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Abstract: In this article, we investigate two essential nonlinear evolution equations namely modified dispersive water wave equations
and the Whitham-Broer-Kaup model for dispersive long wavesin the shallow water small-amplitude regime by using the modified
simple equation (MSE) method. The obtained solutions with parameters expose that the method is incredibly prominent and effective
mathematical tool for solving nonlinear evolution equations (NLEEs) in mathematical physics, applied mathematics and engineering.
When the parameters have taken special values the solitary wave solutions are attained from the exact solutions. In addition, this
procedure reduces the size of calculations.

Keywords: Modified simple equation method, nonlinear evolution equations, solitary wave solutions, modified dispersive water wave
equations, Whitham-Broer-Kaup model for dispersive long waves in the shallow water small-amplitude regime.

1 Introduction

Nonlinear evolution equations (NLEEs) have a vast area for playing a big role and it is very essential for the calculating

mathematical equation of modern science. The maximum complex phenomena come out in a extensive variety of

scientific applications, such as, the fluid dynamics, chemical kinematics, plasma physics, nuclear physics, applied

mathematics, biology, solid state physics, optical fibers,and so on are modeled by nonlinear evolution equation.

Traveling wave solution is a fundamental problem for this model to seek their analytical solution. In soliton theory the

traveling wave solutions of NLEEs have provided a significant and imperative role, as they provide a great deal of

information about the physical models they express. Numerous mathematician and physical scientists have made to

obtain the exact solutions and solitary wave solutions of these NLEEs which rotate into an essential task in the study of

nonlinear physical phenomena. It is well mentioned that there is no unique method to solve the all kind of NLEEs and in

this regards a lot of new techniques have been successfully developed by diverse group of scientists such as, the

homotopy perturbation method [1-3], the Jacobi elliptic function method [4], the truncated Painleve expansion method

[5], He’s semi-inverse variational principle [6-7], the variational method [8-11], the Backlund transformation [12], the

Miura transformation [13], the F-expansion method [14], the generalized Riccati equation [15], the homogenous balance

method [16-17], the trial function method [18], the exp(−ϕ(ξ ))-expansion method [19-21], the tanh-function method

[22-24], the inverse scattering method [25], the sine-cosine method [26-27], the Exp-function method [28-30], the

asymptotic method [31], the Hirota’s bilinear transformation method [32-33], the auxiliary equation method [34], the

non-perturbative method [35], method of integrability [36], the soliton perturbation theory [37-39], the

(G′/G)-expansion method [40-47], etc.

The main purpose of this article is to make use of the MSE method to extract new exact traveling wave solutions and
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then solitary wave solutions to the modified dispersive water wave equations and Whitham-Broer-Kaup model for

dispersive long waves in the shallow water small-amplituderegime and reveal the progress and straightforwardness of

this method. Moreover the MSE method has not been applied to the above pointed out equation in the earlier literature.

Gozukizil and Aydemir [48] studied modified dispersive water wave equations by using(G′/G)-expansion method,

Alquran and Qawasmeh [49] investigated Whitham-Broer-Kaup model via(G′/G)-expansion method.

The article is prepared as follows: In section 2, the MSE method has been discussed. In section 3, the method is applied

into two nonlinear evolution equations mentioned above. Insection 4, physical explanations of the obtained solutions

have been discussed and in section 5, we have drawn our conclusions.

2 Outline of the modified simple equation method

In this section we describe the modified simple equation method for finding exact traveling wave solutions of nonlinear

evolution equations. Let us consider the nonlinear partialdifferential equation foru(x, t) is in the form

Q(u,ut ,ux,utt ,uxt,uxx, .....) = 0. (1)

HereQ is a polynomial inu(x, t) and its various partial derivatives, in which the highest order derivatives and nonlinear

terms are involved. In order to solveu(x, t) explicitly we have to carry out the following subsequentialfour steps:

Step 1. Combining the independent variablesx andt into a compound variableξ , we consider that

u(x, t) = u(ξ ),ξ = x−W t , (2)

whereW is the speed of the travelling wave. The wave variable (2) permits us to convert Eq. (1) into an ordinary differential

equation (ODE) foru= u(ξ ):
R
(

u, u′,u′′,u′′′, .....
)

= 0, (3)

whereR is a polynomial inu(ξ ) and its derivatives wherein prime indicates the derivativewith respect toξ .

Step 2. Suppose the Eq. (3) has the formal solution

u(ξ ) = B0+
N

∑
k=0

Bk

[

ψ ′(ξ )
ψ(ξ )

]k

, (4)

whereBk (k= 1, 2, 3, · · · ) are arbitrary constants to be calculated, such thatBN 6= 0, andψ(ξ ) is an unknown function to

be determined subsequently. The solution which has prepared by the(G′/G)-expansion method, Exp-function method,

Jacobi elliptic function method, etc., presented in terms of some pre-settled functions, but in the MSE method,ψ is not

previously known or not a solution of any known equation. Forthat reason, it is impossible to speculate from previous

what kind of solutions one may get through this method. This is the distinction and exquisiteness of this method.

Step 3. The positive integerN come out in Eq. (4) can be determined by taking into consideration the balancebetween

the highest order derivatives and highest order nonlinear terms occurring in Eq. (3).

Step 4. Calculating the necessary derivativesu′ , u′′ ,u′′′ · · · of a functionu(ξ ) and substituting Eq. (4) into (3), we

explicate the functionψ(ξ ). As a result of this replacement we get a polynomial in(ψ ′(ξ )/ψ(ξ )) and its derivatives.

Equating all the coefficients with like power of this polynomial to zero, we obtain an over determined set of equations

c© 2016 BISKA Bilisim Technology



NTMSCI 4, No. 4, 12-26 (2016) /www.ntmsci.com 14

which can be solved to findBk (k = 0, 1, 2, 3, · · · ) andψ(ξ ). This accomplished the determination of the solution of Eq.

(1).

3 Applications of the method

In this section, two examples have been utilized to demonstrate the distinction and inevitability of the MSE method to

construct exact solutions and then solitary wave solutionsof nonlinear partial differential equations.

3.1 The modified dispersive water wave equations

In this sub-section, we will bring to bear the MSE method for finding exact solitary wave solutions to the modified

dispersive water wave equations. Let us consider the modified dispersive water wave equations (MDWWE) are given by

ut =− 1
4vxx+

1
2(u vx + vux),

vt =−uxx−2uux +
3
2

vvx . (5)

By making use of the traveling wave variableξ = x−Wt into Eq. (5) we obtain the following ODEs:

−W u′ =−
1
4

v′′+
1
2
(u v′+ vu′),

−Wv′ =−u′′−2uu′+
3
2

vv′. (6)

Integrating Eq. (6) with respect toξ once and choosing the integration constant as zero, we obtain

−Wu=−
1
4

v′+
1
2

uv,

−W v=−u′−u2+
3
4

v2. (7)

Now balancing the highest-order derivatives and the nonlinear terms occurring in Eq. (7), we obtainM = 1 andN = 1.

Consequently, the solution of Eq. (5) takes the following form

u= A0+A1

(

ψ ′

ψ

)

,

v= B0+B1

(

ψ ′

ψ

)

, (8)

whereinA0, A1, B0 andB1 are constants, such that (A1,B1 6= 0), andψ(ξ ) is an undefined function to be determined later.

The essential computations for the equation (7) are as follows:

u′ = A1

[

ψ ′′

ψ
−

(

ψ ′

ψ

)2
]

. (9)

v′ = B1

[

ψ ′′

ψ
−

(

ψ ′

ψ

)2
]

. (10)
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u2 = A2
0+2A0A1

ψ ′

ψ
+A2

1

(

ψ ′

ψ

)2

. (11)

v2 = B2
0+2B0B1

ψ ′

ψ
+B2

1

(

ψ ′

ψ

)2

. (12)

Substituting the values ofu′, v′, u2 andv2 into Eq. (7) and then equating the coefficients ofψ0, ψ−1, ψ−2 to zero, yields

−WA0−
1
2

A0B0 = 0. (13)

−WA1ψ ′+
1
4

B1ψ ′′−
1
2

A0B1ψ ′−
1
2

A1B0ψ ′ = 0. (14)

−
1
4

B1ψ ′2−
1
2

A1B1ψ ′2 = 0. (15)

−WB0+A2
0−

3
4

B2
0 = 0. (16)

−WB1ψ ′+A1ψ ′′+2A0A1ψ ′−
3
2

B1B0ψ ′ = 0. (17)

−A1ψ ′2+A2
1ψ ′2−

3
4

B2
1ψ ′2 = 0. (18)

From Eqs. (13), (15), (16) and (18) we obtain

B0 =−2W,A1 =−
1
2
,A0 =±W and B1 =±1. (19)

Solving Eqs. (14) and (16), then substituting (19) into Eq. (8) we obtain

u=±W−
1
2

(

C1 eLξ

C2+
C1
L eLξ

)

, (20)

and

v=−2W±

(

C1eM ξ

C2+
C1
M eM ξ

)

, (21)

where

L =
4
B1

(

wA1+
1
2

A0B1+
1
2

A1B0

)

, M =
1
A1

(

wB1−2A0A1+
3
2

B1B0

)

, (22)

C1 andC2 are constants of integration. SinceC1 andC2 are constants of integration, we might explicitly pick their values.

If we chooseC1 = L andC2 = 1 then the solutions (20) and (21) reduce to,

u(x, t) =±W−
1
4

L

[

1+ tanh

(

1
2

L(x−Wt)

)]

, (23)

and

v (x, t) =−2W+
1
2

M

[

1+ tanh

(

1
2

M (x−Wt)

)]

. (24)
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Otherwise, if we chooseC1 =−L andC2 = 1 then the solutions (20) and (21) reduce to,

u(x, t) =±W−
1
4

L

[

1+ coth

(

1
2

L(x−Wt)

)]

, (25)

and

v (x, t) =−2W+
1
2

M

[

1+ coth

(

1
2

M (x−Wt)

)]

. (26)

Using hyperbolic function identities Eqs. (23), (24), (25) and (26) can respectively be rewritten as

u(x, t) =±W−
1
4

L

[

1− i tan

(

i
2

L(x−Wt)

)]

, (27)

and

v (x, t) =−2W+
1
2

M

[

1− i tan

(

i
2

M (x−Wt)

)]

. (28)

u(x, t) =±W−
1
4

L

[

1+ i cot

(

i
2

L(x−Wt)

)]

, (29)

and

v (x, t) =−2W+
1
2

M

[

1+ i cot

(

i
2

M (x−Wt)

)]

. (30)

Remark.Solutions (20)-(30) have been verified by substituting them back into the original equation and found correct.

3.2 Whitham-Broer-Kaup model for dispersive long waves in the shallow water small-amplitude

regime

Let us consider the Whitham-Broer-Kaup model for dispersive long waves in the shallow water small-amplitude regime

is in the following form

ut +uux+ vx+β uxx = 0,

vt +(uv)x−β vxx+α uxxx= 0. (31)

This is completely integrable model describes the dispersive long wave in shallow water, whereu(x, t) is the horizontal

velocity, v (x, t) is the height which diverges from the equilibrium position of liquid. α and β are constants that

characterize different diffusion powers. It is a superior model to describe the dispersive long wave. Ifβ = 0 andα = 1

then this system represent variant Boussinesq equation.

The traveling wave transformationu(ξ ) = u(x, t), ξ = x−W t reduces the Eq. (31) into the following ODEs:

−Wu′+uu′+ v′+β u′′ = 0,

−Wv′+(uv)
′

−β v′′+α u′′′ = 0. (32)
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By integrating Eq. (32) once with respect toξ and neglecting the constant of integration, we obtain

−Wu+
u2

2
+ v+β u′ = 0, (33)

−Wv+uv−β v′+α u′′ = 0. (34)

From Eq. (33) we have

v=Wu−
u2

2
−β u′ (35)

Substituting Eq. (35) into (34) we obtain

−W2u+
3
2

Wu2−
1
2

u3+
(

β 2+α
)

u′′ = 0. (36)

Balancing the highest-order derivativeu′′ and the nonlinear termu3, we obtainN = 1. Consequently we get the formal

solution

u(ξ ) = A0+A1

(

ψ ′

ψ

)

, (37)

whereA0 andA1 are arbitrary constants such thatA1 6= 0, andψ(ξ ) is an unknown function to be determined afterward.

It is easy to make out,

u′′ = A1
ψ ′′′

ψ
−3A1

ψ ′′ψ ′

ψ2 +2A1

(

ψ ′

ψ

)3

. (38)

u2 = A2
0+2A0A1

ψ ′

ψ
+A2

1

(

ψ ′

ψ

)2

. (39)

u3 = A2
0+3A2

0A1
ψ ′

ψ
+3A0A

2
1

(

ψ ′

ψ

)2

+A3
1

(

ψ ′

ψ

)3

. (40)

Substituting Eqs. (38), (39) and (40) into Eq. (36) yields a polynomial in1
ψ j , ( j = 0, 1, 2, · · · ) and equating the coefficients

of ψ0,ψ−1,ψ−2,ψ−3 to zero, yields

−W2A0+
3
2

WA2
0−

1
2

A3
0 = 0. (41)

−W2A1ψ ′+3WA0A1ψ ′−
3
2

A1A2
0ψ ′+

(

β 2+α
)

A1ψ ′′′ = 0. (42)

3
2

WA2
1ψ ′2−

3
2

A0A2
1ψ ′2−

(

β 2+α
)

3A1ψ ′ψ ′′ = 0. (43)

−
1
2

A3
1ψ ′3+

(

β 2+α
)

2A1ψ ′3 = 0. (44)

Solving Eq. (41), we obtain

A0 = 0, W, 2W. (45)

SinceA1 6= 0, from Eq. (44), we obtain

A1 =± 2
√

β 2+α. (46)

Case 1.WhenA0 =W, Eq. (42) and Eq. (43) yields a trivial solution. So this case is rejected.

c© 2016 BISKA Bilisim Technology



NTMSCI 4, No. 4, 12-26 (2016) /www.ntmsci.com 18

Case 2.WhenA0 = 0 , Eq. (42) and Eq. (43) yields

ψ ′′′

ψ ′′
= PQ, (47)

whereP= β 2+α
1
2WA1

andQ= W2

β 2+α . Integrating Eq. (47) twice with zero constant of integration for the first time and W 6= 1,

yields

ψ ′ =
C1

PQ
ePQξ , (48)

ψ =C2+
C1

P2Q2ePQξ , (49)

whereC1 andC2 are arbitrary constants.

Substituting the values ofA1 , Eq. (48) and Eq. (49) into Eq. (37), we obtain following the exact solution to the Whitham-

Broer-Kaup model

u(ξ ) =±2
√

β 2+α

(

C1PQePQξ

C2P2Q2+C1ePQξ

)

, (50)

whereξ = x−W t. SinceC1 andC2 are constants of integration, we might explicitly pick their values. If we chooseC1 = 1

andC2 =
β 2+α

W then the solution (50) turns into,

u1,2(x, t) =±W

(

1+ tanh

(

1
2

W
√

β 2+α
(x−Wt)

))

. (51)

On the other hand, if we chooseC1 =−1 andC2 =
β 2+α

W then the solution (50) turns into,

u3,4(x, t) =±W

(

1+ coth

(

1
2

W
√

β 2+α
(x−Wt)

))

. (52)

Now applying (51) and (52) into Eq. (35) we obtain

v1,2(x, t) =
W2

2

(

1∓
β

√

β 2+α

)(

1− tanh2
(

1
2

W
√

β 2+α
(x−Wt)

))

. (53)

v3,4(x, t) =
W2

2

(

1∓
β

√

β 2+α

)(

1− coth2

(

1
2

W
√

β 2+α
(x−Wt)

))

. (54)

Using hyperbolic function identities Eqs. (51), (52), (53) and (54) can respectively be rewritten as

u5,61(x, t) =±W

(

1− i tan

(

i
2

W
√

β 2+α
(x−Wt)

))

. (55)

u7,8(x, t) =±W

(

1+ i coth

(

i
2

W
√

β 2+α
(x−Wt)

))

. (56)

v5,6 (x, t) =
W2

2

(

1∓
β

√

β 2+α

)(

1+ tan2

(

1
2

W
√

β 2+α
(x+Wt)

))

. (57)
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v7,8(x, t) =
W2

2

(

1∓
β

√

β 2+α

)(

1− cot2
(

1
2

W
√

β 2+α
(x+Wt)

))

. (58)

Remark.Solutions (50)-(58) have been verified by replacing them back into the original equation and found correct.

Case 3.WhenA0 = 2W , we obtain same result included in Eq. (51) - Eq. (58).

4 Physical explanations

In this segment, we discuss the physical explanations of theresolute exact solutions and then solitary solutions of the

modified dispersive water wave equations and Whitham-Broer-Kaup model for dispersive long waves in the shallow

water small-amplitude regime.

Fig.1 Shape of solution (20) with W = 2, L = 4 C1 = 1, C2 = 2 within the interval(−10≤ x≤ 10) and(0≤ t ≤ 10).
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Fig.2 Shape of solution (21) with W = 2, M = 1,C1 = 1, C2 = 2 within the interval(−10≤ x≤ 10) and(0≤ t ≤ 10).

Fig.3 Shape of Eq. (25) with W = 2, L = 3 within the interval(−10≤ x≤ 10) and(0≤ t ≤ 10).
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Fig.4 Shape of Eq. (27) with W = 2, L = 3 within the interval(−10≤ x≤ 10) and(0≤ t ≤ 10).

Fig.5 Shape of Eq. (50) with W = 2, P= 1, Q= 4 C1 = 1, C2 = 3 within the interval(−10≤ x≤ 10) and(0≤ t ≤ 10).
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Fig.6 Shape of Eq. (51) with W = 2, β = 2, α = 3 within the interval(−10≤ x≤ 10) and(0≤ t ≤ 10).

Fig.7 Shape of Eq. (52) with W = 2, β = 2, α = 3 within the interval(−10≤ x≤ 10) and(0≤ t ≤ 10).

c© 2016 BISKA Bilisim Technology

www.ntmsci.com


23 J. Akter and M. Ali Akbar: Solitary wave solutions to two nonlinear evolution equations via the modified...

Fig.8 Shape of Eq. (53) with W = 2, β = 2, α = 3 within the interval(−10≤ x≤ 10) and(0≤ t ≤ 10).

Fig.9 Shape of Eq. (55) with W = 2, β = 2, α = 3 within the interval(−10≤ x≤ 10) and(0≤ t ≤ 10).
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Fig.10 Shape of Eq. (57) with W = 2, β = 2, α = 3 within the interval(−10≤ x≤ 10) and(0≤ t ≤ 10).

The solution Eqs. (20), (21), (23), (24) are kink type wave solution. It rise or decent from one asymptotic stateξ →−∞
to another asymptotic stateξ → ∞. Fig.1 shows the shape of solution Eq. (20) which is kink type wave solution with

wave speedW = 2, L = 4, C1 = 1, C2 = 2 within the interval−10≤ x ≤ 10 and 0≤ t ≤ 10. Fig.2 shows the shape of

solution Eq. (21) which is also kink type wave solution with wave speedW = 2, M = 1, C1 = 1, C2 = 2 within the

interval−10≤ x ≤ 10 and 0≤ t ≤ 10. Fig.3 shows the shape of solution Eq. (25) which is singular kink type solution

with wave speedW = 2, L = 3 within the interval−10≤ x≤ 10 and 0≤ t ≤ 10. Fig.4 shows the shape of solution Eq.

(27) which is exact periodic traveling wave solution with speedW = 2, L = 3 within the interval−10≤ x ≤ 10 and

0 ≤ t ≤ 10. The solution Eqs. (23), (24), are also kink type wave solutions which are similar to Fig.1 and Fig.2. The

solution Eq. (28) is exact periodic traveling wave solution which is similarto Fig.4 and the solution Eqs. (26), (29), (30)

are singular kink type wave solutions which are similar to Fig.3, so for simplicity we ignored these figures.

The solution Eqs. (50), (51) of Whitham-Broer-Kaup model are kink type wave solution. It rise or decent from one

asymptotic stateξ → −∞ to another asymptotic stateξ → ∞. Fig.5 shows the shape of solution Eq. (50) which is kink

type wave solution with wave speedW = 2, P = 1, Q = 4 C1 = 1, C2 = 3 within the interval(−10≤ x ≤ 10) and

(0≤ t ≤ 10). Fig.6 shows the shape of solution Eq. (51) which is kink type wave solution with wave speedW = 2, β = 2,

α = 3 within the interval(−10≤ x≤ 10) and(0≤ t ≤ 10). Fig.7 shows the shape of Eq. (52) which is singular kink type

solution with speedW = 2, β = 2, α = 3 within the interval(−10≤ x ≤ 10) and(0 ≤ t ≤ 10). Fig.8 shows the shape

of Eq. (53) which is exact singular kink type solution withW = 2, β = 2, α = 3 within the interval(−10≤ x≤ 10) and

(0≤ t ≤ 10). Fig.9 and Fig.10 show the shape of Eq. (55) and (57) respectively which are exact periodic traveling wave

solutions withW = 2, β = 2, α = 3 within the interval(−10≤ x ≤ 10) and(0≤ t ≤ 10). The solution Eqs. (54), (56),

(58) are singular kink type wave solutions which are similar to Fig.7 , For convenience these figures are omitted.

5 Conclusions

In this paper, we implemented successfully the modified simple equation (MSE) method to solve for the coupled

modified dispersive water wave and the Whitham-Broer-Kaup model for dispersive long waves in the shallow water

small-amplitude regime. The obtained solutions without using any computation system such as Maple, Mathematica etc
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have many prospective applications in nonlinear science. It is significant to show that the modified simple equation

(MSE) method is very simple, straightforward and concise. Comparing this method with other methods, like the

F-function method, the homotopy perturbation method, the asymptotic method, the non-perturbative method etc, we

might conclude that MSE method is more and much simpler than others. This powerful method can also be used to solve

many other nonlinear evolution equations which frequentlyarise in various scientific real time applications. The

reliability of the method and the reduction in the size of computational domain give this method a wider applicability.
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