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1 Introduction

The nonlinear one dimensional thermoelasticity coupled systems appear in many fields of science such as fluid

mechanics, solid state physics and plasma physics. Thermoelasticity problems have gained a considerable attention for

their importance and applications. Linear and nonlinear thermoelasticity provide a rich field of research for investigating

the coupling between the thermal and the mechanical fields. The exact solutions for such system are difficult to find.

Therefore, some numerical methods have been recently developed them analyticaly such as variational iteration method

[1], Adomain’s decomposition method [2,3], homotopy perturbation method [12,13,14] and iteration method [10,11] for

finding analytical solutions of linear and nonlinear problems. The aim of this paper is to adopt the double Laplace

transform and domain decomposition to obtain approximate solutions with high accuracy of singular and non singular

one dimensional thermo-elasticity coupled system. For theillustration of our propesed method, two examples are given.

The propesed technique is called modified double Laplace decomposition method and is performed by combining

Laplace transform methods and decomposition methods see [6]. First of all, we recall the following definitions which are

given in [9,7]. The double Laplace transform is defined as

LxLt [ f (x, t)] = F(p,s) =
∫ ∞

0
e−px

∫ ∞

0
e−st f (x, t)dt dx,

wherex, t > 0 andp,s are complex values and further double Laplace transform of the first order partial derivatives is

given by

LxLt

[

∂ f (x, t)
∂x

]

= pF(p,s)−F(0,s).
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Similarly, the double Laplace transform for second partialderivative with respect tox andt is defined as follows

LxLt

[

∂ 2 f (x, t)
∂ 2x

]

= p2F(p,s)− pF(0,s)−
∂F(0,s)

∂x
,

LxLt

[

∂ 2 f (x, t)
∂ 2t

]

= s2F(p,s)− sF(p,0)−
∂F(p,0)

∂ t
.

2 Nonlinear one dimensional thermo-elasticity coupled system

In this section, we discuss the analytical solution of the regular nonlinear one dimensional thermo-elasticity coupled

system [4,5]

∂ 2u
∂ t2 −a

(

∂u
∂x

,v

)

∂ 2u
∂x2 +b

(

∂u
∂x

,v

)

∂v
∂x

= f (x, t) , x∈ Ω (1)

c

(

∂u
∂x

,v

)

∂v
∂ t

+b

(

∂u
∂x

,v

)

∂ 2u
∂x∂ t

−d (v)
∂ 2v
∂x2 = g(x, t) , (2)

with initial conditions

u(x,0) = f1 (x) ,
∂u(x,0)

∂ t
= f2 (x) , v(x,0) = g1(x) , (3)

whereu(x, t) andv(x, t) are the body displacement from equilibrium and the displacement of the body temperature from

referenceT0 = 0, subscripts denote partial derivatives,a,b,c andd are given smooth functions. For physical interpretation

see [7]. Now let the us assume the following

a

(

∂u
∂x

,v

)

= c

(

∂u
∂x

,v

)

= d (v) = 1, b

(

∂u
∂x

,v

)

=
∂u
∂x

v,

using the above assumptions, the nonlinear system in Eq. (1) and Eq.(2) becomes

∂ 2u
∂ t2 −

∂ 2u
∂x2 +N1 (u,v) = f (x, t) , (4)

∂v
∂ t

−
∂ 2v
∂x2 +N2 (u,v) = g(x, t) , t > 0 (5)

whereN1 =
(

∂u
∂xv
)

∂v
∂x andN2 =

(

∂u
∂xv
)

∂ 2u
∂x∂ t are nonlinear operators. In the following theorem we apply modified double

Laplace decomposition methods.

Theorem 1.We claim that the solution of the system given in Eq.(4), Eq.(5) and Eq.(3) is given by

∞

∑
n=0

un (x, t) = f1 (x)+ t f2(x)+L−1
p L−1

s

[

F (p,s)
s2

]

+L−1
p L−1

s

[

1
s2 LxLt

[

∞

∑
n=0

∂ 2un

∂x2 −

∞

∑
n=0

An

]]

, (6)

∞

∑
n=0

vn (x, t) = g1(x)+L−1
p L−1

s

[

G(p,s)
s

]

+L−1
p L−1

s

[

1
s

LxLt

[

∞

∑
n=0

∂ 2vn

∂x2 −

∞

∑
n=0

Bn

]]

. (7)

or

u(x, t) = u0+u1+ ... and v(x, t) = v0+ v1+ ...,

where LxLt is the double Laplace transform with respect to x, t and L−1
p L−1

s is the double inverse Laplace transform with

respect to p, s. In addtion An and Bn are nonlinear terms. Here ,we provide double inverse Laplace transform with respect

to p and s exist for each terms in the right hand side of Eq.(6), Eq.(7) .

c© 2016 BISKA Bilisim Technology



NTMSCI 4, No. 3, 212-222 (2016) /www.ntmsci.com 214

Proof. By using the definition of partial derivatives of the double Laplace transform and single Laplace transform for

Eq.(4), Eq.(5) and Eq.(3) respectively, we get

LxLt [u(x, t)] =
F1 (p)

s
+

F1 (p)
s2 +

F (p,s)
s2 +

1
s2 LxLt

[

∂ 2u
∂x2 −N1(u,v)

]

, (8)

LxLt [v(x, t)] =
G1 (p)

s
+

G(p,s)
s

+
1
s

LxLt

[

∂ 2v
∂x2 −N2 (u,v)

]

. (9)

The double Laplace a domain decomposition methods (DLADM) defines the solution of the system asu(x, t) andv(x, t)

by an infinite series,

u(x, t) =
∞

∑
n=0

un(x, t) , v(x, t) =
∞

∑
n=0

vn (x, t) . (10)

The nonlinear operators can be defined as follows

N1 (u,v) =
∞

∑
n=0

An, N2 (u,v) =
∞

∑
n=0

Bn, (11)

whereAn andBn are denoted by:

An =
1
n!

(

dn

dλ n

[

N1

∞

∑
i=0

(λ nun)

])

λ=0

, Bn =
1
n!

(

dn

dλ n

[

N2

∞

∑
i=0

(λ nvn)

])

λ=0

. (12)

Here, few terms of a domain’s polynomialsAn andBn are given by:

A0 = u0xv0v0x

A1 = (u0xv0)v1x+(u0xv1)v0x+(u1xv0)v0x

A3 = (u1xv1)v1x+(u0xv1)v2x+(u0xv1)v1x+(u0xv2)v0x+(u1xv1)v0x+(u2xv0)v0x (13)

and

B0 = u0xv0v0tx

B1 = (u0xv0)v1tx+(u0xv1)v0tx+(u1xv0)v0tx

B3 = (u1xv1)v1xt +(u0xv1)v2xt +(u0xv1)v1xt +(u0xv2)v0xt +(u1xv1)v0xt +(u2xv0)v0xt. (14)

By applying double inverse Laplace transform for Eq.(8) and Eq.(9) and use Eq.(10) and Eq.(11) we have

∞

∑
n=0

un (x, t) = f1 (x)+ t f2(x)+L−1
p L−1

s

[

F (p,s)
s2

]

+L−1
p L−1

s

[

1
s2 LxLt

[

∞

∑
n=0

∂ 2un

∂x2 −

∞

∑
n=0

An

]]

, (15)

∞

∑
n=0

vn (x, t) = g1(x)+L−1
p L−1

s

[

G(p,s)
s

]

+L−1
p L−1

s

[

1
s

LxLt

[

∞

∑
n=0

∂ 2vn

∂x2 −

∞

∑
n=0

Bn

]]

. (16)
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in particular, we have

u0 = f1 (x)+ t f2(x) , v0 = g1 (x)

v1 = L−1
p L−1

s

[

G(p,s)
s

]

+L−1
p L−1

s

[

1
s
LxLt

[

∞

∑
n=0

∂ 2vn

∂x2 −

∞

∑
n=0

Bn

]]

u1 = L−1
p L−1

s

[

F (p,s)
s2

]

+L−1
p L−1

s

[

1
s2 LxLt

[

∂ 2u0

∂x2 −A0

]]

, (17)

and generally we have

un+1(x, t) = L−1
p L−1

s

[

1
s2 LxLt

[

∞

∑
n=1

∂ 2un

∂x2 −

∞

∑
n=1

An

]]

(18)

vn+1(x, t) = L−1
p L−1

s

[

1
s
LxLt

[

∞

∑
n=1

∂ 2vn

∂x2 −

∞

∑
n=1

Bn

]]

, (19)

by calculating the termsu0,u1, ... andv0,v1, ..., we obtain the solution of the system as

u(x, t) = u0+u1+ ... andv(x, t) = v0+ v1+ ...

3 Applications

To validate our method for systems of nonlinear partial differential equations we consider some illustrated examples of

nonlinear one dimensional thermo-elasticity coupled systems as follows:

Example 1.Consider the following nonlinear one dimensional thermo-elasticity coupled system:

∂ 2u
∂ t2 −

∂ 2u
∂x2 +

(

∂u
∂x

v

)

∂v
∂x

=−e−x+t
, x∈ Ω (20)

∂v
∂ t

−
∂ 2v
∂x2 +

(

∂u
∂x

v

)

∂ 2u
∂ t∂x

=−ex−t
, t > 0 (21)

with initial conditions

u(x,0) = ex
,

∂u(x,0)
∂ t

=−ex
, v(x,0) = e−x

. (22)

By taking the double and single Laplace transform for Eq. (20),Eq. (21) and Eq.(22) respectively, we obtain

U (p,s) =
1

s(p−1)
−

1
s2 (p−1)

−
1

s2 (p+1)(s−1)
+

1
s2 LxLt

[

∂ 2u
∂x2 −

(

∂u
∂x

v

)

∂v
∂x

]

(23)

V (p,s) =
1

s(p+1)
−

1
s(p−1)(s+1)

+
1
s
LxLt

[

∂ 2v
∂x2 −

(

∂u
∂x

v

)

∂ 2u
∂ t∂x

]

, (24)

On using double inverse Laplace transform, we have

u(x, t) = ex
− tex+ te−x

−e−x+t +e−x+L−1
p L−1

s

(

1
s2 LxLt

[

∂ 2u
∂x2 −

(

∂u
∂x

v

)

∂v
∂x

])

(25)

v(x, t) = e−x
−ex+ex−t +L−1

p L−1
s

(

1
s
LxLt

[

∂ 2v
∂x2 −

(

∂u
∂x

v

)

∂ 2u
∂ t∂x

])

, (26)
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by using Eq.(6) and Eq.(7) we obtain

∞

∑
n=0

un (x, t) = ex
− tex+ te−x

−e−x+t +e−x+L−1
p L−1

s

(

1
s2 LxLt

[

∂ 2un

∂x2 −

∞

∑
n=0

An

])

(27)

∞

∑
n=0

vn (x, t) = e−x
−ex+ex−t +L−1

p L−1
s

(

1
s

LxLt

[

∂ 2vn

∂x2 −

∞

∑
n=0

Bn

])

, (28)

whereAn andBn are Adomain polynomials given by Eq.(13) and Eq.(14). By applying equations Eq.(17),Eq.(18) and

Eq.(19), we have

u0 = ex
− tex

, v0 = e−x

u1 = te−x
−e−x+t +e−x+L−1

p L−1
s

(

1
s2 LxLt

[

∂ 2u0

∂x2 −A0

])

= te−x
−e−x+t +e−x+L−1

p L−1
s

(

1
s2 LxLt

[

ex
− tex+e−x

− te−x]
)

u1 = te−x
−e−x+t +e−x+

t2

2
ex
−

t3

6
ex+

t2

2
e−x

−
t3

6
e−x

,

and

v1 =−ex+ex−t +L−1
p L−1

s

(

1
s
LxLt

[

∂ 2v0

∂x2 −B0

])

=−ex+ex−t +L−1
p L−1

s

(

1
s
LxLt

[

e−x+ex
− tex]

)

= ex−t
−ex+ te−x+ tex

−
t2

2
ex
,

the other components given by

un+1(x, t) = L−1
p L−1

s

(

1
s2 LxLt

[

∂ 2un

∂x2 −

∞

∑
n=1

An

])

(29)

vn+1(x, t) = L−1
p L−1

s

(

1
s
LxLt

[

∂ 2vn

∂x2 −

∞

∑
n=1

Bn

])

. (30)

Applying Eq. (29), Eq.(30), Eq.(13) and Eq.(14), we obtain

u2 =−
t3

6
e−x+ te−x

−e−x+t +e−x+
t2

2
e−x+

t4

4!
ex
−

t5

5!
e−x

−
2t4

4!
e−x+

t3

6
e−3x+ te−3x

−e−3x+t +e−3x+
t2

2
e−3x+

t4

4!
e−3x

−
t5

5!
e−3x

,

v2 = ex
−ex−t +

t3

6
ex
− tex+

t2

2
ex+

t2

2
e−x

−
4t3

3!
e−x

−
4t4

4!
ex+

4t4

4!
e−x

+ te−x+t
−e−x+t +e−x

−
t3

3!
e3x+

2t2

2
e3x+

t3

6
ex+3

t4

4!
e3x

+e3x
−e3x−t

− te3x+e3x+t
− te3x+t

−e3x
,
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it is obvious that the self-cancelling terms appear betweenvarious components and connected by coming terms, as follows

u(x, t) = u0+u1+ ... andv(x, t) = v0+ v1+ ...,

therefore, the exact solution is given by

u(x, t) = ex−t
, v(x, t) = e−x+t

.

Example 2.Consider the nonlinear coupled system one dimensional thermo-elasticity given by

∂ 2u
∂ t2 −

∂
∂x

(

v
∂u
∂x

)

+
∂v
∂x

= 2x−6x2
−2t2

−2, x∈ Ω (31)

∂v
∂ t

−
∂
∂x

(

u
∂v
∂x

)

+
∂ 2u
∂ t∂x

= 2t2+2t−6x2
, t > 0 (32)

subject to

u(x,0) = x2
,

∂u(x,0)
∂ t

= 0, v(x,0) = x2
. (33)

By applying the modified double Laplace decomposition methods and the inverse double Laplace transform as in previous

example one can obtain

u0 = x2, v0 = x2 (34)

u1 = xt2−3x2t2
−

1
6

t4
− t2+L−1

p L−1
s

[

1
s2 LxLt

[

A0−
∂v0

∂x

]]

(35)

v1 =
2
3

t3+ t2
−6x2t +L−1

p L−1
s

[

1
s
LxLt

[

B0−
∂ 2u0

∂ t∂x

]]

, (36)

and

un+1 = L−1
p L−1

s

[

1
s2 LxLt

[

∞

∑
n=1

An−
∂vn

∂x

]]

(37)

vn+1 = L−1
p L−1

s

[

1
s
LxLt

[

∞

∑
n=1

Bn−
∂ 2un

∂ t∂x

]]

, (38)

whereAn andBn are Adomain’s polynomials given by:

A0 = v0xu0

A1 = v0xu1+ v1xu0

A3 = v0xu2+ v1xu1+ v2xu0, (39)

and

B0 = u0xv0

B1 = u0xv1+u1xv0

B3 = u0xv2+u1xv1+u2xv0. (40)
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The other components of the solution can easily found by using above recursive relation and Eq. (39) and Eq.(40),

u1 =−
1
6

t4
− t2

v1 =
2
3

t3+ t2
,

and

u2 =
1
15

t5+
1
6

t4

v2 =−
1
15

t5
−

2
3

t3
,

then

u(x, t) = u0+u1+ ... andv(x, t) = v0+ v1+ ...,

we get the following exact solution

u(x, t) = x2
− t2

, v(x, t) = x2+ t2
.

4 Linear singular one dimensional thermo-elasticity coupled system

In this part of the paper, we apply our technique to solve the linear singular one dimensional thermo-elasticity coupled

system given below

∂ 2u
∂ t2 −

1
x2

(

x2 ∂u
∂x

)

x
+ x

∂v
∂x

= f (x, t) , x∈ Ω

∂v
∂ t

−
1
x2

(

x2 ∂v
∂x

)

x
+ x

∂ 2u
∂x∂ t

= g(x, t) , t > 0 (41)

subject to

u(x,0) = f1 (x) ,
∂u(x,0)

∂ t
= f2 (x) , v(x,0) = g1(x) , (42)

where, 1
x2

(

x2 ∂u
∂x

)

x
and 1

x2

(

x2 ∂v
∂x

)

x
are called bessel operator,f (x, t), g(x, t) , f1 (x) , f2 (x) andg1(x) are known function.

The following definition is used in this section,

Definition 1. Double Laplace transform of the non constant coefficient second order partial derivative x2 ∂ 2u
∂ t2

and the

function x2 f (x, t) are given by
d2

dp2

[

LxLt

(

∂ 2u
∂ t2

)]

= LxLt

(

x2 ∂ 2u
∂ t2

)

, (43)

and

LxLt
(

x2 f (x, t)
)

=
d2

dp2 [LxLt ( f (x, t))] =
d2F (p,s)

dp2 . (44)

To obtain the solution of Linear singular one dimensional thermo-elasticity coupled system of Eq.(41), multiplying Eq.(41)

by x2 and taking the double Laplace transform and single Laplace transform for Eq.(41) and Eq.(42) respectively and use

definition 1, we get

d2U (p,s)
dp2 =

d2F1 (p)
sdp2 +

d2F2 (p)
s2dp2 +

d2F (p,s)
s2dp2 +

1
s2 LxLt

[(

x2 ∂u
∂x

)

x
− x3 ∂v

∂x

]

(45)
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and

d2V (p,s)
dp2 =

d2G1 (p)
sdp2 +

d2G(p,s)
sdp2 +

1
s

LxLt

[(

x2 ∂v
∂x

)

x
− x3 ∂ 2u

∂x∂ t

]

, (46)

by integrating 2 time for both sides of Eq.(45) and Eq.(45) from 0 to p with respect top, we have

U (p,s) =
∫ ∫

(

d2F1 (p)
sdp2 +

d2F2 (p)
s2dp2 +

d2F (p,s)
s2dp2

)

dpdp
1
s2

∫ ∫

(

LxLt

[(

x2 ∂u
∂x

)

x
− x3 ∂v

∂x

])

dpdp, (47)

and

V (p,s) =
∫ ∫

(

d2G1 (p)
sdp2 +

d2G(p,s)
sdp2

)

dpdp+
1
s

∫ ∫

LxLt

[(

x2 ∂v
∂x

)

x
− x3 ∂ 2u

∂x∂ t

]

dpdp. (48)

The double Laplace A domain decomposition methods (DLADM) defines the solution of the system asu(x, t) andv(x, t)

by the infinite series,

u(x, t) =
∞

∑
n=0

un(x, t) , v(x, t) =
∞

∑
n=0

vn (x, t) . (49)

By applying double inverse Laplace transform for Eq.(47) and Eq.(48) and use Eq.(49), we have

u(x, t) = L−1
p L−1

s

[

∫ ∫

(

d2F1(p)
sdp2 +

d2F2 (p)
s2dp2 +

d2F (p,s)
s2dp2

)

dpdp

]

+L−1
p L−1

s

[

1
s2

∫ ∫

(

LxLt

[(

x2 ∂u
∂x

)

x
− x3 ∂v

∂x

])

dpdp

]

(50)

v(x, t) = L−1
p L−1

s

[

∫ ∫

(

d2G1 (p)
sdp2 +

d2G(p,s)
sdp2

)

dpdp

]

+L−1
p L−1

s

[

1
s

∫ ∫

LxLt

[(

x2 ∂v
∂x

)

x
− x3 ∂ 2u

∂x∂ t

]

dpdp

]

, (51)

Using Eq.(49) into Eq.(50) and Eq.(51), one gets

∞

∑
n=0

un (x, t) = L−1
p L−1

s

[

∫ ∫

(

d2F1(p)
sdp2 +

d2F2(p)
s2dp2 +

d2F (p,s)
s2dp2

)

dpdp

]

+L−1
p L−1

s

[

1
s2

∫ ∫

LxLt

(

x2
∞

∑
n=0

unx(x, t)

)

x

dpdp

]

−L−1
p L−1

s

[

1
s2

∫ ∫

LxLt

[

x3
∞

∑
n=0

vnx(x, t)

]

dpdp

]

, (52)

and

∞

∑
n=0

vn (x, t) = L−1
p L−1

s

[

∫ ∫

(

d2G1 (p)
sdp2 +

d2G(p,s)
sdp2

)

dpdp

]

+L−1
p L−1

s

[

1
s

∫ ∫

(

LxLt

[(

x2
∞

∑
n=0

vnx(x, t)

)

x

])

dpdp

]

−L−1
p L−1

s

[

1
s

∫

(

LxLt

[

x3

(

∞

∑
n=0

unxt (x, t)

)])

dpdp

]

, (53)
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in particular,

u0(x, t) = L−1
p L−1

s

[

∫ ∫

(

d2F1 (p)
sdp2 +

d2F2 (p)
s2dp2 +

d2F (p,s)
s2dp2

)

dpdp

]

v0 (x, t) = L−1
p L−1

s

[

∫ ∫

(

d2G1 (p)
sdp2 +

d2G(p,s)
sdp2

)

dpdp

]

. (54)

Generally, we have

un+1(x, t) = L−1
p L−1

s

[

1
s2

∫ ∫

LxLt

(

x2
∞

∑
n=0

unx(x, t)

)

x

dpdp

]

−L−1
p L−1

s

[

1
s2

∫ ∫

LxLt

[

x3
∞

∑
n=0

vnx(x, t)

]

dpdp

]

, (55)

vn+1(x, t) = +L−1
p L−1

s

[

1
s

∫ ∫

(

LxLt

[(

x2
∞

∑
n=0

vnx(x, t)

)

x

])

dpdp

]

−L−1
p L−1

s

[

1
s

∫

(

LxLt

[

x3

(

∞

∑
n=0

unxt (x, t)

)])

dpdp

]

, (56)

we provide double inverse Laplace transform with respect top andsexist for each terms in the right hand side of Eq. (54),

Eq.(55) and Eq.(56), by calculate the termsu0,u1, ...,un andv0,v1, ...,vn, we obtain the solution of the system as follows:

u(x, t) = u0+u1+ ... andv(x, t) = v0+ v1+ ....

Example 3.Consider the following linear singular one dimensional thermo-elasticity coupled system

∂ 2u
∂ t2 −

1
x2

(

x2 ∂u
∂x

)

x
+ x

∂v
∂x

= 2x2t6−6t

∂v
∂ t

−
1
x2

(

x2 ∂v
∂x

)

x
+ x

∂ 2u
∂x∂ t

= 3x2
−6t, t > 0 (57)

subject to

u(x,0) = x2
,

∂u(x,0)
∂ t

= x2
, v(x,0) = 0. (58)

By using modified double Laplace decomposition methods for Eq.(57), Eq.(58) and apply Eq.(50), Eq.(51) we have

u(x, t) = x2+ x2t +
1
3

x2t3
−3t2

− t3+L−1
p L−1

s

[

1
s2

∫ p

0

∫ p

0
LxLt

[(

x2 ∂u
∂x

)

x
− x3 ∂v

∂x

]

dpdp

]

, (59)

and

v(x, t) = 3x2t −3t2+L−1
p L−1

s

[

1
s

∫ p

0

∫ p

0

(

LxLt

[(

x2 ∂v
∂x

)

x
− x3 ∂ 2u

∂x∂ t

])

dpdp

]

. (60)

On using Eq.(54), Eq.(55) and Eq.(56), we get

u0 (x, t) = x2+ x2t +
1
3

x2t3
−3t2

− t3

v0 (x, t) = 3x2t −3t2
, (61)
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u1(x, t) = 3t2+ t3+
1
10

t5
− x2t3

v1 (x, t) = 9t2
−2x2t −

2
3

x2t3
,

u2 (x, t) =−
3
10

t5+
2
3

x2t3+
1
15

x2t5

v2 (x, t) =−6t2
− t4+2x2t3

,

and

u3(x, t) =
1
5

t5+
1

105
t7
−

1
5

x2t5

v3 (x, t) = 3t4
−

4
3

x2t3
−

2
5

x2t5
,

therefore, the approximate solution is

u(x, t) = u0+u1+ ...+un andv(x, t) = v0+ v1+ ...+ vn,

the solution of the system given by

u(x, t) = x2+ x2t and v(x, t) = x2t.

5 Conclusion

In this paper, we proposed new modified double Laplace decomposition methods to solve linear regular and singular one

dimensional singular one dimensional thermo-elasticity coupled system. The results obtained by double laplace

decomposition method are compared with those of the exact solution, which shows very good agreement, even using

only few terms of the recursive relations. This method can beapplied to many complicated linear and non-linear

PDEs.does not require linearization.
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