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Abstract: In this paper we study some algebraic properties of Archeaadcopulas and simple smoothed estimator of distribution
function under random right censored observations in tleseirce of covariate. Where the dependence between a ligeatich a
censoring variable may expressed by a given Archimedeana.oy/e prove an almost sure asymptotic representationhigravides

a key tool for obtaining weak convergence result for estimat
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1 Introduction

What is copula?From one point a view, copula is a function which joins or "ptas” a multivariate distribution
function(d.f.) to its one-dimensional marginal d.f.-stekhatively, copula is multivariate d.f. whose one-dinienal
margins are uniform on the intervéD, 1). The word "copula” was first used in a mathematical or statidtsense by
Sklar (1959, see, [9]). But the functions themselves peetizd use of the term, appearing in the work of Hoeffding,
Fréchet, Dall’Aglio, and many others(see, [10]). Over piast forty years or so, copulas have played an importantmole
several areas of statistics.

Why are copulas of interest to researchers of probabilityd atatistics?As Fisher (1997, see, [3]) notes in the
Encyclopedia of Statistical Sciences, "Copulas are ofrggeto statisticians for two main reasons: First, as a way of
studying scale-free measures of dependence; and secasddy,starting point for constructing families of bivariate
distributions, ...".

The concept of copulas in relation to multivariate disttibns and dependence can be motivated in many different.ways
A copula can be defined from both axiomatic and statisticahtpaf view. Although, the emphasis in this exposition
will focus on the statistical perspective, for the sake ahpteteness and those interested in more technical defigitio
Axiomatically, a copula can be defined as follows.

Definition 1. (Axiomatical) A two-dimensional copula C is a mapping frare=1[0,1] x [0,1] to | = [0, 1] which satisfies
the following three conditions:
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(1) C(u,0) =C(0,u) = 0for every ue [0,1];
(2) C(u,1)=C(1,u) =uforevery e [0,1];
(3) C(ug,v2) —C(u1,Vv2) —C(uz,v1) +C(ug,v1) > O for every y, vy, Uz, v € [0,1] satisfying y < up,vi < vs.

Copulas can be defined informally as follows: étandY be continuous random variables(r.v.-s) with d.FHx) =
P(X < x) andG(y) = P(Y <y), and joint distribution functiord (x,y) = P(X < x,Y <y). For every(x,y) in [—o0, 00]2
consider the point i (I = [0,1]) with coordinatesF (x),G(y),H(x,y)). This mapping from? to | is a copula. Copulas
are also known as dependence functions or uniform reprats@ms. Statistically, a copula can be defined as follows.

Definition 2. (Statistical) A copula Cu,v) : [0,1]? — [0, 1] is a bivariate distribution function with uniform margirsal

A first example of copulas is the product cop@éu,v) = uv, which characterizes independent r.v.-s when the d.f.-s are
continuous.

The importance of copulas in statistics is described ini@Klgheorem. A formal presentation is provided next.

Theorem 1.(A.Sklar) Let H be a joint d.f. with margins F and Ghen there exists a copula C such that for alf in R

H (xy) =C(F (x),G(y)). 1)

If F and G are continuous, then C is unique; otherwise, C igjualy determined on R&F) x Ran(G). Conversely, if C
is a copula and F and G are d.f.-s, then the function H definefpis a joint d.f. with margins F and Gr'hus copulas
link joint d.f.-s to their one-dimensional margins.

The representation (1) suggests that if the cofvgere known, then substituting continuous marginal estnsafor F
andG would yield a plug-in estimate of their associated joint H.f Moreover, in light of Sklar’s result with arrive at the
following functional definition of a copula.

Definition 3. (Functional) Given a bivariate d.f. H with marginals F and @&e function defined as
C(uv) =H(F*(u),6*(v),

for (u,v) € [0,1)?, where F1(u) and G 1(v) are the inverse functions of F and G respectively, is the kopu
corresponding to H.

2 Some algebraic properties of Archimedean copulas

In this paper, we discuss an important class of copulas krasvirchimedean copulas. These copulas find a wide range
of applications for a number of reasons:

(1) the ease with which they can be constructed;
(2) the great variety of families of copulas which belongHis class;
(3) the many nice properties possessed by the members afdkis

As mentioned in the introduction, Archimedean copulasioally appeared not in statistics, but rather in the study of
probabilistic metric spaces, where they were studied asgbéne development of a probabilistic version of the trieng
inequality. For an account of this history, see Schweiz8811 see,[10]).

Let ¢ be a continuous, strictly decreasing function friiyl] to [0, «]such thatp (1) = 0.
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Definition 4. The pseudo-inverse ¢fis the functionp!~ with Domp!~Y = [0, ] and Rar{(f) given by
-1
¢[71] (t): ¢ (t)7 0<t<¢(0)7 (2)
0, $(0)<t< o
Note thatg!~ is continuous and no increasing {he|, and strictly decreasing d, ¢ (0)]. Furthermore,
_ t, O<t<@(0) .
) = ’ b= t,¢(0)).
oo ) {07 510 <tze ~MNEE0O)
If ¢ (0) =, theng!~! = ¢ —(see Fig.1).
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Fig. 1: Strict (a) and non-strict (b) generators and inverses.
Definition 5. Copulas of the form
Cuv) =9 (@) +¢ V) 3
are called Archimedean copulas, where the functios called a generator of the coputlia(1) = 0.
Theorem 2.[7]. Let ¢ be a continuous, strictly decreasing function from @] such thatp (1) = 0, and let¢~Y be

the pseudo-inverse gf defined by (2). Then the function C given by (3) is a copuladf@amly if ¢ is convex.
We conclude this work with two theorems concerning sometatgie properties of Archimedean copulas.

Theorem 3.[7]. Let C be an Archimedean copula with generapoiThen:

(1) Cissymmetric, i.e., @,v) =C(v,u) forallu,vinI;

(© 2016 BISKA Bilisim Technology


www.ntmsci.com

(_/
a1 BISKA A. Abdushukurov and R.Muradov : Some algebraic propertigsrchimedean Copula functions...

(2) Cisassociative, i.e., C(u,v),w) = C(u,C(v,w)) for all u,v,win I;

(3) Ifc > 0is any constant, thengcis also a generator of C

For convenience, lef2 denote the set of continuous strictly decreasing convextioms ¢ from | to [0,c] with

¢ (1) = 0. By now the reader is surely wondering about the meaning aieime "Archimedean” for these copulas. Recall
the Archimedean axiom for the positive real numbers; if are positive real numbers, then there exists an integech
thatna > b. An Archimedean copula behaves like a binary operation orirttegvall, in that the copula assigns to
each paim,vin | a numbelC(u,v) in I. From Theorem 3, we see that the "operatién’s commutative and associative,
and preserves order, i.ey < up andv; < v, impliesC(ug,v1) < C(up,Vv2). Algebraists call(l,C) an ordered Abelian
semigroup. For any in |, we can define th€-powersug of u recursively:ut = u, and ug“ =C(u,ug), note thatu(z:
belongs to the diagonal sectidp(u) of C. The version of the Archimedean axiom forC) is, for any two numbers, v

in (0,1), there exists a positive integeisuch thaug < v. The next theorem shows that Archimedean copulas satisfy thi
version of the Archimedean axiom and hence merit their naffe term "Archimedean” for these copulas was
introduced in Ling (1965, see, [7]).

Theorem 4.[7]. Let C be an Archimedean copula generated¢bin Q. Then for any w in |, there exists a positive
integer n such thatdi< v.

3 The random right censoring model

In such research areas as bio-medicine, engineeringgaimseyy social sciences and many areas researchers aretedere
in positive variables, which are expressed as a time unt@rtam event. For example, in medicine the survival time of
individual, while in industrial trials, time until breakdm of a machine are non-negative random variables of interes
But in such practical situations, the observed data may deniplete, that is censored. This is the case, for example, in
medicine when the event of interest-death due to a givenecand the censoring event is death due to other cause. In
industrial study, it may occur that some piece of equipmetiaken away (that is censored) because it shows some sign
of future failure. Moreover, the r.v.-s of interest (lifees, failure times) and censoring r.v.-s usually can beénfted by
other variable, often called prognostic factor or covaridh medicine, dose of a drug and in engineering some
environmental conditions (temperature, pressure) anednfled to the observed variables. The basic problem cansist
estimation of distribution of lifetime by such censored elegent data. The aim of paper is considering this problem in
the case of right random censoring model in the presencevafietble.

Let's consider the case when the support of cova@zi® the intervall0, 1] and we describe our results on fixed design
points 0< x; < xp < --- < Xy < 1 at which we consider responses (survival or failure timgs).., X, and censoring
timesYi,..., Yy of identical objects, which are under study. These respoaseindependent and nonnegative r.v.-s with
conditional distribution function (d.f.) at, F (t) = P(Xi <t/Ci = x). They are subjected to random right censoring,
that is for X there is a censoring variab¥ with conditional d.f.Gy (t) = P(Y; <t/C; = x) and atn-th stage of
experiment the observed data is

SV ={(z,8,G).1<i<n},

wherez; = min(X;,Y;), & = 1 (X <Y;) with | (A) denoting the indicator of evert. Note that in samplé(”) r.v. X is
observed only whed = 1. Commonly, in survival analysis [4] to assume independerete/éen the r.v.-%; and;
conditional on the covariatg. But, in some practical situations, this assumption doehafat. Therefore, in this article
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we consider a dependence model in which dependence skusescribed through copula function. So let
S(ta,tz) = P(Xx > ta, Yy > t2), 11,12 > 0,
the joint survival function of the respon¥g and the censoring variablg atx. Then the marginal survival functions are

SK(t) = 1 — Fy(t) = S(t,0) and S (t) = 1 — Gy(t) = S((0,t),t > 0. We suppose that the marginal d.fRsand G4 are
continuous. Then according to the Theorem of Sklar, the invival functionSi(t;,t;) can be expressed as

Si(tn,t2) = Cx(SK (1), St (1)), ta, 12 > 0, @)

whereCy(u,V) is a known copula function depending erS andS! in a general way.

4 Construction of estimator

Assume that at the fixed design vakie (0,1), Cy in (4) is Archimedean copula, i.e.

St t2) = 8% (@u(S (1) + 9x(S) (t2))) . t2 > O, 5)

where, for eaclx, ¢y : [0,1] — [0, 4o0] is a known continuous, convex, strictly decreasing fumctidth ¢,(1) = 0. ¢>[{l]
is a pseudo-inverse @ (see, Nelsen [7]) and given by

We assume that copula generator funcggns strict, i.e.¢x(0) =  and hencq&}{l] = ¢ L. From (5), it follows that

P(Zx > 1) = 1—Hx(t) = Hx(t) = (1) = Sc(t,t) =

= b H(SEM) + (1)), t =0, (6)

Let H{Y (t) = P(Zx <t,0¢ = 1) be a subdistribution function antk(t) is crude hazard function of r.Xx subjecting to
censoring by,
P e dt X% <Y  H"(dt)

MUY = o St S X

From (7) one can obtain following expression of survivaldtion S :

SO =0 [ S8 W) =

=01 [ U)W, 120 ®

(see, for example, [2,8]). In order to constructing thereatdr ofS¢ according to representation (8), we introduce some
smoothed estimators &,H)El) and regularity conditions for them. Similarly to Breakersld/eraverbeke [2], we will
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also use the Gasser-Milller weights

1 X 1 X—z
xh)=——— [ =@ 5dzi=1,..n, 9
(A)m( n) qn(x7hn) i 1 hn ( hn ) Z ( )
with 1
X—2Zz
(X, hn) = —T1( )dz
0 hn hn

wherexyg = 0, 1Tis a known probability density function(kernel) afih, n > 1} is a sequence of positive constants, tending
to zero a1 — o, called bandwidth sequence. Let's introduce the weightéohasors ofHy, St andHﬁl) respectively as

Hyn(t) = iwni(x, ha)l(Z <1),

Sh(t) = 1— Hyy(t), (10)
H>Efl1) (t) = _iwni(x, ha)l(Z <t,§ =1).

Then pluggin in (8) estimators (10) we get correspondinigresgor of S (t) as

S0 =1 Falt) = [ (S )aHP W), 20 ay

Remark that in the case of no covariate, estimator (11) reslte estimator first obtained by Zeng and Klein [12]. In
the case of the independent cop¢léy) = —logy, Zeng and Klein estimate reduces to a exponential-hazairdast
(see, [1,11]). Also it is well-known that under independeemsoring case Kaplan-Meier’'s product-limit estimatod an
exponential-hazard estimators are asymptotical equitial&erefore, we will show that estimator (11) and copulaphic
estimator of Breakers and Veraverbeke have the same asfjoripgbaviours.

5 Asymptotic results

For the design points, ...x,, denote

Ay = lrglnn(xa —Xi—1), An= 1n£ifi>r<](xi = Xi-1).

For the kernelr, let - -
im3= [ wdu mm= [ waiidu v=12

—o00
(|77l = suprt(u).
uerR

Moreover, we use next assumptions on the design and on thelKenction:

(Al) Asn—w, Xy =1, Ay=0(3), Aq—Ap=0(3).

(A2) mis a probability density function with compact supppriM, M| for someM > 0, with my (1) = 0 and|m(u) —
n(u)| < C(m)|lu—u'|, whereC(m) is some constant. L&, = inf{t > 0 : Hy(t) = 1}. ThenTy, = min(Tg,, Tg,)-
For our results we need some smoothnees conditions on daséti(t) and HY (t). We formulate them for a
general (sub)distribution functidi(t),0 < x < 1,t € Rand for a fixedl > 0.

(A3) %Nx(t) = Nx(t) exists and is continuous ifx,t) € [0,1] x [0, T].
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(A4) NX( )= N)’((t) exists and is continuous iix,t) € [0,1] x [0, T].

(A5) Xsz( ) = Nk(t) exists and is continuous iix,t) € [0,1] x [0, T].

(A6) WNX( ) = N/ (t) exists and is continuous ifx,t) € [0,1] x [0, T].

(A7) Bxdt NX( ) = Nj(t) exists and is continuous iix,t) € [0,1] x [0, T].

(A8) a¢x = ¢y (u) andm = ¢y (u) are Lipschitz in the-direction with a bounded Lipschitz constant aﬁﬁ%ﬂ =
”’( ) < 0 exists and is continuous {,u) € [0,1] x (0,1].

It is clear that for existence of right hand side of repreaton (8) we must require the conditions (A 4) for functions

Hx(t) andH.Y (t)in [0,1] x [0,T] with T < Ty, and existence op; (u) on[0,1] x (0,1].

We derive an almost sure representation result with rate.

Theorem 5.Assume (A 1), (A 2),Ht) and H™ (t) satisfy (A 5)-(A 7) i, T] with T < Ty, ¢x satisfies (A 8) and— oo,

'g%‘ 0, Togn = =0(1). Then, as n— o,
Fan(t) — Fx(t) = _iwni()(, hn)Hx(Zi, &) +ra(t),
where ) .
wx<zi,d>:¢§—t[ /O 0/(SE(W))(1(Zi < ) — Hx(W)dHY (U) — B ())(1(Z <1,8 = 1)
)~ [ U0 <8 =1) KO W)dHw)
and

logn 3/4
EYIC O((nm) |

The weak convergence of the empirical procgsis,)”?{Fe(-) — Fx(-)} in the space’™[0,T] of uniformly bounded
functions on[0, T], endowed with the uniform topology is the contents of the tiegbrem.

Theorem 6.Assume (A 1), (A 2), Kt) and H (t) satisfy (A 5)-(A 7) irf0, T] with T < Ty, and thatey satisfies (A 8).
3
(1) If nh2 — Oand% — 0, then, as n— oo,

(nha)2{Fn(-) — F()} == Wy(-) in £2[0,T].
(I1) 1f hn = Cn~1/5 for some C> 0, then, as n— o,
(nhn)Y2{Fun(-) — F()} = Wx(-) in £2[0,T],
whereWy(-) andWj(-) are Gaussian processes with means
EWi(t) =0, EW;(t) = a(t),

and same covariance
Cov(Wx(t), W, (s)) = CoUW, (1), W, (s)) = Ix(t,s),

with

77C5/2IT]2(7T) t " (1)
ax(t>*72¢;(s§<(t)) /0[ ¥ (SE () Fh(u)dHY (u) — g(SF(u))dFi (u)),

(© 2016 BISKA Bilisim Technology


www.ntmsci.com

s BISKA A. Abdushukurov and R.Muradov : Some algebraic propertigsrchimedean Copula functions...

and

Rl mints) _—
LS = SO )){/0 (94(S(2)"dH (@)
~min(t,s)
+/ ( [4’)'('(3%( W))SE(W) + du(S¢ /¢ y)dH (y)dHed (w)
m|n S max(
+, o / BSOS + S )aHD W
| [¢4’<Sf<y>>§<y>+¢x<§<y>>1de‘”<y> |6 ) )+ S w)]aH ()},

6 Proofs of Theorems 5 and 6

In order to proving the theorems 5 and 6 we need some auxikalts for empiricalsiyy, andH)Eﬁ). While the Lemma 1
below (i.e. Lemma A4 from [11]) about the rates of strong anii consistency of weighted empiricals is formulated only
for Hyp, it is still true also forH)Eﬁ) and proved exactly with the same way.

Lemma 1.[11].

, % =0(1). Then, as n— o,

a.s. logn 12
S ) ()| O((W) -

(I) Assume (A 1), (A 2),}t) satisfies (A 3) and (A 5),;h— 0 ng O(1). Then, as n— oo,

» Togn —

a.s. logn\ /2
S ) ()| O((W) -

The next Lemma 2 (Lemma 2 in [2]) provides the convergen@afl heorem 5.

(I) Assume (A 1), (A 2),Ht) satisfies (A 3), h— 0, nhy — o

Lemma 2.[2]. Under the conditions of theorem 5, as oo,

3/4
sup | — /Ot[¢>/<(§h(u)) — ¢>/<(§(U))]d(H)Erl1)(u)) B H>51)(u))|ais'o ((mﬁ]) ) |

0<t<T

Proof. (Proof of Theorem 5) Applying a second order Taylor expamsize have

Fan(t) — F(t) = —(SG(t) — SK(1)

=—{¢ M- /¢x (Si(u) deh — /¢X dHX (Wi}

=¢S§t{/¢x§h DR W)+ [ B w)aH W)

X (95 " (6x
o {/¢x W)aHP W)+ [ B )Y W)

= An(t) +Bn(t ) (12)
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whereby(t) betweern— fé ¢)’((§%h(u))dH)Eﬁ)(u)] and[— fo ¢L(St(u ))dHX (u)]. In (12) the first summand we rewrite as

1

An(t) = — ¢X(3<())[in()+an(t)+Qn3(t)], (13)
where
Qult) = [ 10Uh(w) - $F)]aH )
Quelt) =~ [ B dH W) W),
and
Qualt) = [ [0l ~ B W)IHE () - H ().
From Lemma 2, we get
a.s, [ (logn\¥*
OztuSpT|Qn3(t)| = O((W) ) (14)
Furthermore, for &t < T < Ty,, also by Taylor expansion,
Qu(t / (S 0) (F) — H@)AHE W) — [ 200 (en() (1) — () aHE )
[} B ()~ Fo) A @)+ ), (15)

wherenyn(u) € [min(Hyxn(u), Hy(u)), max(Hyn(u),Hx(u))] and from Lemma 1,

a.s. (logn
O;‘JSF’T'%(”' = O( nh, ) : (16)
Integrating by parts, we rewri®@n(t) as
t
Qra(t) = ~8x(SEO)H (1)~ K (0) + | 9 (SEW)(H (1)~ HE () dHy(u). (17)
Therefore, from (10)-(14), and Lemma 1, we have
a.s. logn 12
(S8 (O = O((nm) - s
Since,
a.s. 2
sup (B 2 0(( sup A1) ) (19
0<t<T 0<t<T
hence, from (15)
a.s.. (logn
oitUSpT|Bn(t) = O( nh ) : (20)
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Then, finally from (9)-(17), we obtain that forQt <T < Ty,, asn — oo,

a.s.

_ L [ 0
- ¢)/((8(((t)) {/O ¢X (§(U))(Hxh(u) - HX(U))d HX (U)*
t
— BUSEO(HG (0~ H0) + [ 6 (SE ) (HG (1)~ B () dH(w)

10 ((';’%‘) 3/4> _ iim(x, hn)¥x(Z, &) + O ((%‘) 3/4) ,

which completes the proof of Theorem 5.

l:xh(t> - Fx(t)

Itis necessary to note that almost sure representationedrEm 5 plays a key role on investigating of estimator (1) an
in particular, it provides a basic tool for obtaining weakeergence result of Theorem 6. But the main summénaf
this representation is the same as in the case of copuldrgragtimator from [2]. Then the proof of Theorem 6 one can
accomponing by line of proof of Theorem 2 from [2]. Therefdtes proof of Theorem 6 is omitted. Thus, the estimator
(11) and copula-graphic estimator are asymptotic equitale

7 Conclusions

Itis necessary to note that in the case of no covariatesgdissfirst was considered by Zeng and Klein [12] and proposed
copula-graphic estimator. Rivest and Wells [8] investgiatopula-graphic estimator and derived a closed form ezjme

for estimator when the joint survival function (1) is mod&én Archimedean copula. The copula-graphic estimatoeis th
shown to be uniformly consistent and asymptotically norriNaite that the copula-graphic estimator is equivalent & th
product-limit estimator of Kaplan and Meier [5] when thedual and censoring times are assumed to be independent.
Braekers and Veraverbeke [2] extend copula-graphic egtinh@athe fixed design regression case and show that estimato
has an asymptotic representation and a Gaussian limit. Wadwr other estimator of d Fx which had a simpler form than
copula-graphic estimator and it is also equivalent to thealiexponential-hazard estimator under independent cegso
case. We study the large sample properties of estimatoopeapand present result of uniform normality with the same
limiting Gaussian process as for copula-graphic estimator
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