Tachibana and Vishnevskii operators applied to \mathbf{X}^{V} and X^{H} in almost paracontact structure on tangent bundle $T(M)$

Hasim Cayir

Department of Mathematics, Faculty of Arts and Sciences, Giresun University, Giresun, Turkey
Received: 12 February 2016, Accepted: 16 May 2016
Published online: 12 June 2016.

Abstract

The differential geometry of tangent bundles was studied by several authors, for example: Yano and Ishihara [8], V. Oproiu [3], A.A. Salimov [5], D. E. Blair [1] and among others. It is well known that different structures defined on a manifold M can be lifted to the same type of structures on its tangent bundle. In addition, several authors was studied on operators too, for example: A.A. Salimov [5]. Our goal is to study Tachibana and Vishnevskii Operators Applied to X^{V} and X^{H} in almost paracontact structure on tangent bundle $T(M)$. In addition, this results which obtained shall be studied for some special values in almost paracontact structure.

Keywords: Tachibana Operators,Vishnevskii Operators, Almost Paracontact Structure, Horizontal Lift, Vertical Lift

1 Introduction

Let M be an n-dimensional differentiable manifold of class C^{∞} and let $T_{p}(M)$ be the tangent space of M at a point p of M. Then the set [8]

$$
\begin{equation*}
T(M)=\underset{p \in M}{\cup} T_{p}(M) \tag{1}
\end{equation*}
$$

is called the tangent bundle over the manifold M. For any point \tilde{p} of $T(M)$, the correspondence $\tilde{p} \rightarrow p$ determines the bundle projection $\pi: T(M) \rightarrow M$, Thus $\pi(\tilde{p})=p$, where $\pi: T(M) \rightarrow M$ defines the bundle projection of $T(M)$ over M. The set $\pi^{-1}(p)$ is called the fibre over $p \in M$ and M the base space.

Suppose that the base space M is covered by a system of coordinate neighbour-hoods $\left\{U ; x^{h}\right\}$, where $\left(x^{h}\right)$ is a system of local coordinates defined in the neighbour-hood U of M. The open set $\pi^{-1}(U) \subset T(M)$ is naturally differentiably homeomorphic to the direct product $U \times R^{n}, R^{n}$ being the n-dimensional vector space over the real field R, in such a way that a point $\tilde{p} \in T_{p}(M)(p \in U)$ is represented by an ordered pair (P, X) of the point $p \in U$, and a vector $X \in R^{n}$,whose components are given by the cartesian coordinates $\left(y^{h}\right)$ of \tilde{p} in the tangent space $T_{p}(M)$ with respect to the natural base $\left\{\partial_{h}\right\}$, where $\partial_{h}=\frac{\partial}{\partial x^{h}}$. Denoting by $\left(x^{h}\right)$ the coordinates of $p=\pi(\tilde{p})$ in U and establishing the correspondence $\left(x^{h}, y^{h}\right) \rightarrow \tilde{p} \in \pi^{-1}(U)$, we can introduce a system of local coordinates $\left(x^{h}, y^{h}\right)$ in the open set $\pi^{-1}(U) \subset T(M)$. Here we call $\left(x^{h}, y^{h}\right)$ the coordinates in $\pi^{-1}(U)$ induced from $\left(x^{h}\right)$ or simply, the induced coordinates in $\pi^{-1}(U)$.

We denote by $\mathfrak{J}_{s}^{r}(M)$ the set of all tensor fields of class C^{∞} and of type (r, s) in M. We now put $\mathfrak{I}(M)=\sum_{r, s=0}^{\infty} \mathfrak{J}_{s}^{r}(M)$, which is the set of all tensor fields in M. Similarly, we denote by $\mathfrak{J}_{s}^{r}(T(M))$ and $\mathfrak{J}(T(M))$ respectively the corresponding sets of tensor fields in the tangent bundle $T(M)$.

1.1 Vertical lifts

If f is a function in M, we write f^{v} for the function in $T(M)$ obtained by forming the composition of $\pi: T(M) \rightarrow M$ and $f: M \rightarrow R$, so that

$$
\begin{equation*}
f^{v}=f o \pi . \tag{2}
\end{equation*}
$$

Thus, if a point $\tilde{p} \in \pi^{-1}(U)$ has induced coordinates $\left(x^{h}, y^{h}\right)$, then

$$
\begin{equation*}
f^{\nu}(\tilde{p})=f^{\nu}(x, y)=f o \pi(\tilde{p})=f(p)=f(x) \tag{3}
\end{equation*}
$$

Thus the value of $f^{v}(\tilde{p})$ is constant along each fibre $T_{p}(M)$ and equal to the value $f(p)$. We call f^{v} the vertical lift of the function f [8].

Let $\tilde{X} \in \mathfrak{I}_{0}^{1}(T(M))$ be such that $\tilde{X} f^{\nu}=0$ for all $f \in \mathfrak{I}_{0}^{0}(M)$. Then we say that \tilde{X} is a vertical vector field. Let $\binom{\tilde{X}^{n}}{\tilde{X}^{n}}$ be components of \tilde{X} with respect to the induced coordinates. Then \tilde{X} is vertical if and only if its components in $\pi^{-1}(U)$ satisfy

$$
\begin{equation*}
\binom{\tilde{X}^{h}}{\tilde{X}^{\bar{h}}}=\binom{0}{X^{\bar{h}}} . \tag{4}
\end{equation*}
$$

Suppose that $X \in \mathfrak{I}_{0}^{1}(M)$, so that is a vector field in M. We define a vector field X^{v} in $T(M)$ by

$$
\begin{equation*}
X^{v}(\imath \omega)=(\omega X)^{v} \tag{5}
\end{equation*}
$$

ω being an arbitrary $1-$ form in M. We call X^{v} the vertical lift of X [8].

Let $\tilde{\omega} \in \mathfrak{I}_{1}^{0}(T(M))$ be such that $\tilde{\omega}(X)^{v}=0$ for all $X \in \mathfrak{I}_{0}^{1}(M)$. Then we say that $\tilde{\omega}$ is a vertical $1-$ form in $T(M)$. We define the vertical lift ω^{v} of the 1 -form ω by

$$
\begin{equation*}
\omega^{v}=\left(\omega_{i}\right)^{v}\left(d x^{i}\right)^{v} \tag{6}
\end{equation*}
$$

in each open set $\pi^{-1}(U)$, where $\left(U ; x^{h}\right)$ is coordinate neighbourhood in M and ω is given by $\omega=\omega_{i} d x^{i}$ in U. The vertical $\operatorname{lift} \omega^{v}$ of ω with local expression $\omega=\omega_{i} d x^{i}$ has components of the form

$$
\begin{equation*}
\omega^{v}:\left(\omega^{i}, 0\right) \tag{7}
\end{equation*}
$$

with respect to the induced coordinates in $T(M)$.

Vertical lifts to a unique algebraic isomorphism of the tensor algebra $\mathfrak{I}(M)$ into the tensor algebra $\mathfrak{I}(T(M))$ with respect to constant coefficients by the conditions

$$
\begin{equation*}
(P \otimes Q)^{V}=P^{V} \otimes Q^{V},(P+R)^{V}=P^{V}+R^{V} \tag{8}
\end{equation*}
$$

P, Q and R being arbitrary elements of $\mathfrak{J}(M)$. The vertical lifts F^{V} of an element $F \in \mathfrak{J}_{1}^{1}(M)$ with local components F_{i}^{h} has components of the form [8]

$$
F^{V}:\left(\begin{array}{cc}
0 & 0 \\
F_{i}^{h} & 0
\end{array}\right)
$$

Vertical lift has the following formulas [4, 8]:

$$
\begin{align*}
& (f X)^{v}=f^{v} X^{v}, I^{v} X^{v}=0, \eta^{v}\left(X^{v}\right)=0 \tag{9}\\
& (f \eta)^{v}=f^{v} \eta^{v},\left[X^{v}, Y^{v}\right]=0, \varphi^{v} X^{v}=0 \\
& X^{v} f^{v}=0, X^{v} f^{v}=0
\end{align*}
$$

hold good, where $f \in \mathfrak{I}_{0}^{0}\left(M_{n}\right), X, Y \in \mathfrak{I}_{0}^{1}\left(M_{n}\right), \eta \in \mathfrak{I}_{1}^{0}\left(M_{n}\right), \varphi \in \mathfrak{I}_{1}^{1}\left(M_{n}\right), I=i d_{M_{n}}$.

1.2 Complete lifts

If f is a function in M, we write f^{c} for the function in $T(M)$ defined by

$$
\begin{equation*}
f^{c}=\imath(d f) \tag{10}
\end{equation*}
$$

and call f^{c} the complete lift of the function f. The complete lift f^{c} of a function f has the local expression

$$
\begin{equation*}
f^{c}=y^{i} \partial_{i} f=\partial f \tag{11}
\end{equation*}
$$

with respect to the induced coordinates in $T(M)$, where ∂f denotes $y^{i} \partial_{i} f$.

Suppose that $X \in \mathfrak{I}_{0}^{1}(M)$. Then we define a vector field X^{c} in $T(M)$ by

$$
\begin{equation*}
X^{c} f^{c}=(X f)^{c} \tag{12}
\end{equation*}
$$

f being an arbitrary function in M and call X^{c} the complete lift of X in $T(M)[2,8]$. The complete lift X^{c} of X with components x^{h} in M has components

$$
\begin{equation*}
X^{c}=\binom{X^{h}}{\partial X^{h}} \tag{13}
\end{equation*}
$$

with respect to the induced coordinates in $T(M)$.
Suppose that $\omega \in \mathfrak{J}_{1}^{0}(M)$, then a $1-$ form ω^{c} in $T(M)$ defined by

$$
\begin{equation*}
\omega^{c}\left(X^{c}\right)=(\omega X)^{c} \tag{14}
\end{equation*}
$$

X being an arbitrary vector field in M. We call ω^{c} the complete lift of ω. The complete lift ω^{c} of ω with components ω_{i} in M has components of the form

$$
\begin{equation*}
\omega^{c}:\left(\partial \omega_{i,} \omega_{i}\right) \tag{15}
\end{equation*}
$$

with respect to the induced coordinates in $T(M)$ [2].

The complete lifts to a unique algebra isomorphism of the tensor algebra $\mathfrak{J}(M)$ into the tensor algebra $\mathfrak{J}(T(M))$ with respect to constant coefficients, is given by the conditions

$$
\begin{equation*}
(P \otimes Q)^{C}=P^{C} \otimes Q^{V}+P^{V} \otimes Q^{C},(P+R)^{C}=P^{C}+R^{C} \tag{16}
\end{equation*}
$$

where P, Q and R being arbitrary elements of $\mathfrak{I}(M)$. The complete lifts F^{C} of an element $F \in \mathfrak{I}_{1}^{1}(M)$ with local components $F_{i}{ }^{h}$ has components of the form

$$
F^{C}:\left(\begin{array}{cc}
F_{i}^{h} & 0 \\
\partial F_{i}^{h} & F_{i}^{h}
\end{array}\right)
$$

In addition, we know that the complete lifts are defined by $[4,8]$:

$$
\begin{align*}
& (f X)^{c}=f^{c} X^{v}+f^{v} X^{c}=(X f)^{c}, \tag{17}\\
& X^{c} f^{v}=(X f)^{v}, \eta^{v}\left(x^{c}\right)=(\eta(x))^{v}, \\
& X^{v} f^{c}=(X f)^{v}, \varphi^{v} X^{c}=(\varphi X)^{v}, \\
& \varphi^{c} X^{v}=(\varphi X)^{v},(\varphi X)^{c}=\varphi^{c} X^{c}, \\
& \eta^{v}\left(X^{c}\right)=(\eta(X))^{c}, \eta^{c}\left(X^{v}\right)=(\eta(X))^{v}, \\
& {\left[X^{v}, Y^{c}\right]=[X, Y]^{v}, I^{c}=I, I^{v} X^{c}=X^{v},\left[X^{c}, Y^{c}\right]=[X, Y]^{c} .}
\end{align*}
$$

1.3 Horizontal lifts

The horizontal lift f^{H} of $f \in \mathfrak{I}_{0}^{0}(M)$ to the tangent bundle $T(M)$ is given by

$$
\begin{equation*}
f^{H}=f^{C}-\nabla_{\gamma} f \tag{18}
\end{equation*}
$$

where

$$
\begin{equation*}
\nabla_{\gamma} f=\gamma \nabla f \tag{19}
\end{equation*}
$$

Let $X \in \mathfrak{I}_{0}^{1}(M)$. Then the horizontal lift X^{H} of X defined by

$$
\begin{equation*}
X^{H}=X^{C}-\nabla_{\gamma} X \tag{20}
\end{equation*}
$$

in $T(M)$, where

$$
\begin{equation*}
\nabla_{\gamma} X=\gamma \nabla X \tag{21}
\end{equation*}
$$

The horizontal lift X^{H} of X has the components

$$
\begin{equation*}
X^{H}:\binom{X^{h}}{-\Gamma_{i}^{h} X^{i}} \tag{22}
\end{equation*}
$$

with respect to the induced coordinates in $T(M)$, where

$$
\begin{equation*}
\Gamma_{i}^{h}=y^{i} \Gamma_{j i}^{h} \tag{23}
\end{equation*}
$$

Let $\omega \in \mathfrak{I}_{1}^{0}(M)$ with affine connection ∇. Then the horizontal lift ω^{H} of ω is defined by

$$
\begin{equation*}
\omega^{H}=\omega^{C}-\nabla_{\gamma} \omega \tag{24}
\end{equation*}
$$

in $T(M)$, where $\nabla_{\gamma} \omega=\gamma \nabla \omega$. The horizontal lift ω^{H} of ω has component of the form

$$
\begin{equation*}
\omega^{H}:\left(\Gamma_{i}^{h} \omega_{h}, \omega_{i}\right) \tag{25}
\end{equation*}
$$

with respect to the induced coordinates in $T(M)$.

Suppose there is given a tensor field

$$
\begin{equation*}
S=S_{k \ldots . .}^{i \ldots j} \frac{\partial}{\partial x^{i}} \otimes \ldots \otimes \frac{\partial}{\partial x^{h}} \otimes d x^{k} \otimes \ldots \otimes d x^{j} \tag{26}
\end{equation*}
$$

in M with affine connection ∇, and in $T(M)$ a tensor field $\nabla_{\gamma} S$ defined by

$$
\begin{equation*}
\nabla_{\gamma} S=y^{l} \nabla_{l} S_{k \ldots j}^{i \ldots h} \frac{\partial}{\partial y^{i}} \otimes \ldots \otimes \frac{\partial}{\partial y^{h}} \otimes d x^{k} \otimes \ldots \otimes d x^{j} \tag{27}
\end{equation*}
$$

with respect to the induced coordinates $\left(x^{h}, y^{h}\right)$ in $\pi^{-1}(U)$.

The horizontal lift S^{H} of a tensor field S of arbitrary type in M to $T(M)$ is defined by

$$
\begin{equation*}
S^{H}=S^{C}-\nabla_{\gamma} S \tag{28}
\end{equation*}
$$

For any $P, Q \in T(M)$, we have

$$
\begin{align*}
\nabla_{\gamma}(P \otimes Q) & =\left(\nabla_{\gamma} P\right) \otimes Q^{V}+P^{V} \otimes\left(\nabla_{\gamma} Q\right), \tag{29}\\
(P \otimes Q)^{H} & =P^{H} \otimes Q^{V}+P^{V} \otimes Q^{H} .
\end{align*}
$$

Let M be an n-dimensional differentiable manifold. Differantial transformation $D=L_{X}$ is called Lie derivation with respect to vector field $X \in \mathfrak{I}_{0}^{1}(M)$ if

$$
\begin{align*}
L_{X} f & =X f, \forall f \in \mathfrak{I}_{0}^{0}(M), \tag{30}\\
L_{X} Y & =[X, Y], \forall X, Y \in \mathfrak{I}_{0}^{1}(M) .
\end{align*}
$$

$[X, Y]$ is called by Lie bracked. The Lie derivative $L_{X} F$ of a tensor field F of type $(1,1)$ with respect to a vector field X is defined by [8]

$$
\begin{equation*}
\left(L_{X} F\right) Y=[X, F Y]-F[X, Y] . \tag{31}
\end{equation*}
$$

Let M be an n-dimensional differentiable manifold. Differantial transformation of algebra $T(M)$, defined by

$$
D=\nabla_{X}: T(M) \rightarrow T(M), X \in \mathfrak{I}_{0}^{1}(M),
$$

is called as covariant derivation with respect to vector field X if

$$
\begin{align*}
\nabla_{f X+g Y} t & =f \nabla_{X} t+g \nabla_{Y} t \tag{32}\\
\nabla_{X} f & =X f
\end{align*}
$$

where $\forall f, g \in \mathfrak{I}_{0}^{0}(M), \forall X, Y \in \mathfrak{I}_{0}^{1}(M), \forall t \in \mathfrak{I}(M)$.

On the other hand, a transformation defined by

$$
\nabla: \mathfrak{I}_{0}^{1}(M) \times \mathfrak{I}_{0}^{1}(M) \rightarrow \mathfrak{I}_{0}^{1}(M)
$$

is called as an affine connection $[5,8]$.

If we compare horizontal and complete lift, we obtain

$$
\begin{equation*}
X^{H}=\left(\hat{\nabla}_{X}\right)^{C} \tag{33}
\end{equation*}
$$

for any $X \in \mathfrak{I}_{0}^{1}\left(M_{n}\right)$, where $\hat{\nabla}$ is an affine connection in M_{n} defined by

$$
\begin{equation*}
\hat{\nabla}_{X} Y=\nabla_{Y} X+[X, Y] \tag{34}
\end{equation*}
$$

or

$$
\begin{equation*}
\left(\nabla_{Y} X\right)^{v}=\left(\hat{\nabla}_{X} Y\right)^{v}+[Y, X]^{v} . \tag{35}
\end{equation*}
$$

$\left(\hat{\nabla}_{X}\right)^{C}$ is the complete lift of the derivation $\hat{\nabla}_{X}$. We also know that the horizontal lifts are defined by $[4,8]$

$$
\begin{align*}
& I^{H}=I, I^{H} X^{v}=X^{V}, I^{v} X^{H}=X^{v}, I^{H} X^{H}=X^{H} \tag{36}\\
& X^{H} f^{v}=(X f)^{v},(f X)^{H}=f^{v} X^{H}, \omega^{H}\left(X^{H}\right)=0 \\
& \omega^{v}\left(X^{H}\right)=(\omega(X))^{v}, \omega^{H}\left(X^{v}\right)=(\omega(X))^{v}, \\
& F^{H} X^{v}=(F X)^{v}, F^{H} X^{H}=(F X)^{H}
\end{align*}
$$

Proposition 1. For any $X, Y \in \mathfrak{I}_{0}^{1}(M)$ [8]
(i) $\left[X^{V}, Y^{H}\right]=[X, Y]^{V}-\left(\nabla_{X} Y\right)^{V}=-\left(\hat{\nabla}_{Y} X\right)^{V}$,
(ii) $\left[X^{C}, Y^{H}\right]=[X, Y]^{H}-\gamma\left(L_{X} Y\right)$,
(iii) $\left[X^{H}, Y^{V}\right]=[X, Y]^{V}+\left(\nabla_{Y} X\right)^{V}$,
(iv) $\left[X^{H}, Y^{H}\right]=[X, Y]^{H}-\gamma \hat{R}(X, Y)$, where \hat{R} denotes the curvature tensor of the affine connection $\hat{\nabla}$.

Proposition 2. The horizontal lift ∇^{H} of an affine connection ∇ in M_{n} to $T(M)$ defined by the conditions of
$\nabla_{X^{V}}^{H} Y^{V}=0, \nabla_{X^{V}}^{H} Y^{H}=0$,
$\nabla_{X^{H}}^{H} Y^{V}=\left(\nabla_{X} Y\right)^{V}, \nabla_{X^{H}}^{H} Y^{H}=\left(\nabla_{X} Y\right)^{H}$
for any $X, Y \in \mathfrak{I}_{0}^{1}\left(M_{n}\right)$ [8].

2 Main results

2.1 Tachibana Operators Applied to X^{V} and X^{H} in Almost Paracontact Structure

Definition 1. Let an n-dimensional differentiable manifold M_{n} be endowed with a tensor field φ of type (1,1), a vector field ξ and a 1 -form η, I the identity and let them satisfy

$$
\begin{equation*}
\varphi^{2}=I-\eta \otimes \xi, \quad \varphi(\xi)=0, \quad \eta \circ \varphi=0, \quad \eta(\xi)=1 \tag{38}
\end{equation*}
$$

Then (φ, ξ, η) define almost paracontact structure on M_{n} [7]. From (38), we get on taking complete and vertical lifts [4]

$$
\begin{align*}
& \left(\varphi^{H}\right)^{2}=I-\eta^{v} \otimes \xi^{H}-\eta^{H} \otimes \xi^{v} \tag{39}\\
& \varphi^{H} \xi^{v}=0, \varphi^{H} \xi^{H}=0, \eta^{v} o \xi^{H}=0 \\
& \eta^{H} o \varphi^{H}=0, \eta^{v}\left(\xi^{v}\right)=0, \eta^{v}\left(\xi^{H}\right)=1 \\
& \eta^{H}\left(\xi^{v}\right)=1, \eta^{H}\left(\xi^{H}\right)=0
\end{align*}
$$

We now define a $(1,1)$ tensor field \widetilde{J} on $T\left(M_{n}\right)$ by

$$
\begin{equation*}
\widetilde{J}=\varphi^{H}-\xi^{v} \otimes \eta^{v}-\xi^{H} \otimes \eta^{H} \tag{40}
\end{equation*}
$$

Then it is easy to show that $\widetilde{J}^{2} X^{v}=X^{v}$ and $\widetilde{J}^{2} X^{c}=X^{c}$, which give that \widetilde{J} is an almost product structure on $T\left(M_{n}\right)$. We get from (40)

$$
\begin{align*}
\widetilde{J}^{v} & =(\varphi X)^{v}-(\eta(X) \xi)^{H}, \tag{41}\\
\widetilde{J} X^{H} & =(\varphi X)^{H}-(\eta(X) \xi)^{v}
\end{align*}
$$

for any $X \in \mathfrak{I}_{0}^{1}\left(M_{n}\right)$.

Definition 2. Let $\varphi \in \mathfrak{I}_{1}^{1}\left(M_{n}\right)$, and $\mathfrak{J}\left(M_{n}\right)=\sum_{r, s=0}^{\infty} \mathfrak{I}_{s}^{r}\left(M_{n}\right)$ be a tensor algebra over R. A map $\left.\phi_{\varphi}\right|_{r+s) 0}: \mathfrak{J}\left(M_{n}\right) \rightarrow \mathfrak{I}\left(M_{n}\right)$ is called a Tachibana operator or ϕ_{φ} operator on M_{n} if
(a) ϕ_{φ} is linear with respect to constant coefficient,
(b) $\phi_{\varphi}: \stackrel{*}{\mathfrak{J}}\left(M_{n}\right) \rightarrow \mathfrak{I}_{s+1}^{r}\left(M_{n}\right)$ for all r and s ,
(c) $\phi_{\varphi}(K \stackrel{C}{\otimes} L)=\left(\phi_{\varphi} K\right) \otimes L+K \otimes \phi_{\varphi} L$ for all $K, L \in \stackrel{*}{\mathfrak{I}}\left(M_{n}\right)$,
(d) $\phi_{\varphi X} Y=-\left(L_{Y} \varphi\right) X$ for all $X, Y \in \mathfrak{J}_{0}^{1}\left(M_{n}\right)$ where L_{Y} is the Lie derivation with respect to Y,
(e) $\left(\phi_{\varphi X} \eta\right) Y=\left(d\left(l_{Y} \eta(\phi X)-\left(d\left(l_{Y}(\eta o \phi) X+\eta\left(\left(L_{Y} \varphi\right) X\right)=\left(\phi X\left(l_{Y} \eta\right)\right)(\phi X)-X\left(\iota_{\varphi Y} \eta\right)+\eta\left(\left(L_{Y} \varphi\right) X\right)\right.\right.\right.\right.$
for all $\eta \in \mathfrak{J}_{1}^{0}\left(M_{n}\right)$ and $X, Y \in \mathfrak{I}_{0}^{1}\left(M_{n}\right)$, where $l_{Y} \eta=\eta(Y)=\eta \stackrel{C}{\otimes} Y, \mathfrak{J}_{s}^{r}\left(M_{n}\right)$ the module of all pure tensor fields of type (r, s) on M_{n} with respect to the affinor field φ [5].

Theorem 1. For ϕ_{φ} Tachibana operator on M_{n}, L_{X} the operator Lie derivation with respect to $X, \widetilde{J} \in \mathfrak{I}_{1}^{1}\left(T\left(M_{n}\right)\right)$ defined by (40) and $\eta(Y)=0$, we have
(i) $\quad \phi_{\widetilde{J} Y^{v}} X^{H}=-\left(\left(\hat{\nabla}_{X} \varphi\right) Y\right)^{v}+\left(\left(\hat{\nabla}_{X} \eta\right) Y\right)^{v} \xi^{H}$,
(ii) $\quad \phi_{\widetilde{J Y}{ }^{H}} X^{H}=-\left(\left(L_{X} \varphi\right) Y\right)^{H}+\gamma \hat{R}(X, \varphi Y)+\left(\left(L_{X} \eta\right) Y\right)^{v} \xi^{v}-\varphi^{H} \gamma \hat{R}(X, Y)+\left(\eta^{v} \gamma \hat{R}(X, Y)\right) \xi^{v}+\left(\eta^{H} \gamma \hat{R}(X, Y)\right) \xi^{H}$,
(iii) $\phi_{\widetilde{J}^{V}} X^{v}=0$,
(iv) $\quad \phi_{\widetilde{J} Y^{H}} X^{v}=-\left(\left(L_{X} \varphi\right) Y\right)^{v}+\left(\left(\nabla_{X} \varphi\right) Y\right)^{v}+\left(\left(L_{X} \eta\right) Y\right)^{v} \xi^{H}-\left(\left(\nabla_{X} \eta\right) Y\right)^{v} \xi^{H}$,
where $X, Y \in \mathfrak{I}_{0}^{1}\left(M_{n}\right)$, a tensor field $\varphi \in \mathfrak{I}_{1}^{1}\left(M_{n}\right)$, a vector field ξ and a 1 -form $\eta \in \mathfrak{I}_{1}^{0}\left(M_{n}\right)$.

Proof. For $\widetilde{J}=\varphi^{H}-\xi^{v} \otimes \eta^{v}-\xi^{H} \otimes \eta^{H}$ and $\eta(Y)=0$, we get
(i) $\phi_{\widetilde{J}^{v}} X^{H}=-\left(L_{X^{H}} \widetilde{J}\right) Y^{v}=-\left(L_{X^{H}} \widetilde{J} Y^{v}-\widetilde{J} L_{X^{H}} Y^{v}\right)$

$$
\begin{aligned}
= & -\left[X^{H},(\varphi Y)^{v}-(\eta(Y) \xi)^{H}\right]+\left(\varphi^{H}-\xi^{v} \otimes \eta^{v}-\xi^{H} \otimes \eta^{H}\right)\left[X^{H}, Y^{v}\right] \\
= & -\left[X^{H},(\varphi Y)^{v}\right]+\left[X^{H},(\eta(Y) \xi)^{H}\right]+\varphi^{H}\left[X^{H}, Y^{v}\right]-\eta^{v}\left(\left[X^{H}, Y^{v}\right]\right) \xi^{v}-\eta^{H}\left(\left[X^{H}, Y^{v}\right]\right) \xi^{H} \\
= & -[X, \varphi Y]^{v}-\left(\nabla_{\varphi Y} X\right)^{v}+\varphi^{H}\left([X, Y]^{v}+\left(\nabla_{Y} X\right)^{v}\right)-\eta^{v}\left([X, Y]^{v}+\left(\nabla_{Y} X\right)^{v}\right) \xi^{v} \\
& -\eta^{H}\left([X, Y]^{v}+\left(\nabla_{Y} X\right)^{v}\right) \xi^{H} \\
= & -\left(\left(L_{X} \varphi\right) Y\right)^{v}-\left(\varphi\left(L_{X} Y\right)\right)^{v}-\left(\hat{\nabla}_{X} \varphi Y\right)^{v}-[\varphi Y, X]^{v}+\left(\varphi L_{X} Y\right)^{v}+\left(\varphi \nabla_{Y} X\right)^{v} \\
& -\eta^{v}\left([X, Y]^{v}\right) \xi^{v}-\left(\eta^{v}\left(\nabla_{Y} X\right)^{v}\right) \xi^{v}-(\eta[X, Y])^{v} \xi^{H}-\eta^{H}\left(\nabla_{Y} X\right)^{v} \xi^{H} \\
= & -\left(\left(L_{X} \varphi\right) Y\right)^{v}-\left(\varphi\left(L_{X} Y\right)\right)^{v}-\left(\left(\hat{\nabla}_{X} \varphi\right) Y\right)^{v}-\left(\varphi \hat{\nabla}_{X} Y\right)^{v}+\left(\left(L_{X} \varphi\right) Y\right)^{v} \\
& +\left(\varphi\left(L_{X} Y\right)\right)^{v}+\left(\varphi\left(L_{X} Y\right)\right)^{v}+\left(\varphi \nabla_{Y} X\right)^{v}-(\eta[X, Y])^{v} \xi^{H}-\left(\eta^{H}\left(\nabla_{Y} X\right)^{v}\right) \xi^{H} \\
= & -\left(\left(\hat{\nabla}_{X} \varphi\right) Y\right)^{v}-\left(\varphi \hat{\nabla}_{X} Y\right)^{v}+\left(\varphi\left(L_{X} Y\right)\right)^{v}+\varphi^{H}\left(\nabla_{Y} X\right)^{v}+\left(\left(L_{X} \eta\right) Y\right)^{v} \xi^{H} \\
& -\left(\eta^{H}\left(\left(\hat{\nabla}_{X} Y\right)^{v}+[Y, X]^{v}\right)\right) \xi^{H} \\
= & -\left(\left(\hat{\nabla}_{X} \varphi\right) Y\right)^{v}-\left(\varphi \hat{\nabla}_{X} Y\right)^{v}+\left(\varphi\left(L_{X} Y\right)\right)^{v}+\varphi^{H}\left(\left(\hat{\nabla}_{X} Y\right)^{v}+[Y, X]^{v}\right) \\
& +\left(\left(L_{X} \eta\right) Y\right)^{v} \xi^{H}-\left(\eta\left(\hat{\nabla}_{X} Y\right)^{v}\right) \xi^{H}-\left(\eta\left(L_{Y} X\right)\right)^{v} \xi^{H} \\
= & -\left(\left(\hat{\nabla}_{X} \varphi\right) Y\right)^{v}-\left(\varphi \hat{\nabla}_{X} Y\right)^{v}+\left(\varphi\left(L_{X} Y\right)\right)^{v}+\left(\varphi\left(\hat{\nabla}_{X} Y\right)\right)^{v}-\left(\varphi\left(L_{X} Y\right)\right)^{v} \\
& \left.+\left(\left(L_{X} \eta\right) Y\right)^{v} \xi^{H}+\left(\left(\hat{\nabla}_{X} \eta\right) Y\right)^{v}\right) \xi^{H}+\left(\eta\left(L_{X} Y\right)\right)^{v} \xi^{H} \\
= & -\left(\left(\hat{\nabla}_{X} \varphi\right) Y\right)^{v}-\left(\varphi \hat{\nabla}_{X} Y\right)^{v}+\left(\varphi\left(\hat{\nabla}_{X} Y\right){)^{v}+\left(\left(L_{X} \eta\right) Y\right)^{v} \xi^{H}+\left(\left(\hat{\nabla}_{X} \eta\right) Y\right)^{v}\right) \xi^{H}-\left(\left(L_{X} \eta\right) Y\right)\right)^{v} \xi^{H}}_{=}^{=}-\left(\left(\hat{\nabla}_{X} \varphi\right) Y\right)^{v}+\left(\left(\hat{\nabla}_{X} \eta\right) Y\right)^{v}\right) \xi^{H},
\end{aligned}
$$

(ii) $\phi_{\widetilde{J} Y^{H}} X^{H}=-\left(L_{X^{H}} \widetilde{J}\right) Y^{H}=-L_{X^{H}} \widetilde{J} Y^{H}+\widetilde{J} L_{X^{H}} Y^{H}$

$$
=-\left[X^{H},(\varphi Y)^{H}-(\eta(Y) \xi)^{v}\right]+\left(\varphi^{H}-\xi^{v} \otimes \eta^{v}-\xi^{H} \otimes \eta^{H}\right)\left[X^{H}, Y^{H}\right]
$$

$$
=-\left[X^{H},(\varphi Y)^{H}\right]+\left[X^{H},(\eta(Y) \xi)^{v}\right]+\varphi^{H}\left[X^{H}, Y^{H}\right]-\eta^{v}\left(\left[X^{H}, Y^{H}\right]\right) \xi^{v}-\eta^{H}\left(\left[X^{H}, Y^{H}\right]\right) \xi^{H}
$$

$$
=-[X, \varphi Y]^{H}+\gamma \hat{R}(X, \varphi Y)+\varphi^{H}\left([X, Y]^{H}-\gamma \hat{R}(X, Y)\right)
$$

$$
-\eta^{v}\left([X, Y]^{H}-\gamma \hat{R}(X, Y)\right) \xi^{v}-\eta^{H}\left([X, Y]^{H}-\gamma \hat{R}(X, Y)\right) \xi^{H}
$$

$$
=-\left(\left(L_{X} \varphi\right) Y\right)^{H}-\left(\varphi\left(L_{X} Y\right)\right)^{H}+\gamma \hat{R}(X, \varphi Y)+\left(\varphi\left(L_{X} Y\right)\right)^{H}-\varphi^{H} \gamma \hat{R}(X, Y)
$$

$$
-\left(\eta L_{X} Y\right)^{v} \xi^{v}+\left(\eta^{v} \gamma \hat{R}(X, Y)\right) \xi^{v}+\eta^{H}\left([X, Y]^{H}\right) \xi^{H}+\left(\eta^{H} \gamma \hat{R}(X, Y)\right) \xi^{H}
$$

$$
=-\left(\left(L_{X} \varphi\right) Y\right)^{H}+\gamma \hat{R}(X, \varphi Y)+\left(\left(L_{X} \eta\right) Y\right)^{v} \xi^{v}-\varphi^{H} \gamma \hat{R}(X, Y)+\left(\eta^{v} \gamma \hat{R}(X, Y)\right) \xi^{v}+\left(\eta^{H} \gamma \hat{R}(X, Y)\right) \xi^{H}
$$

$$
=-\left(\left(L_{X} \varphi\right) Y\right)^{H}+\gamma \hat{R}(X, \varphi Y)+\left(\left(L_{X} \eta\right) Y\right)^{v} \xi^{v}-\widetilde{J}(\gamma \hat{R}(X, Y))
$$

(iii) $\phi_{\widetilde{J} Y^{v}} X^{v}=-\left(L_{X^{v}} \widetilde{J}\right) Y^{v}=-L_{X^{v}} \widetilde{J} Y^{v}+\widetilde{J} L_{X^{v}} Y^{v}$

$$
\begin{aligned}
& =-\left[X^{v},(\varphi Y)^{v}-(\eta(Y) \xi)^{H}\right]+\left(\varphi^{H}-\xi^{v} \otimes \eta^{v}-\xi^{H} \otimes \eta^{H}\right)\left[X^{v}, Y^{v}\right] \\
& =-\left[X^{v},(\varphi Y)^{v}\right]+\left[X^{v},(\eta(Y) \xi)^{H}\right] \\
& =0
\end{aligned}
$$

(iv) $\phi_{\widetilde{J} Y^{H}} X^{v}=-\left(L_{X^{v}} \widetilde{J}\right) Y^{H}=-L_{X^{v}} \widetilde{J} Y^{H}+\widetilde{J} L_{X^{v}} Y^{H}$

$$
=-\left[X^{v},(\varphi Y)^{H}-(\eta(Y) \xi)^{v}\right]+\left(\varphi^{H}-\xi^{v} \otimes \eta^{v}-\xi^{H} \otimes \eta^{H}\right)\left[X^{v}, Y^{H}\right]
$$

$$
=-\left[X^{v},(\varphi Y)^{H}\right]+\left[X^{v},(\eta(Y) \xi)^{v}\right]+\varphi^{H}\left[X^{v}, Y^{H}\right]-\eta^{v}\left(\left[X^{v}, Y^{H}\right]\right) \xi^{v}-\eta^{H}\left(\left[X^{v}, Y^{H}\right]\right) \xi^{H}
$$

$$
=-[X, \varphi Y]^{v}+\left(\nabla_{X} \varphi Y\right)^{v}+\varphi^{H}\left([X, Y]^{v}-\left(\nabla_{X} Y\right)^{v}\right)-\eta^{v}\left([X, Y]^{v}-\left(\nabla_{X} Y\right)^{v}\right) \xi^{v}-\eta^{H}\left([X, Y]^{v}-\left(\nabla_{X} Y\right)^{v}\right) \xi^{H}
$$

$$
=-\left(\left(L_{X} \varphi\right) Y\right)^{v}-\left(\varphi\left(L_{X} Y\right)\right)^{v}+\left(\left(\nabla_{X} \varphi\right) Y\right)^{v}+\left(\varphi \nabla_{X} Y\right)^{v}+\left(\varphi\left(L_{X} Y\right)\right)^{v}
$$

$$
-\left(\varphi \nabla_{X} Y\right)^{v}-\eta^{v}\left([X, Y]^{v}\right) \xi^{v}+\eta^{v}\left(\nabla_{X} Y\right)^{v} \xi^{v}-\left(\eta L_{X} Y\right)^{v} \xi^{H}+\left(\eta \nabla_{X} Y\right)^{v} \xi^{H}
$$

$$
=-\left(\left(L_{X} \varphi\right) Y\right)^{v}+\left(\left(\nabla_{X} \varphi\right) Y\right)^{v}+\left(\left(L_{X} \eta\right) Y\right)^{v} \xi^{H}-\left(\left(\nabla_{X} \eta\right) Y\right)^{v} \xi^{H}
$$

where $\left.\eta L_{X} Y=L_{X} \eta(Y)-\left(L_{X} \eta\right) Y\right)$ and $\left.\eta \nabla_{X} Y=\nabla_{X} \eta(Y)-\left(\nabla_{X} \eta\right) Y\right), \varphi Y \in \mathfrak{I}_{0}^{1}\left(M_{n}\right)$.
Corollary 1. If we put $Y=\xi$, i.e. $\eta(\xi)=1$ and ξ has the conditions of (38), then we have
(i) $\phi_{\widetilde{J} \xi^{v}} X^{H}=\left(L_{X} \xi\right)^{H}-\gamma \hat{R}(X, \xi)-\left(\left(\hat{\nabla}_{X} \varphi\right) \xi\right)^{v}+\left(\left(\hat{\nabla}_{X} \eta\right) \xi\right)^{v} \xi^{H}$,
(ii) $\phi_{\widetilde{J} \xi^{H}} X^{H}=\left(\hat{\nabla}_{X} \xi\right)^{\nu}-\left(\left(L_{X} \varphi\right) \xi\right)^{H}+\left(\left(L_{X} \eta\right) \xi\right)^{v} \xi^{v}-\varphi^{H} \gamma \hat{R}(X, \xi)+\left(\eta^{v} \gamma \hat{R}(X, \xi)\right) \xi^{v}+\left(\eta^{H} \gamma \hat{R}(X, \xi)\right) \xi^{H}$,
(iii) $\phi_{\widetilde{J} \xi^{\nu}} X^{v}=-\left(\hat{\nabla}_{\xi} X\right)^{v}$,
(iv) $\phi_{\widetilde{J} \xi^{H}} X^{v}=-\left(\left(L_{X} \varphi\right) \xi\right)^{v}+\left(\left(\nabla_{X} \varphi\right) \xi\right)^{v}+\left(\left(L_{X} \eta\right) \xi\right)^{v} \xi^{H}-\left(\left(\nabla_{X} \eta\right) \xi\right)^{v} \xi^{H}$.

2.2 Vishnevskii Operators Applied to X^{V} and X^{H} in Almost Paracontact Structure

Definition 3. Suppose now that ∇ is a linear connection on M, and let $\varphi \in \mathfrak{I}_{1}^{1}\left(M_{n}\right)$. We can replace the condition d) of defination 2 by

$$
\left.d^{\prime}\right) \psi_{\varphi X} Y=\nabla_{\varphi X} Y-\varphi \nabla_{X} Y
$$

for any $X, Y \in \mathfrak{I}_{0}^{1}\left(M_{n}\right)$. Then we can consider a new operator by a Vishnevskii operator or $\psi_{\varphi}-$ operator on M, we shall mean a map $\psi_{\varphi}: \mathfrak{J}\left(M_{n}\right) \rightarrow \mathfrak{I}\left(M_{n}\right)$, which satisfies conditions $\left.\left.\left.a\right), b\right), c\right), e$) of definition 2 and the condition $\left(d^{\prime}\right)$ [5].

Theorem 2. For ψ_{φ} Vishnevskii operator on M_{n}, ∇^{H} the horizontal lift of an affine connection ∇ in M_{n} to $T\left(M_{n}\right)$, $\widetilde{J} \in \mathfrak{I}_{1}^{1}\left(T\left(M_{n}\right)\right)$ defined by (40), we have
(i) $\quad \psi_{\widetilde{J} V^{v}} Y^{H}=-\left(\eta(X) \nabla_{\xi} Y\right)^{H}$,
(ii) $\quad \psi_{\tilde{J} X^{H}} Y^{v}=\left(\left(\hat{\nabla}_{Y} \varphi\right) X\right)^{v}-\left(\left(L_{Y} \varphi\right) X\right)^{v}+\left(\eta \hat{\nabla}_{Y} X\right)^{v} \xi^{H}-\left(\eta L_{Y} X\right)^{v} \xi^{H}$,
(iii) $\psi_{\widetilde{J}^{V}} Y^{v}=-\left(\eta(X) \nabla_{\xi} Y\right)^{v}$,
(iv) $\quad \psi_{\tilde{J} X^{H}} Y^{H}=\left(\left(\hat{\nabla}_{Y} \varphi\right) X\right)^{H}-\left(\left(L_{Y} \varphi\right) X\right)^{H}+\left(\eta \hat{\nabla}_{Y} X\right)^{v} \xi^{v}-\left(\eta L_{Y} X\right)^{v} \xi^{v}$,
where $X, Y \in \mathfrak{I}_{0}^{1}\left(M_{n}\right)$, a tensor field $\varphi \in \mathfrak{I}_{1}^{1}\left(M_{n}\right)$, a vector field ξ and a 1 -form $\eta \in \mathfrak{I}_{1}^{0}\left(M_{n}\right)$.
Proof. For $\widetilde{J}=\varphi^{H}-\xi^{v} \otimes \eta^{v}-\xi^{H} \otimes \eta^{H}$, we get
(i) $\psi_{\widetilde{J} X^{v}} Y^{H}=\nabla_{\widetilde{J} X^{v}}^{H} Y^{H}-\widetilde{J} \nabla_{X^{v}}^{H} Y^{H}$

$$
\begin{aligned}
& =\nabla_{(\varphi X)^{v}-(\eta(X) \xi)^{H}}^{H} Y^{H}-\left(\varphi^{H}-\xi^{v} \otimes \eta^{v}-\xi^{H} \otimes \eta^{H}\right) \nabla_{X^{v}}^{H} Y^{H} \\
& =\nabla_{(\varphi X)^{v}}^{H} Y^{H}-(\eta(X))^{v} \nabla_{\xi^{H}}^{H} Y^{H} \\
& =-(\eta(X))^{v}\left(\nabla_{\xi} Y\right)^{H} \\
& =-\left(\eta(X) \nabla_{\xi} Y\right)^{H},
\end{aligned}
$$

(ii) $\psi_{\widetilde{J} X^{H}} Y^{v}=\nabla_{\widetilde{J} X^{H}}^{H} Y^{v}-\widetilde{J} \nabla_{X^{H}}^{H} Y^{v}$

$$
\begin{aligned}
= & \nabla_{(\varphi X)^{H}-(\eta(X) \xi)^{v} Y^{v}-\left(\varphi^{H}-\xi^{v} \otimes \eta^{v}-\xi^{H} \otimes \eta^{H}\right) \nabla_{X}^{H} Y^{v}} \\
= & \nabla_{(\varphi X)^{H}}^{H} Y^{v}-(\eta(X))^{v} \nabla_{\xi^{v}}^{H} Y^{v}-\varphi^{H}\left(\nabla_{X} Y\right)^{v}+\eta^{v}\left(\nabla_{X} Y\right)^{v} \xi^{v} \\
& +\eta^{H}\left(\nabla_{X} Y\right)^{v} \xi^{H} \\
= & \left(\hat{\nabla}_{Y} \varphi X\right)^{v}+[\varphi X, Y]^{v}-\varphi^{H}\left(\left(\hat{\nabla}_{Y} X\right)^{v}+[X, Y]^{v}\right)+\left(\eta \nabla_{X} Y\right)^{v} \xi^{H} \\
= & \left(\left(\hat{\nabla}_{Y} \varphi\right) X\right)^{v}+\left(\varphi \hat{\nabla}_{Y} X\right)^{v}-\left(\left(L_{Y} \varphi\right) X\right)^{v}-\left(\varphi\left(L_{Y} X\right)\right)^{v} \\
& -\left(\varphi \hat{\nabla}_{Y} X\right)^{v}+\left(\varphi\left(L_{Y} X\right)\right)^{v}+\left(\eta \nabla_{X} Y\right)^{v} \xi^{H} \\
= & \left(\left(\hat{\nabla}_{Y} \varphi\right) X\right)^{v}-\left(\left(L_{Y} \varphi\right) X\right)^{v}+\left(\eta \nabla_{X} Y\right)^{v} \xi^{H} \\
= & \left(\left(\hat{\nabla}_{Y} \varphi\right) X\right)^{v}-\left(\left(L_{Y} \varphi\right) X\right)^{v}+\eta^{H}\left(\left(\hat{\nabla}_{Y} X\right)^{v}+[X, Y]^{v}\right) \xi^{H} \\
= & \left(\left(\hat{\nabla}_{Y} \varphi\right) X\right)^{v}-\left(\left(L_{Y} \varphi\right) X\right)^{v}+\left(\eta \hat{\nabla}_{Y} X\right)^{v} \xi^{H}-\left(\eta L_{Y} X\right)^{v} \xi^{H},
\end{aligned}
$$

(iii) $\psi_{\widetilde{X^{v}}} Y^{v}=\nabla_{\widetilde{J} X^{v}}^{H} Y^{v}-\widetilde{J} \nabla_{X^{v}}^{H} Y^{v}$

$$
\begin{aligned}
& =\nabla_{(\varphi X)^{v}-(\eta(X) \xi)^{H}}^{H} Y^{v}-\left(\varphi^{H}-\xi^{v} \otimes \eta^{v}-\xi^{H} \otimes \eta^{H}\right) \nabla_{X^{v}}^{H} Y^{v} \\
& =\nabla_{(\varphi X)^{v}}^{H} Y^{v}-(\eta(X))^{v} \nabla_{\xi^{H}}^{H} Y^{v} \\
& =-(\eta(X))^{v}\left(\nabla_{\xi} Y\right)^{v} \\
& =-\left(\eta(X) \nabla_{\xi} Y\right)^{v},
\end{aligned}
$$

(iv) $\psi_{\widetilde{J} X^{H}} Y^{H}=\nabla_{\widetilde{J} X^{H}}^{H} Y^{H}-\widetilde{J}_{X^{H}}^{H} Y^{H}$

$$
\begin{aligned}
= & \nabla_{(\varphi X)^{H}-(\eta(X) \xi)^{v} Y^{H}-\left(\varphi^{H}-\xi^{v} \otimes \eta^{v}-\xi^{H} \otimes \eta^{H}\right) \nabla_{X^{H}}^{H} Y^{H}}^{=} \\
= & \nabla_{(\varphi X)^{H}}^{H} Y^{H}-(\eta(X))^{v} \nabla_{\xi^{v}}^{H} Y^{H}-\varphi^{H}\left(\nabla_{X} Y\right)^{H}+\eta^{v}\left(\nabla_{X} Y\right)^{H} \xi^{v}+\eta^{H}\left(\nabla_{X} Y\right)^{H} \xi^{H} \\
= & \left(\nabla_{\varphi X} Y\right)^{H}-\left(\varphi \nabla_{X} Y\right)^{H}+\left(\eta \nabla_{X} Y\right)^{v} \xi^{v} \\
= & \left(\left(\hat{\nabla}_{Y} \varphi X\right)+[\varphi X, Y]\right)^{H}-\varphi^{H}\left(\hat{\nabla}_{Y} X+[X, Y]\right)^{H}+\eta^{v}\left(\hat{\nabla}_{Y} X+[X, Y]\right)^{H} \xi^{v} \\
= & \left(\left(\hat{\nabla}_{Y} \varphi\right) X\right)^{H}+\left(\varphi \hat{\nabla}_{Y} X\right)^{H}-\left(\left(L_{Y} \varphi\right) X\right)^{H}-\left(\varphi\left(L_{Y} X\right)\right)^{H} \\
& -\left(\varphi \hat{\nabla}_{Y} X\right)^{H}+\left(\varphi\left(L_{Y} X\right)\right)^{H}+\left(\eta \hat{\nabla}_{Y} X\right)^{v} \xi^{v}-\left(\eta L_{Y} X\right)^{v} \xi^{v} \\
= & \left(\left(\hat{\nabla}_{Y} \varphi\right) X\right)^{H}-\left(\left(L_{Y} \varphi\right) X\right)^{H}+\left(\eta \hat{\nabla}_{Y} X\right)^{v} \xi^{v}-\left(\eta L_{Y} X\right)^{v} \xi^{v} .
\end{aligned}
$$

Corollary 2. If we put $X=\xi$, i.e. $\eta(\xi)=1$ and ξ has the conditions of (38), then we have
(i) $\psi_{\widetilde{J}{ }^{\nu}} Y^{H}=-\left(\nabla_{\xi} Y\right)^{H}$,
(ii) $\psi_{\widetilde{J} \xi^{H}} Y^{v}=\left(\left(\hat{\nabla}_{Y} \varphi\right) \xi\right)^{v}-\left(\left(L_{Y} \varphi\right) \xi\right)^{v}-\left(\left(\hat{\nabla}_{Y} \eta\right) \xi\right)^{v} \xi^{H}+\left(\left(L_{Y} \eta\right) X\right)^{v} \xi^{H}$,
(iii) $\psi_{\widetilde{J} \xi^{\nu}} Y^{v}=-\left(\nabla_{\xi} Y\right)^{v}$,
(iv) $\psi_{\widetilde{J} \xi^{H}} Y^{H}=\left(\left(\hat{\nabla}_{Y} \varphi\right) \xi\right)^{H}-\left(\left(L_{Y} \varphi\right) \xi\right)^{H}-\left(\left(\hat{\nabla}_{Y} \eta\right) \xi\right)^{v} \xi^{v}+\left(\left(L_{Y} \eta\right) \xi\right)^{\nu} \xi^{v}$.

3 Conclusion

The paper deals with Tachibana and Vishnevskii operators applied to X^{V} and X^{H} in almost paracontact structure on tangent bundle $T(M)$. Firstly, we give some properties about vertical lifts, complete lifts, horizontal lifts and almost paracontact structure on tangent bundle and we get some general conclusions on M after the Tachibana and Vishnevskii operators applied on almost parakontakt structure. Later, by using features of almost parakontakt structure, we obtain several new results in almost paracontact structure on $T(M)$.

References

[1] D.E.Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Math, 509, Springer Verlag, New York, (1976).
[2] S.Das, Lovejoy, Fiberings on almost r-contact manifolds, Publicationes Mathematicae, Debrecen, Hungary 43 (1993) 161-167.
[3] V.Oproiu, Some remarkable structures and connexions, defined on the tangent bundle, Rendiconti di Matematica 3 (1973) 6 VI.
[4] T.Omran, A.Sharffuddin, S.I.Husain, Lift of Structures on Manifolds, Publications de 1’Instıtut Mathematıqe, Nouvelle serie, 360 (50) (1984) $93-97$.
[5] A.A.Salimov, Tensor Operators and Their applications, Nova Science Publ., New York (2013).
[6] S.Sasaki, On The Differantial Geometry of Tangent Boundles of Riemannian Manifolds, Tohoku Math. J., no.10(1958) 338-358.
[7] A.A.Salimov, H.Çayır, Some Notes On Almost Paracontact Structures, Comptes Rendus de 1'Acedemie Bulgare Des Sciences, tome 66 (3) (2013) 331-338.
[8] K. Yano, S.Ishihara, Tangent and Cotangent Bundles, Marcel Dekker Inc, New York (1973).

