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Abstract: In this paper, we study the position vectors of a timelikevzeun the Minkowski 3-spac§f. We give some characterizations

for timelike curves which lie on some subspace®pf
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1 Introduction

Investigating of special curves is one of the most attradidpic in differential geometry. Some of these special esirv
are spacelike curves, timelike curves and null curves. 8pa@ccurves and timelike curves were initially investigzt
and developed by several authdrg] 3,6]. Later, this topic drew attention of several authors arey/tstudied different
kinds of curves in the Lorentzian manifol®$ andR{. Some of articles related to this topic are as follows:

A. Fernandez, A. Gimenez and P. Lucas introduced a Frenetefnaith curvature functions for a null curve in a
Lorentzian manifold and studied null helices in Lorentzaace formsg]. C. Coken and U. Ciftci studied null curves in
the 4-dimensional Minkowski spadg and give some results for pseudo spherical null curves antrae null
curvesp].

K. llarslan and O. Boyacioglu studied position vectors ofiraelike and a null helice ing [6]. K. llarslan and E.
Nesovic gave some characterizations for null curveB4mnd they obtained some relations between null normal curves
and null osculating curves as well as between null rectifyinrves and null osculating curve].

K. llarslan studied spacelike normal curves in Minkowsldngf and gave some characterizations of spacelike normal
curves with spacelike, timelike and null principal normd]. [K. llarsalan, E. Nesovic and M. Petrovic-Torgasev
characterized non-null and null rectifying curves, lyindjy in the Minkowski 3-space{].

A. T. Ali and M. Onder characterize rectifying spacelike \@s in terms of their curvature functions in Minkowski
spacetime J]. M. Onder, H. Kocayigit and M. Kazaz gave some charactéora for spacelike helices in Minkowski
spacetime and found the differential equations charaitgrithe spacelike helices in Minkowski 4-spadej][ H.H.
Ugurlu studied timelike surfaces and give some charaettoias for timelike curves on the timelike surfacgs|

M. A. Akgun and A. I. Sivridag studied null Cartan curves infddwski 4-space and give some theorems for null Cartan
curves to lie on some subspacesR§f{14]. M. A. Akgun and A. |. Sivridag studied spacelike and tinkelicurves to lie
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on some subspaces R} and give some theorems i) and [16].

This paper organized following: In section 2 we give someid&sowledge related with curves in Minkowski
space-time. Section 3 is the original part of this paperhigs $ection we investigate the conditions for timelike @srto
lie on some subspacesl@f and we give some characterizations and theorems for thegescu

2 Preiminaries

Let R? denote Minkowski space together with a flat Lorentz mefrjcof signature(—, +,+). A vectorX is said to be
timelike if (X,X) < 0, spacelike if(X,X) > 0 and null(lightlike) if (X,X) = 0 andX # 0. The norm of a vectoX € R}

is denoted by|X|| and defined by|X|| = /|(X,X)|. LetM be a timelike surface given by= y(u,v) in R} anda is a
timelike curve orM. Then there exists a Frenet frarften, b} given by (1).

t/ :k]_n
N =kt — kob (1)
o :kzn.

Thus, we can choose another baligg, N} on M alonga, whereN is the unit normal vector and =t AN. We note
thatg andN are spacelike vectors alomg Comparing this frame with the Frenet frarften, b}. Let ¢ denote the angle
betweem andN. In this case we have

N = ncos¢ + bsing
g=nsing — bcosgp. (2)

Acurvea in RS is called a null curve ifa’(s), a’(s)) = 0 anda’(s) # 0, timelike curve if{(a’(s), a’(s)) < 0 and spacelike
curve if (a’(s),a’(s)) > 0 for alls€ R. Heret = a’(s), {t,t) = —1, (n,n) = (b,b) = 1 and(t,n) = (t,b) = (n,b) = 0.

3 Some char acterizations of a timelike curvein R

In this section we will give some characterizations of tilkeeturves to lie on some subspacesR%.f LetM be atimelike
surface inR$ anda be a timelike curve oM with the frame{t,g,N}. Then there are three subspace®Rpfvhich are
spanned by{t,g}, {t,N} and {g,N}. Now, we investigate the position vector of a timelike cuveo lie in these
subspaces.

Case 1. First we will investigate the conditions under which the d¢itke curvea lies on the subspace spanned by
{t,g}. In this case we can write

a(s) =A(sit+u(s)g ®3)
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for some differentiable functions andu of the parameter s. Differentiati@) with respect to s and by using the Frenet
equations (1) we have

a'(9) = (V(9) — (Ska(S)sing)t
- (MS)als) + (5130 + (103 S ~ u(ska(sioosp ) @

4 <[J(S)COS¢ — U(s)ko(s)sing + H(S)Sintp%) b

wherea’ =t. So we can write

N(s) — p(ky(s)sing = 1,
A(S)ka(s) + 1/ (s)sing + p(s)cosp G — p(s)ka(s)cosp = O, (5)
H(s)cosp + p(s)kx(s)sing — p(s)sing & = 0.

If we chooseX as a constant we can write

1
KOS =~ 9sng ©)
Hence we have
1
a(s) =ct— <m) g. (7)
If we chooseu(s) = congt. and@ (s) = congt. by using (3.3) we find
_ Cka(s)cosg
As) = Tk (8)
So we have
k
a(s) = (%)t—kcg. 9)

Thus we have the following theorem.

Theorem 1. Atimelike curve a in Ri lies on the subspace spanned by {t,g} if and only if itisin the form

or

a(s) = <%) t+cg

where ¢ (s) = condt.

Case 2. We will investigate the conditions under which the timeldwevea lies on the subspace spanned{lbyN}. In
this case we can write

a(s)=A(s)t+ u(s)N (10)
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for some differentiable functior’s andu of the parameter s. Differentiatir{@0) with respect to s and by using the Frenet
equations (1) we have

a'(8) = (N'(9) + p(Ska(S)cosp) t

(19009~ (9sng L + w(SHe(9ng +(als) ) n (11)
+ (5130 - p(SHa(sicosp + (sjcosp L )b

wherea’ =t. So we can write

A(s)+ p(s)ka(s)cosp = —1,
W' (s)cosp — p(s)sing S + p(s)ka(s)sing + A (s)ka(s) =0, (12)
W ()sing — p(s)ka(s)cosp + pi(s)cosp S = 0.
If we choosep = congt. in (12) we find

W (s)sing — p1(9)ka(s)cosp = 0. (13)

From the solution of the differential equation (13) we find

u(s) = c.elka(s)cotgds, (14)
If we write (14) in (12) we find
As) = %(S)ef'k1<5>°°t¢d5(k1(s)cot¢cos¢ +1). (15)
Hence we have
a(s) = _Fis)ef ku(S)cot@as i, (s)cot p cosg + 1)] t+ [c.ef kﬂs)cotdﬁdﬂ N. (16)

Thus we have the following theorem.

Theorem 2. Atimelikecurve a in Rf lies on the subspace spanned by {t,N} if and only if it isin the form

als) = _%(s)d ka(S)cotdds i, (s)cot pcosp + 1)} t+ [C_ef k1(s)cot¢ds} N

where ¢ = congt.

Case3. We will investigate the conditions under which the timelidevea lies on the subspace spanned{lgyN}. In
this case we can write

a(s) = A(9)g+ KN (17)
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for some differentiable functior’s andu of the parameter s. Differentiatirid7) with respect to s and by using the Frenet
equations (1) we have

a'(s) =[A (s)ku(s)sing + p(s)ki(s)cosplt
dgp

+[V(9)5ing -+ (s)cosp & — A (Jka(s)cosp

+(S)e0sh — (s S + p(slko(S)singn (18)

+[—A(s)cosp — A (s)ka(s)sing + A (s)sing %

/(958 — (Skocosp + i()0sp S o

wherea’ =t. So we can write

A(s)ki(s)sing + p(s)ky(s)cosp = —1,
A'(s)sing + A (s)cosp 3 — A (s)ka(s)cosp + 1’ (s)cosp
—u(9)sing & + u(s)ke(s)sing =0, (19)
—A(s)cosp — A (S)k(S)sing + A (s)sing 32
+U'(8)Sing — p()ka(s)cosp + p(s)cosp S =0,

If we choosep = cong. in (19) we obtain

A(S)sing + p(s)cosp = — ks,
A'(s)sing — A (9)kz(s)cosp + ' (9)cosp + p(S)kz(s)sing = O, (20)
—A(s)cosp — A (s)ko(s)sing + p'(s)sing — p(s)ko(s)cosp = 0.
From (20) we have
—ka(s)(A(s)sing + p(s)cosg) — A (s)cosg + ' (s)sing = 0. (21)
By using (21) we obtain
ka(s) (s)sing =
k(s A(s)cosp + p'(s)sing = 0. (22)
Furthermore from (20) we can easily obtain
V(g + i (SJoosh = () (23)
By using (20) and (23) we find
! : _ 1 1 /
A(S)oosp — H'(98ng = ()" (24)

If we use (22) and (24) we find the differential equation

_ k(e —K5(9ka(s)

' (s) — p(s) = o S2(9sing (25)
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From the solution of (25) we obtain

— KB(9)ku(s)

H(S) = e*5+°sm¢/ ek )k (snp o= (26)

Considering (20) and (26) we find

A = 1 cot / sicK kz kk%(s)kl( )ds 27

ki(s)sing eStCsing 2(s)sing
So we have
_ 1 cotg Ki(s) —K3(9)ki(9)
a(s) = [ ki(S)Sng e srsing / R (ke ?s)smqb ds] g
1 " secki(s) —K5(9)ka()
* [esﬂ’sjnd) ./e o 1I<2(s)k§s)sin¢ ds] N (28)

Thus we have the following theorem.

Theorem 3. Atimelike curve a in RS lies on the subspace spanned by {g,N} if and only if it isin the form

1 cote Ki(9) —Ka(9)ka(s)
[ ki(s)sing e-StCsing / - ko(s)k2 Es)smqb ds] g

1 sicki(s) —K3(s)ki(s)
+ [esﬂ’sjnd) /e ” 1I<2(s)k§s)sin¢ ds] N

a(s) =

where ¢ = cong.

4 Conclusion

In this paper we give some characterizations for timelikeves which lie on some subspacesRif. We give some
theorems about these curves and characterize the timelikescin terms of their curvature functionsR.
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