NTMSCI 4, No. 3, 296-306 (2016) BISKKA 2%

.~ NewTendsinMathematcal Sciences

http://dx.doi.org/10.20852/ntmsci.2016320385

The Generalized difference of [ x? of fuzzy real numbers
over p— metric spaces defined by Musielak Orlicz
function

Deepmala Rdi N. Subramaniahand Vishnu Narayan Mishfa

13QC and OR Unit, Indian Statistical Institute, 203 B. T. Rdéolkata 700 108, West Bengal, India

2 Department of Mathematics, SASTRA University, Thanja68 401, India

3 Applied Mathematics and Humanities Department,Sarddabhbhai National Institute of Technology,Ichchhanth Mdév Dumas
Road, Surat 395 007, India

Received: 6 February 2016, Accepted: 28 April 2016
Published online: 13 August 2016.

Abstract: In this article we introduce the sequence spaces

(5,110 00.0). 4 (x2.0) . dr-1.0),]  and [AZ(d(x0.0).0x2.0).-- .d 4 1.0))

associated with the integrated sequence space defined bgldudVe study some basic topological and algebraic ptimzeof these
spaces. We also investigate some inclusion relationserktatthese spaces.
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1 Introduction

Throughoutw, ¥ andA denote the classes of all, gai and analytic scalar valuedesgequences, respectively. We write
w? for the set of all complex sequencegn,), wherem,n € N, the set of positive integers. Then? is a linear space
under the coordinate wise addition and scalar multiplioati

Some initial works on double sequence spaces is found in ®&fcn[1]. Later on, they were investigated by Hardy [2],
Moricz [3], Moricz and Rhoades [4], Basarir and Solankan Tsipathy [6], Turkmenoglu [7], and many others.

We procure the following sets of double sequences:
My () 7= { (Xmn) € W2 2 SURnnen [Xmn| ™ < 0},
Gp(t) := { (Xmn) € W2 2 p—liMmp_so0 [Xmn— | [™ = 1 forsomele C},
Gop (1) 1= { (Xmn) € W2 p—liMmn_seo [Xnn ™ = 1},
La(t) = {(Xmn) EWP 1 g v [Xenn| ™ < w0},

Gop(t) 1= Cp (1) NAu(t) andGonp(t) = Gop (t) N4 (1);
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wheret = (tmn) iS the sequence of strictly positive reais for all mn € N and p— limmne denotes the limit in the
Pringsheim’s sense. In the cagg = 1 for allm,n e N;.7, (t),€p (t), Gop (1) ,-Zu (), Gbp(t) andGopp(t) reduce to the
Sets.Zu, 6p, Gop, LU, Gbp and Gopp, respectively. Now, we may summarize the knowledge givenoimes document
related to the double sequence spacekh@ri and Colak [8,9] have proved that, (t) and%y (t),%hp(t) are complete
paranormed spaces of double sequences and gawe-thg—, y— duals of the spacegz, (t) and%y(t) . Quite recently,

in her PhD thesis, Zelter [10] has essentially studied bbéhtheory of topological double sequence spaces and the
theory of summability of double sequences. Mursaleen arelyHd1] and Tripathy have independently introduced the
statistical convergence and Cauchy for double sequenakgigen the relation between statistical convergent and
strongly Cearo summable double sequences. Altay and Basar [12] have edefinhe spaces
BS RBS (V),€S p,CSLbp, 6y and A7 of double sequences consisting of all double series whopeesee of
partial sums are in the spaces,, 7, (t) , ¢p, ¢op, ¢r and.Z,, respectively, and also examined some properties of those
sequence spaces and determinedahe duals of the space®., %7 ,%¢ ., and theB ($) — duals of the spaces

% Spbp and €., of double series. Basar and Sever [13] have introduced tmaddaspaceZy of double sequences
corresponding to the well-known spaégof single sequences and examined some properties of the sfiacuite
recently Subramanian and Misra [14] have studied the sgad®,q,u) of double sequences and gave some inclusion
relations.

The class of sequences which are stronglyaBesummable with respect to a modulus was introduced by Mafids]

as an extension of the definition of strongly @essummable sequences. Connor [16] further extended thistd® to

a definition of strongA— summability with respect to a modulus wheke= (an‘,k) is a nonnegative regular matrix and
established some connections between stdagummability, strongA— summability with respect to a modulus, and
A— statistical convergence. In [17] the notion of convergeotedouble sequences was presented by A. Pringsheim.
Also, in [18]-[19], and [20] the four dimensional matrix trsformation (Ax), , = Y7 1Y, 18 Xmn Was studied
extensively by Robison and Hamilton.

We need the following inequality in the sequel of the paper.a&b,> 0 and 0< p < 1, we have

(a+b)P<aP+bP (1)

The double serieg 1 %mn is called convergent if and only if the double sequerisgn) is convergent, where
Smn = Zmn:]_Xij (mneN).

A sequencex = (Xmn)is said to be double analytic Bu pm|xmn|1/m+”
sequences will be denoted By. A sequences = (xmn) is called double gai sequence({fim+ n)! [Xmn|)
m,n — . The double gai sequences will be denoteg(ByLet ¢ = { finite sequences

< o. The vector space of all double analytic
Ym0 as

Consider a double sequence- (xj). The(m,n)™" sectionx™" of the sequence is defined &Y™ = 5 " \x; 0;; for all
m,n € N; wherel];; denotes the double sequence whose only non zero ternhjrgj—)@in the (i, j)th place for each
i,jeN.

An FK-space(or a metric space)is said to have AK property if0mn) is a Schauder basis fof. Or equivalently
xmi s x,

An FDK-space is a double sequence space endowed with a cenmpégrizable; locally convex topology under which
the coordinate mappings= () — (Xmn)(mM,n € N) are also continuous.
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Let M and® are mutually complementary Orlicz functions. Then, we have
(i) Forallu,y> 0,

uy< M (u)+ @(y), (Youngsinequality[Seé21]] )
(i) Forallu> 0,
un (u) =M (u) + @(n (u)). ®3)
(i) Forallu>0,and0< A < 1,
M (Au) < AM (u) (4)

Lindenstrauss and Tzafriri [22] used the idea of Orlicz fimtto construct Orlicz sequence space

= {xew: kM (%) < oo, forsomep > O},
The spacé)y with the norm

—i S5 X
x| = inf {p >0:32 .M (Tk) < 1},

becomes a Banach space which is called an Orlicz sequence. $f|aM (t) =tP (1 < p < ), the spacegéy coincide
with the classical sequence spdge
A sequencd = (fmp) of Orlicz function is called a Musielak-Orlicz function. Aguence = (gmn) defined by

Omn (V) =sup{|vlu— (fmp) (U) :u>0}, mn=1,2,--.

is called the complementary function of a Musielak-Orliemdtion f. For a given Musielak Orlicz functiori, the
Musielak-Orlicz sequence spaiges defined as follows

ty = {xe W2 2 Mg ([Xmn )Y ™" — Oasmn — oo} ,
whereM; is a convex modular defined by
Mt (%) = Socs Tie g fran (XY™™ X = (Xmn) € 1.

We considet; equipped with the Luxemburg metric

. o o ‘an‘l/ern
d(xy) =supmyinf { Yo 130 fon | T ) ) <1

If X is a sequence space, we give the following definitions:
(0 X'= the continuous dual of;
(i) X9 = {a: (amn) : zan:1|amnxmn| < oo, foreachxe X};

(iiiy XB = {a: (@mn) ¥ M n=1@mnXmnis convegentforeach xe X};

(iv) XY = {a: (@mn) : SUfN>1 ‘Zm,}z\l:lamnxmn < oo, foreachxe X};

(v) let X be an FK—spaceD ¢; then Xf = {f([lmn) fe X’};

1/m+n

(vi) X% = {a: (&mn) : SUPnn|ammXmn| < oo, foreachxe X};
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X% XB XV are calleda — (or Kéthe— Toeplita dual of X, — (or generalized- Kéthe— Toeplit dual of
X,y —dual of X, — dual of X respectively.X? is defined by Gupta and Kamptan . It is clear ti#t c X? and
X% < XY, but XB < XY does not hold, since the sequence of partial sums of a doohleemyent series need not to be
bounded.

The notion of difference sequence spaces (for single segsg¢mwas introduced by Kizmaz as follows
Z(A)={x=(x) ew: (Ax) € Z}

for Z = c,cp and/e., whereAxy = xx — Xx,1 for all k € N.

Herec,cp and /. denote the classes of convergent,null and bounded sclaedaingle sequences respectively. The
difference sequence spawg, of the classical spadg is introduced and studied in the cass p < « by Basar and Altay
and in the case @ p < 1 by Altay and Basar. The space@),co(4), /- (A) andbv, are Banach spaces normed by

00 1
X[ = xa| + Supc1 A% and|Xpy, = (Tig )P, (1< p< ).

Later on the notion was further investigated by many oth&ksnow introduce the following difference double sequence
spaces defined by

Z(A) = {x= (Xmn) € W?: (AXmn) € Z}

whereZ = A2, x? andAxmn = (Xmn— Xmnt1) — Xms1n — Xmi1n11) = Xmn — Xmnt1 — Xmt 1n + Xmr1n.1 for allmn e N.

2 Definition and preliminaries

Let n € N and X be a real vector space of dimensiow, where n < m. A real valued function
dp(X1,...,%) = ||(d1(X1,0),...,dn(Xn,0))|| p ON X satisfying the following four conditions:

(i) [1(d1(x1,0),...,dn(Xa,0))||p = 0 if and and only ifd1 (X1, 0),...,dn(Xn,0) are linearly dependent,

(ii) |I(d1(x1,0),...,dn(%n,0))| p is invariant under permutation,

(iii) H (adl(xla 0), ..., dn(Xn, O))H p= |a| H (dl(xlvo)v <+ Gn(Xn, O))H p.a €R

(iv) dp (%1, Y1); (X2,¥2) - (%, Yn)) = (A (X1, %2, - Xn) P+ A (Y1, Y2, - Yn)P) /P forl < p < o; (or)

(V) d((X1,¥1), (X2,¥2), - (%n,¥n)) := sup{dx (X1, Xz, - -Xn), Ay (Y1,¥2, - ¥n)},

for xq,%2,-- X0 € X,Y1,Y2,---Yn € Y is called thep product metric of the Cartesian productrometric spaces is thp
norm of then-vector of the norms of the subspaces.

A trivial example of p product metric ofn metric space is thep norm space iX = R equipped with the following
Euclidean metric in the product space is theorm:

d11(X12,0) d12(X12,0) ... din(X1n,0)
Oo1(X21,0) d22(X22,0) ... d2n (X1n,0)

[[(d1(X1,0),. .- ,0dn(%n,0))]le = sup(|det(dmn(Xmn,0))]) = sup

dn1 (ana 0) dno, O(XnZ, 0) ... dnn (Xnn, 0)

wherex; = (Xj1,---Xin) € R" foreachi =1,2,---n.

If every Cauchy sequence K converges to somke € X, thenX is said to be complete with respect to the metric.
Any completep— metric space is said to k- Banach metric space.
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Definition 1. Let X be a linear metric space. A functipn X — R is called paranorm, if

(1) p(x) >0, forallx € X;

(2) p(—x)=p(x), forall x € X;

B) p(x+y)<p(X)+p(y), forallx,yeX;

(4) If (omn) is a sequence of scalars withnn — 0 as mn — o and (xmn) is a sequence of vectors with Xmn— x) — 0
as mn — oo, thenp (GmpXmn— 0X) — 0as mn — .

A paranorm w for whichp (x) = 0 implies x= 0 is called total paranorm and the paifX,w) is called a total
paranormed space. It is well known that the metric of anydimaetric space is given by some total paranorm (see [23],
Theorem 10.4.2, p.183).

The notion of deal convergence was introduced first by Kkstgt al.[24] as a generalization of statistical convergenc
which was further studied in toplogical spaces by Kumar §2&|26] and also more applications of ideals can be deals
with various authors by B.Hazarika [27-39] and B.C.Tripgtand B. Hazarika [40-43].

Definition 2. A family | € 2¥ of subsets of a non empty set Y is said to be an ideal in Y if

(1) pel

(2) ABelimply AUBel

(3) Acl,BC Aimply Be l.

While an admissible ideal | of Y further satisfipg € | for each x Y. Given | € 28N pe a non trivial ideal inN x N.
A sequence (Xmn)mnenxny N X is said to be + convergent to0 € X, if for each ¢ > 0 the set
A(g) = {mneNxN:|/(di(x),-,dn(X)) — O] p > €} belongsto |

Definition 3. A non-empty family of sets € 2% is a filter on X if and only if
(1) peF

(2) for each AB € F, we have imply {\Be F

(3) each Ac F and each AC B, we have B F.

Definition 4. An ideal | is called non-trivial ideal if B~ @ and X ¢ |. Clearly | ¢ 2% is a non-trivial ideal if and only if
F=F()={X—-A:Acl}isafilteron X.

Definition 5. A non-trivial ideal | ¢ 2X is called
(i) admissible if and only if{x} : x€ X} C I.
(i) maximal if there cannot exists any non-trivial idealsd containing | as a subset.

If we take I=1; = {ACNXN:Aisa finite subse}. Then k is a non-trivial admissible ideal oN and the
corresponding convergence coincides with the usual cgevere. If we take £ I; = {ACN xN: d(A) =0} where
0 (A) denote the asyptotic density of the sefTAen  is a non-trivial admissible ideal d¥ x N and the corresponding
convergence coincides with the statistical convergence.

Let D denote the set of all closed and bounded intervals X, x;] on the real lineR x N. For X,Y € D, we define
X <Y ifandonlyifx <y; and % <y, d(X,Y) = max{|x1 — Y1, |X2 — y2|}, where X= [x1,%2] and Y = [y1,Y2].

Then it can be easily seen that d defines a metric on D(&nd) is a complete metric space. Also the relatiof ” is a
partial order on D. A fuzzy number X is a fuzzy subset of thélea R x R i.e. a mapping X R — J(=[0,1])
associating each real number t with its grade of membersHip.X

Definition 6. A fuzzy number X is said to be
(i) convexif X(t) > X (s)AX(r) =min{X(s),X(r)}, wheres<t <r.
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(i) normal if there existste R x R such that Xtp) = 1.
(iii) upper semi-continuous if for eaet> 0, X1 ([0,a+ £]) for all a € [0,1] is open in the usual topology & x R.

Let R(J) denote the set of all fuzzy numbers which are upper semizanis and have compact support, i.e. if
X € R(J) x R(J) the for anya € [0,1],[X] is compact, where

X ={teRxR:X(t)>a, if aec[0,1},[X]°=closure of ({tcRxR:X(t)>a, if a=0}).

The sefR of real numbers can be embeddedd) if we defing € R (J) x R(J) by

rt) = {

The absolute valugX| of X € R(J) is defined by

X| () = {maX{X(t)’x(_”}’ itt > 0;

1, ift=r:
0, ift#r

0, ift <0

Define a mapping : R (J) x R (J) — R* U {0}by
d_(XaY) = Sur'bﬁaﬁld ([X]a ) [Y]a) :

Itis known that(R (J) ,d) is a complete metric space.

Definition 7. A metric onR (J) is said to be translation invariantd (X +Z,Y +Z) = d(X,Y), for X,Y,Z€R(J) .

Definition 8. A sequence X% (Xmn) of fuzzy numbers is said to be

(i) convergentto a fuzzy numbeg Kfor everye > 0, there exists a positive integeg such thald_(xmn,xo) < ¢ for all
n>ng.

(i) bounded if the seXmn: m,n € N} of fuzzy numbers is bounded.

Definition 9. A sequence X% (Xmn) of fuzzy numbers is said to be
(i) I-convergentto a fuzzy numbeg Xfor eache > 0 such that

A={mneN:d(XnnXo) > €} €l.

The fuzzy numbergXs called I-limit of the sequend®&mn) of fuzzy numbers and we write-llimXmp = Xo.
(ii) 1-bounded if there exists M 0 such that

{mneN:d(Xnn0) >M} €.

Definition 10. A sequence space-Bf fuzzy numbers is said to be

(i) solid (or normal) if(Ymn) € Er wheneverXmn) € Er andd (Ymn,0) < d (Xmn,0) for all m,n e N.

(i) symmetric if Xmn) € Er implies (Xn(mn)) € Er whereris a permutation oN x N.

Let K= {k; < k; < ...} C N and E be a sequence space. A K-step space of E is a sequenee spac
Afin={ (Xmpn,) € W?: (Mpnp) € E}.

A canonical preimage of a sequenffm,n,) } € Ag is a sequencéymn} € w? defined as

Xmn, fMnNekE
Ymn= .
0, otherwise.
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A canonical preimage of a step spatg is a set of canonical preimages of all elements\ff, i.e. y is in canonical
preimage of\E if and only if y is canonical preimage of some R E.

Definition 11. A sequence space:-Es said to be monotone iffscontains the canonical pre-images of all its step spaces.

The following well-known inequality will be used throughthe article. Let p= (pmn) be any sequence of positive real
numbers withD < pmn < SUpnrPmn = G,D = max{1,2G — 1} then

|amn+ Bmn| "™ < D (|amn|P™ 4 |bmn|P™) for all m,n € N and ann, bmn € C.

AlsO |agn|P™ < max{l, |a|G} foralla e C.

First we procure some known results; those will help in elithing the results of this article.

Lemma 1.A sequence space-Es normal implies [ is monotone. (For the crisp set case, one may refer to Kandhan
Gupta [44], page 53).

Lemma 2. (Kostyrko et al., [24], Lemma 5.1). If¢ 2" is a maximal ideal, then for each@ N we have either A | or
N-Aecl.

3 Some new integrated sequence spaces of fuzzy numbers
The main aim of this article to introduce the following segoe spaces and examine topological and algebraic propertie

of the resulting sequence spaces. pet (pmn) be a sequence of positive real numbers fonath € N. f = (fn) be a
Musielak-Orlicz function,(X,||( (X1,0),d(%2,0),--- ,d (X-1,0))]| ) be ap—metric space, andA 1) be a sequence

of non-zero scalars andmn(X) = d (A Xm 0 _) be a sequence of fuzzy numbers, we define the following seguen
spaces as follows:

(X310 00,0),d 0,0), a0 1.0))|
[ - {(r.9) €N x N [fmn(llumn(x (d0.0).d(x.0). -~ d (x-1.0)) )| " > e} €1,
[

AT (0 060,0).00,0), . (X0 1,0
{K>o.{(r,s)eNxN: {fmn(Humn(x),(d(xl,O),d(xz,O), d (x1_1,0))]| )} " zK}EI}.

Theorem 1.Let f = (fmn) be a Musielak-Orlicz function, & (gmn) be a double analytic sequence of strictly positive
real numbers, the sequence spaces

(X1 04,0),d (%2, 0) -+ ,d (X1, >>||} and [AFL11(d(x1,0),d (%2, 0), -+ ,d (xq-1, ))H are linear
spaces.
Proof. We prove the result only for the spa%,efzu,ﬂ( (x1,0),d (x2,0),--- ,d (%n—1,0))|| } . The other spaces can be
treated, similarly. LeXX = (Xmn) andY = (Ymn) be two element{xfﬂ, I(d (x1,0),d (x2,0),--- ,d (Xs—1,0))]] }
have 4 c

A = {(1,9) € NN [ fiun (IIHn(3). (@ (x1,0),d (062,0).++,d (xa-1,0)) 1) | = 2 } €1
and a .

Bg = {(1.9) € NxN: [frmn (IIHmn(y) . (d(x0,0),0 02, 0) -+ . d (a1, 0)l[p) | = 5} €1
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Let a andf be two scalars. By the Musielak continuity of the functioa: (fmn) the following inequality holds:

- ) :

|a| Gmn
D | 1 g1 o (I3 05.0). 0 0.0). 602,01, ) |

Hmn(aX+ BY)
laf+ B

7(d (Xlao) ad (X270) )t ad (anlao))

|B| Amn
+D[|a|+|B|fmn(”ﬂmn()’)7(d(X1,0),d(X2,0), d (Xn-1,0))] )} <

D o (| an (). (0 (42.0) 0 02 0). - (%0-1.0)) )| ™
40 [fon ([ Hmn(y) (0 (0,0),d (62,0),,d (01,0} )] ™"

From the above relation we obtain the following:

{(r,s)eNxN: fmn<‘ %,(d(xbo),d(x@m, d (%10 )] }
{19 €N N: DK [fn ([l 1imn (%), (4 (1,0),d (%2,0) -, d (0 1,0))| )}q"‘”zg
{19 € NN DK [ fn ([l 1mn() (8 (%1,0),d 062,0). -+ d (xa-2,0) ) | = 5 } €.
This completes the proof.
Remarklt is easy to verify[Afzu,H( (X1,0),d (x2,0),---,d (Xn—1,0))]| } is a linear space.

Theorem 2.The classes of sequences

(X211 (d00,0).400,0), - d Gxn-1, 0]

and
[A221(d00,0),d 0, 0), -0 (xo1,0)) ]

are paranormed spaces paranormed hylgfined by
9(X) =inf { L supmfon (|4 (9, (d (%1,0),d (x2,0) -+ ,d (xa-1,0)) ) < 1}

where H= max{1, supnnQmn} -

Proof.Clearlyg(X) > 0,g(—X) = g(X) andg(X +Y) < g(X)+g(Y). Next we show the continuity of the product. Let
a be fixed andy(X) — 0. Then it is obvious thag (aX) — 0. Next leta — 0 andX be fixed. Sincefmn are continuous,
we havefmn (a [ltmn(X), (d (x1,0),d (X2,0),--- ,d (xn,l,O))||p) — 0, asa — 0. Thus we have

int { % : supnfn (11 (), (A (00,0),d 0,0),++,d (%-1,0))|,) <1} =0, asa 0.
Henceg(aX) — 0 asa — 0. Thereforeg is a paranorm.
proposition 1. [x2.11(d 00,0).0(6,0). .4 0 1,0, € [AZ (001,00, 0.0), 06y 1.0))1]
and the inclusion is proper.
Proof. Let | (F) = |,fmn<||[.1mn( ) (d (Xl,O),d(Xz,O), (Xn 1, ))” ) ( )Wn,ﬁ =0Omn=M= 1 thenl"l (X) =
AfzyaH( (X17 )7 (Xz,O), (Xn 1, ))” bUt(an)¢ |:Xfya”( (X17 )a (szo)v (Xn 1, ))||:|
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Theorem 3.The spaces

X 04,0),00,0), -+ d 0 10D and A% (@ 0x,0),d0.0), 06y 1.0 |

are neither solid nor monotone in general.

Proof. Let (xmn) be a given sequence afidm,) be a sequence of scalars such tloaf,| < 1, for all m,n € N. Then, for
allmn e N, we have

[t (1 (@%) (@ (5, 0),0 062, 0) -+, 061-2,0)) ) | ™ = [ o (149 (0 (3, 0) 0 (%2, 0) -+, (501,00 ) |

If Amn= 1 then solidness follows above inequality. The monotoyi@tiows by lemma 2.12. The first part of the proof
follows from the following example.

Example 1.Letl (F) =1,

[t (10 (0 (5,0, 02,0 -+, 612,00 ) | ™ = £ ([I1n(9, (6 (1, 0) .0 (%2,0)+++,d (01, 0) | )}qm”
= [(I1mn()(d(x4,0),d 00,0+, d (01,00} ,) | ™

m=1, ﬁj =1forallmne&N,gmn=1formn odd,qmn: 3 for m,n even,(m+n)! (Xmn) = (MN)™" for allmn € N

beIongsto{A ,(d (x1,0),d (%2,0),- -+ ,d (Xa—1,0))| } . ForE, a sequence space, consider its step spackefined by
(Yymn) € Ej; implies ymn = 0 for all mn odd and ymwn = Xmwn for mn even. Then
(Ymn) € { ,1(d (x1,0),d (%2,0),- -+ ,d (Xa—1,0)) | } Hence the spaces are not monotone. Hence are not solid.

Theorem 4.The spaces

(X210 (60,0),d 00,0). -+~ d(xo1.0)l,]  and [AZ(d(x,0).d(x2.0) - (1-1,0))

are not convergence free.

Example 2.Let| (F) =1,

[t (1mn(3)(004,0), 4 0, 0) -, d (501,00} 15) | ™" = [ (IItbmn (%), (4 (1,0, (2,0) - d(xnfl,owp)}qm“
— K|\umn(x),(d(xl,O),d(Xz,O), d (Xn-1,0))|| )}

m = 1,}\—%1” =1 for all mn e N,gus = 1 for mn odd, gmn = 2 for mn even, consider the sequence

(Mm+n)! (Xmn) = (mn)*<m+”) for all m,n € N belongs to each o{xu ,1(d (x1,0),d (%2,0),- -+ ,d (Xa—1,0))| } and
[ 1(d(%,0),d (%2,0) -+ ,d (%1, 0))| ] . Consider the sequen¢gnn) defined by((m-+n)!ymn) ™" = mn?, for
al mn € N. Then (ymn) neither belongs to [Xﬁq,n(d (x1,0),d (%2,0),- -+ ,d(Xn-1,0))]] } nor
[/\ﬁq,n(d (x1,0),d (X2,0),- -+ ,d (Xn—1,0))]] } Hence the spaces are not convergence free.
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