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Abstract: In this paper, a powerful recent non-standard finite difieraethod by nonlocal approximation is improved. Also, canegl

standard finite difference method to this non-standardfitifferent method in terms of stability and accuracy. Asmerical example,
Hybrid Selection & Genetics equation is considered as theidate from class of first order ODEs with polynomial ridtetad sides.
Furthermore, results obtained from the non-standard fififterent method and MATLAB ODE solvers (odel5s,0de23shpared in
terms of stability, accuracy, and execution time.
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1 Introduction

Ordinary differential equations have significant influemecealmost all scientific fields such that Biology, Chemistry,
Economics, Engineering, and Physics. Therefore, solvibgE©become very important. There are lots of numerical
methods to solve ODEs such that Euler method, Runge - Kuttaadeor many of others. Also, there are ODE solvers
in MATLAB such ode 45, odel5s and ode23s etc. However, afidtstandard methods do not have time step freedom.
But, time step freedom is provided by the non-standard fufiifference method that is mentioned in the paper. Interest
of the paper is to improve the non-standard finite differeathod that showed in [1]. R. Anguelov and J.M.-S. Lubuma
interest is non-linear terms of ODEs. But, linear term i®d&ken in the account in this paper. To show idea, the initial
value problem for an autonomous first order ordinary diffiéieg equation with third degree polynomial right-handesid

is considered.

Y 1)y =10 &
where the functioly = y(t) : [to, T) — Ris known ,yp € Rand the functiorf : R— Rgiven. Here, T could be butty is
finite.

As in shown in [1], numerical approximation of (1) is replabe continuous intervaly, T) by the mesh of discrete points
{tc —to+kh| k> 0} whereh > 0 is the step sizei = y(i) is the solution aty. After applying finite difference method
to (1), the sequendgy) will be solution of a finite difference equation of the form

Yir1 = F (h;yi). (2
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Definition 1.The equation (2) is called a non-standard finite differenethad (NSFDM) if at least one of the following
conditions is satisfied:
dy (k1 =W
dt ¢(h)
where¢ (h) is non negative function such thath) = h+ O(h?) as h— 0.
Nonlinear terms in f(y) are approximated in a nonlocal wag, by a function of several points of the mesh [1].

®3)

Definition 2.Assume that the solution of (1) satisfies some propertiethelfnumerical scheme (2) satisfies same
properties then (2) is called stable with respect to the prtips such that monotonicity, boundedness, equilibrium
points, and positivity.

In this paper, monotonicity and equilibrium points will bectised on. By [2-4] and the above definition, the NSFDM is
more powerful than the standard ones.

2 Numerical method

Assume that the functioR (h,y) in (2) has continuous derivatives with respect to both \deisforh > 0,y € R satisfies

JoF
F(0y) =Y, 5-(0y) = f(y) (4)
dh
Let us note that consistency implies that (4) is satisfiedrwhie the solution of (1) (see [5, 6]).
Theorem 1The difference equation (2) is stable with respect to mamottependence on initial value if

JoF
—(hv) >

S5 (hy) =0 (5)
where ye R, h> 0

Theorem 2 Assume that the difference equation (2) is stable with i&tpenonotone dependence on initial value. Assume
also that for every h- 0 the equations Fh;y) =y and f(y) = 0in y have the same roots considered with their multiplicity.
Then the difference equation (2) is stable with respect toatanicity of solutions.

Theorem 3Under the assumptions of theorem 2, the difference equéipis elementary stable. Theorem 1, 2 and 3
stated and proved in [1].

Scheme 1.
For the scheme 1, just nonlinear terms will be formalizedhd4].

%:aﬁ+yy2+[3y+a (6)

whereo,y,3,a € R
Left hand side of (6) is represented Hg%h%)y" . For the nonlinear termg, y? nonlocal approximation successively are;

Y~ ay; + (1 - a)ygykr1andy ~ by + (1 - b)yks1a.b € R

after plugging in (6), obtained

ykjl’l(;)yk — a0y + (1— a)0YRyk 1+ bYYi + (L= ) yyiYks 1 + Bk + @ Y
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or
oy = Y @B (OY DO (M5 + BY (Wt a (h)
ot 1-(1-a)p(h)oyZ— (1-b)d(h)yyk
Yir1 = F(@(h);yk) (8)
with
2
F(p(h)y) = YTy’ +bO (Y + fo(h)y +ag(h)

1-(1-a)p(hjoy’— (1-b)p(h)yy

To find values of the parametarandb, theorem 1 is applied to (8). Also, by theorems 1-3, (8) iblstavith respect to
monotonicity and equilibrium points. According to theorémt should be

JoF

oy (9 (:y) > OF(@(h)y) =y fy) =0 9

Scheme 2.
For the scheme 2, we consider all terms linear and nonliffeathe all terms of (6)°,y?, andynonlocal approximation
successively are;

Y~ ayp + (1—a)yayk 1, Y ~ byE + (1 — b)Yiyk 1,y ~ €Yk + (1 — C)yks1a,b,c € R

after plugging in (6), obtained

7yk;l(;)yk = a0y + (1—2)oYeyir1+ byyg + (1—b) yyYicr 1 + BYk + CBYk+ (1 — ©)BYks1+ @
or
Yoy — Yt 20OV + DO (i + BO (Wi + ch(M)BYic+ ad(h) (10)
T 1 (1-ag oy (1-b)g(hyw— (1-c)p(h)B
Yir1 = F(@(h);yk) (11)
with

F(p(h)y) = Y280y’ + Doy + Bg(h)y -+ cp()By + ad(h)
YT I 1 agmoy - (1-b)ghyy— (1- g (M)

To find values of the parametarbandc theorem 1 is applied to (211). Also, by theorems 1-3, (1$)able with respect
to monotonicity and equilibrium points. According to theor 1, (9) satisfied.

Scheme 3.
To compare using time step classibair ¢ (h), scheme of (h) denominator function is defined below as in [7-8].

RU:=maX|R [:R = d(;(;)) ly—gi;i=1:n}
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wherey( are fixed points.

o 1-gRh
(R =——=10(h) (12)
3 Numerical example
Hybrid selection equation & genetics
d
3 =Ly~ my (13)

In (31),y represents the portion of the populatioris the time (measured in generatidnjyn, andk are constants that
depend on genetic characteristic. In our dase2, m= 1, andk = 1 [9].
NSFDM without linear term combination by scheme (1)

dy

Gt YAV =y -3+ (14)
After applying (7), we get

yktpl(;)yk = ayg+ (1—a)ygyk:1 — 3byk + (1= b)(—3)yiis 1+ 2k
Equivalently
_ ag(h)yg —3bg (yg + 26 (N)yic+ Yk
T 1-(1-a)p(hyE+ 38 (M) (1-b)yk
From (8)
F(p(h)y) = 28N> 300 ()" + 29 ()y +y

1-(1-a)p(hyZ+ 3¢ (N)(1- by
From (2.6), we gea > 1 andb < 0 . If aandb are like these,

F(h;y) =y <« f(y) =0 for everyh > 0.
NSFDM with linear term combination by scheme (2)
After applying (10) to (14), we get

W = ay} + (1—a)yyis1 — 30y + (1 — b)(—3)yiyr1 + 2k + 20¥k + 2(1— C)Yier 1
Equivalently
Vot = ag (h)yg — 309 (h)yg -+ 2¢ ()i + Yk
T 1-(1-a)e(yE+ e (L-by—2¢(h)(1-0)
From (11)
_ 2
F(#(h):y) = ag ()y® —3bg (h)y* +2¢ (h)y +y

1-(1—-a)¢(h)y>+¢(h)(1-b)y—2¢(h)(1-c)
From (9), we gea> 1 b<1c> 1. If a,bandcare like these,
F(h;y) =y <« f(y) =0 for everyh > 0.
Denominator functio (h); y* = 0,y? = 1,y® = 2 are fixed pointes. Thus, by schema ¢3h) = i;h obtained.
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Fig. 1: Numerical approximation of the solution
of Eq. (3.2) forh= 0.2 andyp = 0.5
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Fig. 3: Numerical approximation of the solution
of Eq. (3.2) forh = 2 andyp = 0.5.
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Fig. 5: Numerical approximation of the solution
of Eq. (3.2) h=0.2 forp(h) = (1— e 2")/2 and
Yo = 0.5.
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Fig. 2: Numerical errors of the solution of Eq.
(3.2) forh=0.2andy = 0.5.
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Fig. 4: Numerical errors of the solution of Eq.
(3.2) forh = 2andy, = 0.5.
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Fig. 6: Numerical approximation of the solution
of Eq. (3.2) h=2 for¢ (h) = (1—e2")/2 and
yo = 0.5.
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Table 1: Comparison of MATLAB ODE solvers and NSFDMs for eq. (3.2) yor= 0.5 based on execution time.

Solvers Time in second

NSFDM 0.00067h=0.2) 0.0007(h=2)
NSFDML 0.00065h=0.2) 0.0007(h=2)
Odel5s 0.4744

Ode23s 0.4022

4 Conclusion

First order stable nonstandard finite difference schemprdred and analyzed in this paper. The improved numerical
method is applicable to solving arbitrary first-order diffietial equation with polynomial right hand side. Makingdar
term combination in the NSFDM, we get better results in teofnaccuracy (see figure 1-4). For denominator function,
the graphical result (see, fig. 5-6) shows that using trawmti h is the best for the NSFDM. Nonstandard finite diffeeenc
methods work with big time step (see fig 3-4) but standar@difice method fails with big time step. Therefore, NSFDMs
have time step freedom. Additionally, MATLAB ODE solversvieasame problem which is time step restriction. We
experimented with the MATLAB ODE solvers, namely, ode15d ade 23s. The significant point is that none of these
solver is free of step-size restriction. Also, table 1 destates that NSFDMs are faster than MATLAB ODE solvers
since NSFDMs have time step freedom but MATLAB ODE solversidb
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