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Abstract: The inverse problem of Stephan in which, beside the unknawmation, the much unknown equation, the whole boundary
or part of it is unknown for the parabolic equations and rédgeor hyperbolic equations has been studied.

In this paper the single-phase of Stephan problem will bel taking the Continue method and for every point the answehef
problem will be calculated as definite expressions. It issfide to use this answer as the approximate answer.
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1 Introduction

In classic differential equation for parabolic equatiomedt equation) and hyperbolic equations (string vibration
equation), the Cauchy problem and mixed problem, and foEthgtic equation the boundary value problem of Diriclet
and Neumann and special case of Poincare have been stueBgd [1

As we go on, the boundary value problem in elliptic equatitresrest of Neuman problem or the Poincare problem in

which derivation stamina in the optional boundary (not tmtjyis taken into account has been studied [4,5]. After, that

to continue those problems the boundary value problem winéshthe condition of being nonlocal, has been considered
in the elliptic equations [6,7].

At first a French mathematician named Hadamard, has showreisdlving of the problems of Mathematical physics
that the Cauchy problem is not well-posed for elliptic peobk [3,8] and it has been proved later that the boundary value
problem is not well-posed for hyperbolic problems, [9] eithBecause the mathematical models of the geophysical
phenomena have a cauchy problem for elliptic problems. Rigrreason Tykhonov has found well-posed classes for
these problems and later Lavrintov and his students hadéstthese problems later.

In the problems studied by Tykhonov and Lavrintov sometithescoefficients of the equation or the coefficients of the
boundary conditions and or the right side of the equatiomisnown and these problems are called inverse problems.
There are some other inverse problems, which are Stepharsaproblems which beside the unknown function of the
equation the whole boundary or part of it is unknown. Modtlgge problems are applied for the parabolic equations and
recently have been applied for the hyperbolic equation§10€l2].

Using the continue method [13] we study the mixed inversdlera for the hyperbolic equations. The advantage of the
method compared with the others is that for every point wetfiiedanswer analytically as finite expressions.
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2 The method

Consider the following problem:

ot2 ox? @

u(x,0) = @(x) O<x<ylt), t>0 )
M| =0 0<xsy0)-1

u(0,t) = u(y(t),t) =0, t>0 3)

In which ¢@(x) and y(t) arbitrary functions have been given apd0) = ¢(1) = 0 We can easily see that whenever

L |

(x,t) € 1K, the solution to the problem (1)-(3) is not dependent onrtatzwy and boundary condition (3) and the solution

is as following:

P(x—t) + @(x+1)
2 )

Whenever(x,t) € Il characteristic of equation (1) crossing this point, aigom right in (0,1) and from left in(—1,0).

In this case itis necessary that function (2) is extend€d-th 0). For this purpose we have from first boundary condition:

u(x,t) = (xt) el 4)

This means thap(x) which has been given in [0,1] interval is continued to ledifrzero pointin the from of odd function,

if we considerg,(x) as following:
0 { o),  xe[0.1] -

The solution to this mixed problem using this function is @ltofving:

(pz(X—t)—;(pz(X—i—t)’ (X,t) cll (6)

u(x,t) =
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If (x,t) € lll, characteristic of equation (1) passing this point cut @f§a in (0,2x;) interval. For this reason function
@(x) which is known in (0,1) interval is continued tb, 2x;] interval. For this continuation we have from second bouyndar
condition of (3):

P(y(t) +1) = —(y(t) - t) (7

Herey(t) —t € [0,1],t € [O,t1].

We can easily see thg{0) — 0= 1,y(t1) —t1 = y(t1) — x3 = 0 In this way ift € [0,t1], @(x) from [0,1] interval from
relation (7) is continued tf, y(t1) +t;] interval.

y(t1) +t1 =X+t = 2%

Thus with definition:

QO(X), XG[Ovl]
_ 8
o { —,(Y(x+0(x) — (x+0(x))  Xx€[1,2x] B

The solution to problem (1)-(3) is:

u(x,t) = , (x,t) e lll 9)

Heret = x+ g(x) is a solutiony(t) +t = x:
y(x+o(X)+o(x)=0  xe[1,2x]

ot+yt)+yt)=0  telty]

Point 1: In recent case if we consider functigi{x) instead of functionp(x), we will have the continuation of function
in biggest right interval in which the solution to problenirisboth 11l and VI and IV.

We can continue this to left or right. In this case we will h#ive following theorem:

Theorem 1. Whenever x [0, 1]; ¢(x) and y(x),t > 0 are known function and twice differentiable apf0) = ¢(1) =0
and y(0) = 1 and all the functions and the result of extension of are fiondn the space of? and y(t) +-t = x is the
unique solution to & x+ g (x), in this case the unique solution to problem (1)-(3) is tlylstep by step method.

Now we deal with Stephans inverse problem. We assume that{dr functions,y(t) is a unknown function. In this case
we add the following condition (1)-(3) problem:

t) = , t>0 10
VO =505 b (10)
In the inverse problem (10) and (1)-(3) like previous mixeolgem, if (x,t) € |, the solution to inverse problem (10) and
(1)-(3) will be as relation (4). Whenevéx,t) € Il like previous mixed problem, The solution to inverse prablegill be
like (6) which has been given using(x) function in (5). Whenevefx,t) € 11l , becauseg(t) is an unknown function. We
will deal with all possible cases tt):

State 1y/(t) < —1, it means that the boundary for smigjlare placed in area. Since characteristic of each poink gut
off x axis in [0,1] interval, whenever solutions (1)-(2) whichiristhe from of (4) are placed in the second condition of
(3). We will have:

e(y(t) —t) +o(yt)+1)=0,  y(t)-te(0,1), yt)+te(0,1)
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Thus functiong(x) in [0,1] interval is not arbitrary. Even amounts of this ftina have different signs for nearly points.
This contrasts with the continuity @f(x) function. Thusp(x) = 0;x € [0,1] as a result(x,t) = 0.

State 2:y/(t) = 1; in this case/(t) boundary coincides with area boundary passing froxn= 1, since this boundary is
one of characteristics of equation () = 1—t or y(t) +t = 1 like state 1 we have:

eyt) —t) = p(1-2) = —(y(t) +1) = (1) =0,  1-2t<[0,1]
In this state the solution to mixed problem will bewds,t) = 0.
State3—1 < y(t) < 0;inthis case-t < y(t) —y(0) < Oor—t < y(t) —1<Oorl—-t < y(t) <1

We will have: 1- 2t < y(t) —t < 1,1 < y(t) +t < 1+t whenevewy(t) —t € [0,1] theny(t) +t > 1. This means that from
second condition of (3) functio@(x) is expanded to right from [0,1] area. Because of expansidaraftion ¢(x) to left,
we can consider(t) —t € [-1,1], in this case the solution to the equatipft) —t = 1 is t;, we will have the
continuation of functionp(x) in [1,2x;] which 2x; = y(t1) +t1, in this case first we specify functiop(t). If we put
solution (6) in condition (10), we will have:

Y (t) = S[@(v(t) —t) + @ (y(t) +1)] (11)

NI =

How we put (6) in second condition of (3)

@(y(t) =) + @(v(t) +1) =0
Gy -/ 1) -1+ @yt +)(Y(t)+1)=0
From this we determing(y(t) +t) and putin (11), Thus we have:

1
V(0 = 310 =8+ T @) )
or
Y(O)(1+Y (1) = @(y(t) —t) (12)
(V) +Y (1) —g(v(t) —t) =0 (13)
The roots of this quadratic in relation (t) are:
Vit) = —1F /1+4@(y(t) —1) (14)
2

We have from(12):
@(y(t)—1) <0

If we want the roots of equation (14) to be real, we should have

1+4¢(y(t)—t)>0 or —% < @h(y(t)—t) <0, t e [0,t] (15)

(© 2016 BISKA Bilisim Technology
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In this case both relations (14) are possible. Thus we dehlbwaith states separately whenever

Vi) = —1+ \/1+;1¢5(y(t) —t) (16)

In this case we will have foy(t):

Vit —17—+2/,/1+444 )—ndr  te o] (17)

After having functiony(t) from (17), we will have the solution to the problem (at) like previous mixed problem.

Whenever
Vt) = —1—/1+4¢(y(t) —t) (18)

2

Then we have following equation fgrt)

=141 [ raedv nar teou as)

Point 2: In these two cases, since none of relationgfigrare not in contrast with each other we will have two solutions
for u(x,t) and this is not possible because of unique solution of thilgno.

State 4:y/(t) = 0; in this casey(t) = y(0) = 1. In this case we will continue functiop(x) to right fromx = 1 in the
method that we continued this function to left frore= 0 oddly. This state has already been reviewed [1,3,8,13].

State 5: 0< y/(t) < 1 in this state K y(t) < 1+t therefore
1-t<yt)—t<l 14t<ylt)+t<l+2t (20)

Considering the expansion gfx) to left we can havey(t) —t € [—1,1] in this state the functioy/ (t) has been given as
relation (14). From relation (12) we wii(y(t) —t) > 0. Thus both roots of relation (14) will be real but whenever

Vi) = -1-/1+ 42phi’2(y(t) —t)

Because of & y/(t) < 1 we will have,/1+ 4phi,(y(t) —t) < —1 and this is not acceptable thus we always have in state
5.

Vi) = -1+ \/1+42phi’2(y(t) —t)

Therefore whenever we show the solutionyfo) —t = —1 with t;, we will have the expansion @f(x) in (1,2x;] area
which 2¢ = y(t1) +1;. Havingy (t) > 0, thusy(t) is ascending and as a resylis unique. Considering relation (20) we
always have; > 2. So we have/(t):

Vit —17—+2/,/1+4qg )—ndr  te o] 1)

After getting functiony(t) from equation (21), we find the solution to the problem(qt) point like previous mixed
problem.
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State 61/ (t) = 1; in this case/(t) = 1+t or y(t) —t = 1 and like state 2 we have

pyt)+1) = p(1+2t) = —@(y(t) -t) = —0(1) =0,  y(t)+t>1
Then functiong is as following:

o(x), x € [0,1]
PX)=¢ —@(-x) xe[-1,0] (22)
0 otherwise

and the solution toi(x,t) is gained from relation (4) with the help gfconsideringc € R

State 7:y/(t) > 1; in this case both characteristices passing ftgr) cut off x axis on two points out of interval [0,1]
and on its right direction. Thug in this area is independent from interval [0,1] thereforesideringp(x) = 0;x > 1 and
considering first condition from (3) we havg(x) = 0;x < —1 and this state is like state 6 meaning [—1,1]; ¢(x) # 0;
andx ¢ [-1,1];¢(x) =0.

3 Conclusion

In this paper, we considered a Stephan inverse problem binginchknown boundary value andobtained it as integral
equation. So, this method can be easily to similar inversblpm.
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