is firm.

Proof. Suppose tha is a forest and is constant orE. Then¥(s;t) € (0,h(B)], G(8!) = G* and soG is a full bipolar
fuzzy forest ands* andG"(®) have the same number of connected components. Cl&i$yfirm sinceB is a constant
onE.

Conversely, suppog@ is a full bipolar fuzzy forestG* andG"® have the same number of connected components, and
G is firm. Supposed(s;,ty), (S2,t2) € Im(B) such that 0< s1,%,t1,t,. Then 3(x,y) € E such thatuf(x,y) = Sy,

ud (x,y) = t1. Now (x,y) € Bt (xy) ¢ B(%22). HenceG(%2'2) has more connected components tfh ) sinceG is

firm, i.e., no vertices were lost. Th@'®) has more connected components tfna contradiction.

Corollary 2. Gis atree and B is constant on E if and only if G is a full bipdlazzy tree and G is firm.

Definition 21.

(1) Giscalled atree if Gis atree.

(2) G is called a bipolar fuzzy tree if G has a bipolar fuzzy spagrsubgraph H= (A,C) which is a tree such that for
all (u,v) € E—W, uE(u,v) < (U)*(u,v) and pf (u,v) > (pd)* (u,v).

(3) Gis called a weak bipolar fuzzy tree if for 8, t) € (0,h(B)] x [d(B),0) such that &Y is a tree.

(4) Gis called a partial bipolar fuzzy tree if & is a tree for for all(s,t) € (d(B),h(B)] U{h(B)}.

(5) Gis called a full bipolar fuzzy tree if & is a tree for all(s,t) € (0,h(B)] x [d(B),0).

Example 17.Consider a connected gragti = (V,E) such thaV = {x,y,z}, E = {(X,y), (Y,2),(X,2)}. Let A be a bipolar
fuzzy set oV and letB be a bipolar fuzzy set & CV x V defined by

HA(X) = pR(Y) =1, uR(2) = 0.5, pp(x) = pp(y) =0, up(z) = —0.2,

pg(x,y) = 0.9, ug(y,2) = 0.5, ud(x,y) =0.1, uf(y,2) = —0.4.

By routine computations, we haggB) = —0.4, h(B) = 0.9. For 0< s< 0.9, -0.1 <t < 0, GSY = (V,{(x,y), (y,2)}),
and for 05<s<0.9, -0.1<t < 0,G5Y = (V,{(x,y)}). ThusG is a tree,G is a full bipolar fuzzy tree, ané* and
G"(B) has the same number of connected components. Howgvwenot firm andB = (ug, pd) is not constant ok.

Example 18.Consider a connected gra@ti = (V,E) such thaV = {x,y,z}, E = {(X,y), (Y,2),(X,2)}. Let A be a bipolar
fuzzy set oV and letB be a bipolar fuzzy set & C V x V defined by

HA(X) = HR(Y) =1, HA(2) = 0.5, p(X) = HR(Y) = =1, up(2) = —0.2,

HE(X,Y) = 0.9, Ug(x,2) = ug(v,2) = 0.5, ug (x,y) = —0.1, ug (x,2) = g (y,2) = —0.4.
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By routine computations, we havad(B) = —04, h(B) = 09. For 0< s < 05, -04 <t <O,
GBY = (V,{(x,y),(%2),(y,2)}), and for 05 < < 0.9, —0.1 <t < 0, GV = ({x,y},{(x,y)}). ThusG is a partial
bipolar fuzzy tree, but not a full bipolar fuzzy tre®.is not a bipolar fuzzy tree.

We state the following propositions without their proofs.
Proposition 15.If G is a bipolar fuzzy tree, then G is not complete.
Proposition 16.If G is a bipolar fuzzy tree, then arcs of spanning subgraphréithe bipolar fuzzy bridges of G.

Proposition 17.1f G is a bipolar fuzzy tree, then internal nodes of spannimgggaph H are the bipolar fuzzy cutnodes of
G.

Proposition 18.G is a bipolar fuzzy tree if and only if the following are ecalent:

(&) (x,y) is a bipolar fuzzy bridge.

() (uE)™(xy) = HE(xY) and (ug)™(x.y) = ud (xY).

Proposition 19.A bipolar fuzzy graph is a bipolar fuzzy tree if and only if @sha unique maximum spanning tree.

Proposition 20.Suppose that G is firm. If G is a weak bipolar fuzzy tree, thes &hipolar fuzzy tree.

Proof. There exis{(s,t) € (0,h(B)] such thaG(s!) is a tree. Sinc& is firm, GV is a bipolar fuzzy spanning subgraph of
G which is a tree. If{u,v) is in E BSY, thenpf (u,v) < s, ud (u,v) >t and so it follows thaG is a bipolar fuzzy tree.

Definition 22.

(1) Gis called a connected if Gs a connected.

(2) Gis called a bipolar fuzzy connected if G is a bipolar fuzzyckl

(3) Gis called a weak bipolar fuzzy connected if there exXists € (0,h(B)] x [d(B),0) such that &V is a connected.
(4) Gis called a partial bipolar fuzzy connected if§ is a connected for for alls,t) € (d(B),h(B)] U{h(B)}.

(5) G is called a full bipolar fuzzy connected if® is a connected for alls,t) € (0,h(B)] x [d(B),0).

Proposition 21.1f G is connected, then G is weakly connected.

Proof. Gconnected implie§* is connected. Nows* = G"®) and soG is weakly connected.
Proposition 22.If G is firm and weakly connected, then G is connected.

Proof.If GV is connected for somis,t) € (0,h(B)], thenG* is connected sinc is firm.

Proposition 23.

(1) If Gis aweak bipolar fuzzy tree, then G is weakly connectetl@ris a weak bipolar fuzzy forest. Conversely, if
3(s1,t1), (s2,t2) € (0,h(B)] with 51 < s, t < tp such that Gt is a forest and &2'2) is connected, then G is a weak
bipolar fuzzy tree.

(2) Gisatreeifandonlyif Gis aforest and G is connected.

(3) G is partial bipolar fuzzy tree if and only if G is a partial lfar fuzzy forest and G is a patrtially bipolar fuzzy
connected.

(4) Giis afull bipolar fuzzy tree if and only if G is a full bipolanZzy forest and G is fully connected.

Proof. (1) If G is a tree for somés;t) € (0,h(B)], thenG(SY is connected and is a forest. For the converse, we note
thatG(%'2) must also be a forest. Since als62'2) is connected3(%22) is a tree.
The proofs of (2),(3) and(4)are immediate.
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Proposition 24.G is a firm if and only if &Y is firmV(s,t) € (0,h(B)].

Proof. Supposes is firm. Let (s,t) € (0,h(B)] x [d(B),0). Let (x,y) € (uP)(SY. Then
s< pE(x,y) < minf{pR(x)[x € V} < min{ug ()X € (Ha)%},

t=> pd (xy) > max{pup (x)x € V} > max{pp (x)x € (Ux)'}.

Hence mafyg (x,y)|(x,Y) € (1)} < min{ug(x)[x € (HR)%}, min{ud (x,y)|(x,y) € (u§)'} > max{up (X)[x € (up)'}-
Thus we conclude th&©SY* = BSY andASY* = ASY, G(SY s firm.

Conversely, supposg(s!) is firm V(s,t) € (0,h(B)] x [d(B),0). Let min{ uf(x)|x € V} = so, max{pf (x)|x € V} = to.
Thenty > 0. Now max ug (x,y)|(x,y) € (u5)®} < so, min{ ud (x,y)|(x,y) € ()} > to sinceG®) s firm andV =
AlSol) — Alolo)* | et (x,y) € E — BSU*. Thenug (x,y) < So, Ud (X,y) > to. Thus

max{ g (%, y)| (x,y) € E} < sp = min{pz (x)[x € V},

min{ b () (x.y) € E} > to = max{pu(x)|x € V}.

HenceG is firm.

5 Conclusions

In a network, each arc is assigned a weight. The weight oflaqrad cycle is defined as the minimum weight of its arcs.
The maximum of weights of all paths between two nodes is deéfasethe strength of connectedness between the nodes.
In network applications, the reduction in the strength ofreectedness is more relevant than the total disconnedtibe o
graph. A graph is totally weighted if both node set and arasetwveighted. Fuzzy graph theory is finding an increasing
number of applications in modeling real time systems. Shipelar fuzzy models give more precision, flexibility and
compatibility to the system as compared to the fuzzy modeéshave investigated some properties of bipolar fuzzy
cycles, bipolar fuzzy trees, bipolar fuzzy bridges, andlzpfuzzy cut-vertices in bipolar fuzzy graphs in this papée

plan to extend our research of fuzzification to (1) Bipolarzyi soft trees, (2) Soft cycles and soft trees, (3), and Rough
cycles and rough trees.
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