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Abstract: Let k be an algebraically closed field of characteristic zero,R an affine k-algebra and letΩ (q)(R/k) denote its universal
finite Kähler module of differentials overk. In this paper, we consider the tensor, exterior and symmetric algebras of Kähler modules
introduced by H. Osborn [9]. We explore some interesting properties of the algebras ofKähler modules, which have not been considered
before.
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1 Introduction

The concept of Kähler module ofqth order was introduced by H. Osborn in 1967 [9]. Same notion has appeared in

Heyneman et al. [11]. Johnson introduced differential module structures on certain modules of Kähler differentials [4].

Nakai developed the fundamental theories for the calculus of high order differentials[6]. Then many authors studied the

properties of Kähler modules [2,7,8].

We will let Rbe a commutative algebra over an algebraically closed fieldk with characteristic zero.

WhenR is a k-algebra,Ω (q)(R/k) denotes the module of q-th order Kähler differentials ofR over k andδ (q)
R/k or δ (q)

denotes the canonical q-th orderk-derivationR→Ω (q)(R/k) of R. The pair{Ω (q)(R/k),δ (q)
R/k} has the universal mapping

property with respect to the q-th orderk-derivations ofR. IR/k or IR denotes the kernel of the canonical mapping

R⊗k R→R (a⊗b→ ab). Ω (q)(R/k) is identified withIR/Iq+1
R .

Ω (q)(R/k) is a generated by the set{δ (q)(r) : r ∈R}. Hence ifR is finitely generatedk-algebra,thenΩ (q)(R/k) will be a

finitely generatedR-module.

In this paper we will study some interesting properties of tensor, exterior and symmetric algebras of Kähler modules. Our

study presents some important and new results which are listed below:

Let R be an affine domain with dimension s. Then

(i) Ω (q)(R/k) is a freeR-module if and only if⊗n(Ω (q)(R/k)) is a freeR-module.

(ii) Ω (q)(R/k) is a freeR-module if and only if∧n(Ω (q)(R/k)) is a freeR-module.

(iii) Ω (q)(R/k) is a freeR-module if and only ifSn(Ω (q)(R/k)) is a freeR-module.

Let R be an affine local domain. Then the following conditions are equivalent.

(i) R is a regular local ring,

(ii) ⊗n(Ω (1)(R/k)) is a freeR-module,
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(iii) ∧n(Ω (1)(R/k)) is a freeR-module,

(iv) Sn(Ω (1)(R/k)) is a freeR-module.

The fundamental definitions and properties of the tensor,exterior and symmetric algebras are presented in Sec.2. Our main

results begin with Example 2.

2 Preliminary notes

In this section, we review some basic definitions and resultsof the algebras. LetM andP areR-modules. Recall that an

R-bilinear mapµ : Mn→ P is called alternating ifµ(x1, ...,xn) = 0 whenever two successive argumentsxi ,xi+1 are equal.

From this condition one easily shows that transposing two successive arguments reverses the sign ofµ(x1, ...,xn) = 0, from

which it follows that any permutation of the arguments multiplies the value by the sign of that permutation; hence, from

the original condition we see that the value is zero if any twoterms are equal. We recall likewise that anR-bilinear map

Mn→ P is called symmetric if it is unchanged under transposing successive arguments; equivalently, if it is unchanged

under all permutations of the arguments. Let us now define some universal maps.

Definition 1. [3] Let M be an R-module. By
⊗nM we shall denote the R-module with a universal R-bilinear map of Mn

into it, written (x1, ...,xn)→ x1⊗ ...⊗ xn This module is called the n-fold tensor power of M.

By
∧nM we shall denote the R-module with a universal alternating R-bilinear map of Mn into it, written

(x1, ...,xn)→ x1∧ ...∧xn. This module is called the n-fold exterior power of M.

By SnM we shall denote the R-module with a universal symmetric R-bilinear map of Mn into it, written

(x1, ...,xn)→ x1...xn. This module is called the n-fold symmetric power of M.

Each of these modules can clearly be constructed directly bygenerators and relations.
⊗nM can also be constructed as

M⊗R(M⊗R(...)) (with n M′ s), while
∧nM andSnM can be constructed as factor-modules of

⊗nM by the submodules

generated by all elements of the forms

x1⊗ ...⊗ y⊗ y⊗ ...⊗xn,

respectively

x1⊗ ...⊗ y⊗ z⊗ ...⊗ xn− x1⊗ ...⊗ z⊗ y⊗ ...⊗ xn.

(where each term isx1⊗ ...⊗ xn modified only in two successive places).

Let
⊗1M,

∧1M andS1M are all identified withM, while
⊗0M,

∧0M andS0M are all identified withR.

The universal properties defining our three constructions can be conveniently restated as follows:

An R-module homomorphism with domain
⊗nM is uniquely determined by specifying it on the elementsx1⊗ ...⊗ xn

for all x1, ...,xn ∈M, in such a way that the value is anR-bilinear function ofx1, ...,xn.

An R-module homomorphism with domain
∧nM is uniquely determined by specifying it on the elementsx1∧ ...∧xn for

all x1, ...,xn ∈M, so that the result is an alternatingR-bilinear function ofx1, ...,xn .

An R-module homomorphism with domainSnM is uniquely determined by specifying it on the elementsx1...xn for all

x1, ...,xn ∈M, so that the value is a symmetricR-bilinear function ofx1, ...,xn.

Each of
⊗n ,

∧n andSn may be made into a functor. Givenf : M→ N, one defines, for example,∧n f : ∧nM→∧nN as
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the unique module homomorphism takingx1∧ ...∧ xn to f (x1)∧ ...∧ f (xn) for all x1, ...,xn ∈ M. This homomorphism

exists because the latter expression inx1, ...,xn is alternating andR- bilinear.

Lemma 1. [3] Let M be a R-module and m, n nonnegative integers. Then there exist a unique R-bilinear map
⊗mM×

⊗nM→
⊗m+nM which carries each pair(x1⊗ ...⊗ xm,xm+1⊗ ...⊗ xm+n) to x1⊗ ...⊗ xm+n, a unique R-bilinear map

∧mM×
∧nM→

∧m+nM which carries each pair(x1∧ ...∧xm,xm+1∧ ...∧xm+n) to x1∧ ...∧xm+n, and a unique R-bilinear

map SmM×SnM→ Sm+nM which carries each pair(x1...xm,xm+1...xm+n) to x1...xm+n.

Theorem 1. [3] The multiplications on
⊗

M,
∧

M and SM defined above are structures of (associative unital)an

R-algebra.

The algebra
⊗

M =
⊕

n(
⊗nM), called the tensor algebra on M, is universal among R-algebras given with R-module

homomorphisms of M into them.

The algebra
∧

M =
⊕

n(
∧

M), called the exterior algebra on M, is universal among R-algebras given with R-module

homomorphisms of M into them such that the images of all elements of M have zero square.

The algebra SM=
⊕

n(S
nM), called the symmetric algebra on M, is universal among R-algebras given with R-module

homomorphisms of M into them such that the images of elementsof M commute with one another, and is also universal

among all commutative R-algebras given with R-module homomorphisms of M into them.

Theorem 2.[1] Let M be a free R-module on a basis X. Then:
⊗

M is the free associative R-algebra
⊗

M, equivalently,

the semigroup algebra on the free semigroup< X >. It has the set of all products x1⊗ ...⊗ xn (or, using ordinary

multiplicative notation, as is common when this ring is regarded as a free algebra or a semigroup algebra,the set of

products x1...xn ) an an R-module basis for x1, ...,xn ∈ X. Thus, if X is a finite set{x1, ...,xr}, then for each n,

dimR(
⊗nM) = rn.

∧

M may be presented by the generating set X and the relations x∧x= 0, x∧y+ y∧x= 0 (x,y∈ X ). If a total ordering

” ≤ ” is chosen on X, then a R-module basis for
∧

M is given by those products x1∧ ...∧xn with x1 < ... < xn ∈ X.

In particular, if X is a finite set{x1, ...,xr}, then a basis is given by those products xi1∧ ...∧xin with 1≤ i1 < ... < in ≤ r,

hence for each n, dimR(
∧nM) =

(

r

n

)

.

(SM) may be presented by the generating set X, and relations xy= yx (x,y∈ X ), and is the (commutative) polynomial

algebra R[X], equivalently, the free commutative R-algebra on X, equivalently, the semigroup algebra on the free

commutative semigroup on X. If a total ordering” ≤ ” is chosen on X, then an R-module basis for SM is given by those

products x1...xn with x1 ≤ ...≤ xn ∈ X. If X is a finite set{x1...xr}, then the elements of this basis can be written xi1
1 ...x

ir
r

with i1, ..., ir ≥ 0, and for each n, dimR(SnM) =

(

r +n−1

r−1

)

.

Proposition 1. [1] Let T be an R-algebra and let M be an R-module. Then

Sn(M)⊗RT ≃ Sn(M⊗RT).

Proposition 2.[3] Let M and N be R-modules. Then
∧

(M
⊕

N)∼=
⊕

m+n=p(
∧mM)

⊗

(
∧nN), via the map x1∧...∧xn,y1∧

...∧yn← (x1∧ ...∧xn)⊗ (y1∧ ...∧yn), and likewise Sp(M
⊕

N)∼=
⊕

m+n=p(S
mM)⊗ (SnN), via the map x1...xn,y1...yn←

(x1...xn)⊗ (y1...yn).

You can find previous results and other results about the algebras in [5],[12] and [13].
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3 The tensor, exterior and symmetric algebras of K̈ahler modules

Let R be an affinek-algebra of dimensions≥ 1 and letΩ (q)(R/k) denote the module of q-th order Kähler differentials of

Roverk. Then the rank ofΩ (q)(R/k) is (
q+ s

s
)−1.

Example 1. If R = k[x,y] is a polynomial ring, thenΩ (1)(R/k) is a free R-module of rank 2 with the basis

{δ (1)(x),δ (1)(y)}.

Proposition 3.([6pp.17]) Let R= k[x1, ....,xs] be a polynomial algebra of dimension s. ThenΩ (q)(R/k) is a free R-module

of rank(
q+ s

s
)−1 with basis{δ (q)(xi1

1 .....x
is
s ) : i1+ .....+ is≤ q}.

Proposition 4.Let R be an affine k-algebra. If R is a regular ring, thenΩ (q)(R/k) is a projective R-module.

Theorem 3.Let R be an affine k-algebra. If R is a regular ring, thenΩ (q)(R/k) is a projective R-module.

Proof.This is immediate from the decompositionJq(R/k)∼= Ω (q)(R/k)⊕Rand from proposition 3.

Theorem 4.Let R be an affine k-algebra. R is regular ring if and only ifΩ (1)(R/k) is a projective R-module.

Example 2.Let R= k[x,y] is a polynomial algebra. Then

(i)
⊗2(Ω (1)(R/k)) is a freeR-module of rank 4 with the basis

{δ (1)(x)⊗ δ 1(x),δ (1)(x)⊗ δ (1)(y),δ (1)(y)⊗ δ (1)(x),δ (1)(y)⊗ δ (1)(y)}.

(ii)
∧2(Ω (1)(R/k)) is a freeR-module of rank 1 with the basis{δ (1)(x)⊗ δ (1)(y)}.

(iii) S2(Ω (1)(R/k)) is a freeR-module of rank 3 with the basis{δ (1)(x)⊗ δ 1(x),δ (1)(x)⊗ δ (1)(y),δ (1)(y)⊗ δ (1)(y)}.

Proposition 5. Let R= k[x1, ....,xs] be a local k-algebra of dimension 1. Then R is a regular ring ifand only if
∧2(Ω (1)(R/k)) is zero.

Proof.Assume thatR is a regular localk-algebra of dimension 1. Then by Theorem 3.4,Ω (1)(R/k) is a freeR-module of

rank 1. This implies that
∧2(Ω (q)(R/k)) is zero by Theorem 4.

Conversely, assume that
∧2(Ω (q)(R/k)) is zero. Letm be the maximal ideal ofR. Then by Proposition 2.5, we have

∧2(Ω (1)(R/k))⊗RR/m is isomorphic to
∧2(Ω (1)(R/k)⊗RR/m)∼=

∧2( Ω (1)(R/k)
mΩ (1)(R/k)

) = 0 . Since
∧2( Ω (1)(R/k)

mΩ (1)(R/k)
) is a vector

space overR/m, it follows that either
∧2(

Ω (1)(R/k)
mΩ (1)(R/k)

) = 0 ordimR/m
∧2(

Ω (1)(R/k)
mΩ (1)(R/k)

) = 1.

If we have
∧2( Ω (1)(R/k)

mΩ (1)(R/k)
) = 0 thenΩ (1)(R/k) = mΩ (1)(R/k) and so by Nakayama’s Lemma,Ω (1)(R/k) = 0, which is a

contradiction. So, the rank ofΩ (1)(R/k) is equal to the number of minimal generators ofΩ (1)(R/k). That isΩ (1)(R/k) is

a freeR-module of rank 1. By Theorem 4,R is a regular ring.

Proposition 6 does not hold for the 2-fold tensor power ofΩ (1)(R/k) and the 2-fold symmetric power ofΩ (1)(R/k). For

instance, if we haveR= k[x] is a polynomial algebra of dimension 1, then
⊗2(Ω (1)(R/k)) andS2(Ω (1)(R/k)) are never

zero.
⊗2(Ω (1)(R/k)) andS2(Ω (1)(R/k)) are freeR-modules of ranks 1.

Corollary 1. Let R= k[x1, ....,xs] be a polynomial algebra of dimension s. Then

(i)
⊗2(Ω (q)(R/k)) is a free R-module of rank t2.
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(ii)
∧2(Ω (q)(R/k)) is a free R-module of rank

(

t

2

)

.

(iii) S2(Ω (q)(R/k)) is a free R-module of rank

(

t +1

t−1

)

where t=

(

q+ s

s

)

−1 .

Proof. It is clear by Theorem 3, Theorem 4 and Proposition 2.

Proposition 6. If R is a regular local ring dimension of s, then

(i)
⊗n(Ω (q)(R/k)) is a free R-module of rank tn.

(ii)
∧n(Ω (q)(R/k)) is a free R-module of rank

(

t

n

)

.

(iii) Sn(Ω (q)(R/k)) is a free R-module of rank

(

t +n−1

t−1

)

where t=

(

q+ s

s

)

−1 .

Proof. It is clear that by Theorem 3.3, Theorem 2.4. and Proposition3.2.

Corollary 2. If R is a regular ring, then

(i)
⊗n(Ω (q)(R/k)) is a projective R-module.

(ii)
∧n(Ω (q)(R/k)) is a projective R-module.

(iii) S2(Ω (q)(R/k)) is a projective R-module.

Proposition 7.Let R be an affine domain with dimension s. Then

(i) Ω (q)(R/k) is a free R-module if and only if
⊗2(Ω (q)(R/k)) is a free R-module.

(ii) Ω (q)(R/k) is a free R-module if and only if
∧2(Ω (q)(R/k)) is a free R-module.

(iii) Ω (q)(R/k) is a free R-module if and only if S2(Ω (q)(R/k)) is a free R-module.

Proof.We prove the only (iii). Others can be proved similarly. Without loss of generality, we may assume thatR is a local

domain of dimension s. Suppose thatΩ (q)(R/k) is freeR-module. By Theorem 4,S2(Ω (q)(R/k)) is a freeR-module.

Conversely, suppose thatS2(Ω (q)(R/k)) is a freeR-module. IfdimR= s, then the rank ofΩ (q)(R/k) is

(

q+ s

s

)

−1. Let
(

q+ s

s

)

− 1 = t. Then the rank ofS2(Ω (q)(R/k)) is

(

t +1

t−1

)

. Let m be the maximal ideal ofR. Then

S2(Ω (q)(R/k)) ⊗R R/m is an R/m vector space of dimension

(

t +1

t−1

)

. S2(Ω (q)(R/k)) ⊗R R/m is isomorphic to

S2( Ω (q)(R/k)
mΩ (q)(R/k)

). ThenS2( Ω (q)(R/k)
mΩ (q)(R/k)

)is an R/m vector space of dimension

(

t +1

t−1

)

if and only if Ω (q)(R/k)
mΩ (q)(R/k)

is anR/m

vector space of dimensiont. Hence Ω (q)(R/k)
mΩ (q)(R/k)

is an R/m vector space of dimensiont if and only if the number of

minimal generators ofΩ (q)(R/k) is t. The rank ofΩ (q)(R/k) was t. Therefore we show thatΩ (q)(R/k) is a free

R-module as required.

Corollary 3. Let R be an affine domain with dimension s. Then

(i) Ω (q)(R/k) is a projective R-module if and only if
⊗2(Ω (q)(R/k)) is a projective R-module.

(ii) Ω (q)(R/k) is a projective R-module if and only if
∧2(Ω (q)(R/k)) is a projective R-module.

(iii) Ω (q)(R/k) is a projective R-module if and only if S2(Ω (q)(R/k)) is a projective R-module.

Theorem 5.Let R be an affine local domain. Then the following conditionsare equivalent:
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(i) R is a regular local ring.

(ii)
⊗2(Ω (1)(R/k)) is a free R-module.

(iii)
∧2(Ω (1)(R/k)) is a free R-module.

(iv) S2(Ω (1)(R/k)) is a free R-module.

Proof.This is immediate from Theorem 5 and Proposition 7.

Hence, we obtain the following corollary.

Corollary 4. Let R be an affine domain. Then the following conditions are equivalent.

(i) R is a regular ring.

(ii)
⊗2(Ω (1)(R/k)) is a projective R-module.

(iii)
∧2(Ω (1)(R/k)) is a projective R-module.

(iv) S2(Ω (1)(R/k)) is a projective R-module.

4 Conclusion

The main purpose of this paper is to introduce the tensor, exterior and symmetric algebras of K¨ahler modules. We were

investigated some interesting properties of the algebras of K¨ahler modules.
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