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Abstract: This paper seeks to establish the stability of the birth-death process in relation to the Keller-Segel Model. As well, itattempts
to describe the stability of non-linear diffusion for chemotaxis. Attention will be on mass criticality results applying to the chemotaxis
model. Afterwards, the analysis of the relative stability that stationary states exhibit is undertaken using the Keller-Segel system for the
chemotaxis having linear diffusion. Standard linearization and separation of variables are the techniques employed in the analysis. The
stability or instability of the analysed cases is demonstrated by the graphics. By using the critical results obtained for the models, the
graphics are then compared with the rest.
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1 Introduction

The motion of an entity is occurs randomly and focus of this paper is to discuss the motion. Normally, animals,

chemicals, bacteria and cells move randomly. Past microscopic analysis exhibit various individuals as moving

irregularly[4,6]. Diffusion is acknowledged as one of the various phenomena occurring naturally. Local chemical

reactions arise due to reaction-diffusion systems. These reactions involve the transformation of objects into each other.

As well, the systems influence diffusion that entails objects spreading out over a surface [1].

Numerous types of animals and types rely on their sense of smell to facilitate the conveyance of knowledge taking place

within species. For instance, such arises in the female silkmothBobmyx mori as well as in various species of deep-sea

fish. The particular chemicals, which the species emit, constitute thepheromones. Such insights prompt the need to

establish what chemotaxis entails. Hereby, chemotaxis involves the movements of organisms or cells because of the

concentration fields of external chemicals [2,3,5]







ρt = Dρxx − χ(ρax)x

at = Daaxx + g(a,ρ).
(1)

According to Keller-Segel, [8] the kinetics terms would beg(a,n) = hρ − ka whereh, k are positive constants. While

(hρ) is rational to the number of amoebaen, (−ka) introduces decay of attractant activity. One simple model is f (n) = 0,

which means that we ignored the amoebae production rate. Thechemotactic termχ(a) can be taken as a constantχ . Then

the nonlinear system is written with the linear form tog(a,n). The parametersD,Da,χ are constants.D andDa are the

diffusion coefficient of the cells anda,respectively,h andk are positive constants.
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2 Definition of problem

In this chapter we will study chemotaxis using a non-linear diffusion model. If the system (1) is rearranged for non-linear

diffusion, we get






∂ρ
∂ t = D ∂ 2ργ

∂x2 − χ ∂
∂x (ρ

∂a
∂x )

∂a
∂ t = Da

∂ 2a
∂x2 + hρ − ka.

(2)

We considerγ > 1. The parametersD,Da,χ are constants.Da is the diffusion coefficient of a, h and k are positive constants.

2.1 Initial and Boundary conditions

The initial conditions for system (2) are






ρ(x,0) = ρ0(x)

a(x,0) = a0(x),
(3)

The boundary conditions are,






ρx(0,L) = 0

ax(0,L) = 0,
(4)

Let (ρ∞,a∞) be a constant steady state. Equation (2) then yields,

hρ∞
− ka∞ = 0.

We get the steady state condition using the previous equation

(ρ∞,a∞) = (ρ∞,
hρ∞

k
).

The conservation of total mass
∫

ρ(x, t)dx =
∫

ρ0(x)dx

and then the steady stateρ∞ will be determined by

∫

Ω
ρ∞dx = M

whereΩ = L. Then we can write,

(ρ∞,a∞) = (
M
L
,

hM
kL

).

2.2 Linear analysis

Now consider a perturbation of the linear system forρ(x, t) anda(x, t)

ρ(x, t) = ρ∞ + u(x, t)

a(x, t) = a∞ + v(x, t)
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When the system (2) is rearranged foru andv,







∂u
∂ t = Dγ(ρ∞)γ−1 ∂ 2u

∂x2 − χρ∞ ∂ 2v
∂x2

∂v
∂ t = Da

∂ 2v
∂x2 + hu− kv,

(5)

Using the technique of the separation variables, the system(5) re-written in matrix form as

∂tUn(t) = AnUn(t) An :=

(

−Dγ(ρ∞)γ−1µ2
n χρ∞µ2

n

h −Daµ2
n − k

)

(6)

where

Un(t) =

(

αn(t)

βn(t)

)

.

We will now explore how to solve matrix form (6). This can be written,

(

σ +Dγ(ρ∞)γ−1µ2
n −χρ∞µ2

n

−h σ +Daµ2
n + k

)(

α0

β0

)

eσt = 0. (7)

If the matrix in equation (7) is zero it can be written

(σ +Dγ(ρ∞)γ−1µ2)(σ +Daµ2+ k)− hχρ∞µ2 = 0 (8)

whereµn = µ . Let us re-write (8) as a quadratic inσ :

σ2
− (trAn)σ + det(An) = 0 (9)

where






Tr(An) =−Dγ(ρ∞)γ−1µ2−Daµ2− k < 0 ∀µ ∈ ℜ

det(An) = µ2(DDaγ(ρ∞)γ−1µ2+Dγ(ρ∞)γ−1k− χρ∞h).
(10)

Thus there are two possibilities which are,

(i) σ1 andσ2 are negative,

(ii) σ1 is negative andσ2 is positive.

Sincedet(An)> 0 for all µ ∈ R, and therefore the eigenvalues ofAn are both strictly negative for allµ . Therefore,

Dγ(ρ∞)γ−1k− χρ∞h > 0

whereρ∞ = M
L . Then we get,

D
χ
>

h
k

(

M
L

)(−γ+2)

(11)

On the other hand, if
D
χ

<
h
k

(

M
L

)(−γ+2)

. (12)

It is known thatdet(An) < 0. Therefore,An has one positive eigen value, which implies linear instability. If the ratio

D/χ is large enough then diffusion dominates and the sytem is stable, whereas ifD/χ is small enough then chemotaxis

dominates and the system is unstable.
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2.3 Results

Using the solution of equation (9), real part of growth rate(σ1,2), versus the wavenumber are plotted in Figure (1),(2) and

(3). In Figure (1) and (2) are strictly stable for both lines.The critical result is that the red line decreases while the value

of γ rises.

Fig. 1: D = 6.4, h = 2, χ = 5, M/L = 2, Da = 1, k = 1, andγ = 2.

Fig. 2: D = 6.4, h = 2, χ = 5, M/L = 2, Da = 1, k = 1, andγ = 4.

On the other hand, the blue line is unstable but after a some point this line became again stable. If,

D
χ
<

h
k

(

M
L

)2

c© 2016 BISKA Bilisim Technology



NTMSCI 4, No. 3, 204-211 (2016) /www.ntmsci.com 208

Fig. 3: D = 1.1, h = 22, χ = 12, M/L = 1.2, Da = 5, k = 1.4, andγ = 4.

3 Birth-death process

In the previous chapter we ignored the birth-death process.Now, we will define a new system that includes birth-death

term. The similar model was studied by Keller-Segel. They [7] introduced a simple model for slime mould aggregation

and this model was developed by Myerscough, Maini, Murray and Winters.[9] We will introduce our model:







ρt = D(ργ)xx − χρaxx+ rρ(1− ρ
ρ∞ )

at = Daaxx + hρ − ka
(13)

whereD,Da,ρ∞,χ ,h,k are positive constants. The initial conditions are the samein the previous chapter. The Neumann

boundary conditions are used, namelys(x).∇ρ(x, t) = 0 ands(x)∇a(x, t) = 0 wheres(x) is the outward unit normal to the

boundary of the domain,∂Ω .

3.1 Linear analysis and results

Let us consider a small perturbation of the system (13) forρ anf a.

ρ(x, t) = ρ∞ + u(x, t)

a(x, t) = a∞ + v(x, t)

Rearranging system (13):






ut = Dγ(ρ∞)γ−1uxx − χρ∞vxx − ru

vt = Davxx + hu− kv.
(14)

Let us solve the system (14) in the form:
(

u

v

)

=

(

α0

β0

)

eiµx+σt . (15)
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Re-writing system (14) as a matrix system, we get:

σ

(

α0

β0

)

eiµx+σt =

(

−Dγ(ρ∞)γ−1µ2
n − r χρ∞µ2

n

h −Daµ2
n − k

)(

α0

β0

)

eiµx+σt

or equivalently
(

σ +Dγ(ρ∞)γ−1µ2
n + r −χρ∞µ2

n

−h σ +Daµ2
n + k

)(

α0

β0

)

eσt = 0. (16)

Solutions of the linearised system exist if the determined of this matrix is zero, that is

(σ +Dγ(ρ∞)γ−1µ2+ r)(σ +Daµ2+ k)− hχρ∞µ2 = 0. (17)

Let us re-write (17) as a quadratic inσ :

σ2
− (trAn)σ + det(An) = 0 (18)

where






Tr(An) =−Dγ(ρ∞)γ−1µ2−Daµ2− k− r

det(An) = µ2(DDaγ(ρ∞)γ−1µ2+Dγ(ρ∞)γ−1k+Dar− hχρ∞)+ rk.
(19)

We now need to consider the next solution of (18). If both eigenvalues are negative,det(An) is greater than zero and it can

be written as

det(An) = DDaγ(ρ∞)γ−1µ4+(Dγ(ρ∞)γ−1k+Dar− hχρ∞)µ2+ rk > 0. (20)

Whendet(A2)> 0 the red line is always stable, the blue line is unstable but the blue line also stable for very smallµ and

for largeµ . On the other hand, if we choose suitable parameters, the system can be made stable. In order to find these

Fig. 4: D = 1.5, Da = 13, h = 7.37, χ = 12, M/L = 6.35, k = 14, r = 14 andγ = 2

requirements, we need to solve equation (20). Ifdet(An) = 0, we get

DDaγ(ρ∞)γ−1µ4+(Dγ(ρ∞)γ−1k+Dar− hχρ∞)µ2+ rk = 0. (21)
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Let us first consider a single, repeated root of the dispersion curve. The discriminat for this equation,

Dγ(ρ∞)γ−1k+Dar− hχρ∞ =−2
√

DDaγ(ρ∞)γ−1rk. (22)

Substituting equation (22) into equation (21) we get

µ4
−2

√

rk
DDaγ(ρ∞)γ−1 +

rk
2DDaγ(ρ∞)γ−1 = 0

or equaivanetly
(

µ2
−

√

rk
DDaγ(ρ∞)γ−1

)2

= 0 ⇒
n2π2

L2 =

√

rk
DDaγ(ρ∞)γ−1

whereµ = nπ/L.

It is clearly seen that both lines are stable in Figure (5).

Fig. 5: D = 1.5, Da = 13, h = 21, χ = 12, M/L = 2.44, k = 14,r = 14, andγ = 2.

4 Conclusion

In this paper, we analysed chemotaxis via Keller-Segel model. During the anaylsis, we had some main conclusion. We

studied non-linear diffusion for chemotaxis with the Neumann boundary conditions. We can say that stability and

instability depend on the ratioD/χ . It means that while the valuesχ andh must be lagre, the valuesD andk must be

small for the non-linear model. We also analysed the birth-death process. It can be seen that, when the valueh is enough

large and the valueχ is enough small, the system is always stable.
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